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Abstract / Resumen

Abstract. The definition of optimal selection criteria for maximizing the response rate to
Cardiac Resynchronization Therapy (CRT) is still an issue under active debate. Recent
clinical approaches propose a classification of patients into classes of mechanisms that could
lead to heart failure and study their response to the therapy. In this line of research, the
computation of a metric between the motion and deformation patterns of a given subject
and well identified classes of CRT responders is considered in this thesis, as the basis of a
new strategy to compute patient selection indexes. The thesis proposes first an improved
design for the construction of statistical atlases of myocardial motion and deformation, and
applies it to the characterization of populations of patients involved in CRT. The added-
value of our approach is highlighted in a clinical study, applying the methodology to a large
population of patients with a given pattern of dyssynchrony (septal flash) and understanding
the link between its correction and CRT response. Finally, we propose a method to extend
the analysis to the comparison of individuals to reference populations, either healthy or
pathological, using manifold learning techniques to model a disease as progressive deviations
from normality along a manifold structure, and demonstrate the potential of our method
for inter-subject comparison in CRT patients.

Resumen. La definición de un criterio óptimo para mejorar la respuesta a la Terapia de
Resincronización Card́ıaca (TRC) sigue siendo un debate abierto. Estudio cĺınicos reciente-
mente publicados proponen clasificar pacientes según diversos mecanismos patofisiológicos
que pueden inducir insuficiencia card́ıaca y estudian su respuesta a la terapia. Siguiendo
esta ĺınea de investigación, esta tesis considera el cálculo de una distancia entre los patrones
de movimiento y deformación de un individuo y las clases de respondedores a la TRC, siendo
la base de una nueva estrategia para calcular ı́ndices para seleccionar pacientes. Esta tesis
presenta primero un método para construir un atlas estad́ıstico de movimiento y deformación
miocárdica, y su aplicación posterior a la caracterización de poblaciones de potenciales can-
didatos a la TRC. El valor añadido de nuestro método se enfatiza en un estudio cĺınico, en
el cual se aplica la metodoloǵıa a una gran población de pacientes con un patrón espećıfico
de disincrońıa card́ıaca (llamado septal flash), y se relaciona su corrección y la respuesta
a la TRC. Finalmente, se extiende el método para comparar individuos a una población
de referencia, sana o patológica, usando técnicas de manifold learning para representar una
patoloǵıa como una desviación progresiva de la normalidad, con una estructura no lineal
espećıfica, y se demuestra el potencial de nuestro método para comparar entre si candidatos
a la TRC.
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Introduction

1.1 Preamble

Starting from (1) a concrete clinical problem, this thesis aimed at (2) designing novel algo-
rithmic tools to understand this problem, and (3) showing these tools are clinically applicable
on large datasets.

1.1.1 Clinical context

This thesis was oriented towards the implementation of computational tools to study cardiac
dyssynchrony, facing the current limitations of Cardiac Resynchronization Therapy (CRT)
[1] studies. As briefly reviewed in Sec. 2.1.1, the main current clinical challenge behind CRT
is certainly the improvement of the patient selection process. Recent editorials and studies
have debated on the importance of primarily understanding the physiological mechanisms
of cardiac dyssynchrony, and as a first step, their quantification [2] [3] [4] (Sec. 2.1.2).

In this context, the design of quantitative tools for characterizing these mechanisms of
cardiac dyssynchrony stood as one of the initial targets of this thesis. Section 2.2 reviews
the literature about myocardial motion and deformation estimation, while Sec. 2.3 gives
an overview of the different options available to perform intra- and inter-subject statistical
comparison.

1.1.2 Algorithmic implementation

Motion and deformation were quantified in this thesis using dense registration algorithms.
These algorithms were made compliant with specific constraints associated to the processing
of cardiac sequences (preservation of the topology and orientation of the registered anatom-
ical structures, spatiotemporal smoothness and regularization of the estimated transforma-
tions, Sec. 2.2.2).

Besides being able to measure myocardial motion and deformation in a similar manner,
most CRT studies still lack of a clear system of coordinates to perform relevant inter-subject
comparison. This point is relatively paradoxical, as one would expect a relevant quantitative
comparison for any information extracted in a quantitative manner. In such studies, spatial
synchronization of the data is limited to the definition specific observation points, which

1



C
H

A
P

T
E

R
1
.

are generally a limited set of observer-defined landmarks, or the cardiac segments defined
according to the NYHA convention [5]. The definition of these points is highly subjective
and patient-dependent, and therefore a potential factor of bias in the analysis. Temporal
synchronization of the whole data is avoided in a large number of CRT studies by computing
few representative values for the whole sequence (average value within a specific time interval,
or single values such as time-to-peak or -onset measurements, all of them being highly
controversial [6] [7]).

Thus, the core of this thesis was the design of a robust framework to perform subject
comparison at a population scale and proposing technical solutions for the above-mentioned
synchronization issues. Depending on the population of subject considered in the analysis,
different solutions were found:

•We first proposed a complete pipeline for the construction of a statistical atlas of motion
built from a healthy population, allowing the local quantification of myocardial motion
abnormalities. In the context of CRT, we demonstrated the potential of this approach for
the characterization of specific patterns of mechanical dyssynchrony, at baseline (Chap. 3);
and as a first step towards the understanding of the link between these mechanisms and
CRT response, looking at the evolution of these abnormalities with the therapy (Chap. 4).

• The tools used for statistically modelling the variability of healthy subjects may not
be adequate if the strategy is extended to build an atlas for a population of patients with
a specific pattern of dyssynchrony. Spatiotemporal variations of the studied pattern may
bias the estimation of the local variability for this population, despite its synchronization
to a common system of spatiotemporal coordinates. Thus, a second part of the thesis
was centered on the inclusion of more complex statistics (manifold-learning techniques) to
achieve the comparison of individuals to a population with a specific pattern, taking into
account the topology of this pattern (Chap. 5).

1.1.3 Clinical application

In a clinical perspective, part of the thesis work focused on the value of our approach for
the characterization of CRT responders. The use of image registration, statistical atlases
and manifold learning may appear as a complex machinery, the utility of which should be
clearly demonstrated. We therefore intended to demonstrate the usefulness of the proposed
quantification and statistical characterization of motion and deformation abnormalities in
its application to a large database of patients.

The first expected output from the implantation of a CRT device on one patient (getting
closer to a synchronous contraction, Sec. 2.1.1) is easily transposable at the atlas output
level (reducing the observed abnormalities). Part of the work performed in this thesis was
centered on the analysis of these abnormalities. The analysis can be performed either locally,
at each instant of the cardiac cycle and each location of the myocardial wall (Chap. 3 and 4),
or globally, therefore focusing on the whole patterns of abnormality observed, when present
(Chap. 5).

As suggested by the findings of [8], and encouraged by recent editorials [2] [3] [4], we
centered our clinical analysis on specific patterns of dyssynchrony that may condition CRT
response. Encouraging results confirmed the relevance of an atlas-based approach to quan-
tify the effect of CRT on such abnormal patterns (Chap. 4). These observations encouraged
the design of the latest part of the thesis work, which consisted in implementing manifold-
learning techniques to represent a pathological pattern and perform population-wise com-
parison (Chap. 5).
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1.2 Objectives of this thesis

The overall aim of this thesis was to propose technical solutions for the characterization
of motion and deformation abnormalities. On the clinical side, the underlying objective
was to apply these tools in the context of CRT, and demonstrate their added-value. Main
requirements were:
• the quantification of motion and deformation for any subject.
• the definition of statistical indexes to characterize the degree of abnormality of each

subject and its location.
• the design of statistical tools for the analysis of patterns of dyssynchrony, using the

information provided by the estimated abnormalities indexes.

1.3 Contributions of this thesis

• One of the main contributions of this work consists in the computation of statistical
indexes for the quantification of motion and deformation abnormalities (Chap. 3). The
novelty of such indexes is that they intrinsically perform a comparison to normality. This
concept is analogue to the learning process made by a clinical observer, namely characterizing
pathological motion and deformation patterns in a patient using learnt patterns from healthy
and pathological sequences as reference. In our case, the analysis is completely quantitative,
as recommended by recent statements about the study of cardiac dyssynchrony [3] [4].
•With the use of statistical atlases to analyze populations, patient data is normalized to a

common anatomical reference. The computation of statistical indexes is therefore automatic
and more accurate than methods requiring input from clinical observers (Chap. 3).
• On a clinical side, the recognition of specific motion and deformation patterns may have

better predicting capability of CRT response than the classical indexes of dyssynchrony used
for CRT. This work attempted to demonstrate the added-value of the proposed statistical
atlases tools for the understanding the effect of CRT on such abnormal patterns (Chap. 4).
• The atlas framework proposed in this thesis allows the representation of any subject

by a map of local abnormalities. One part of this thesis focused on the advanced analysis
of these maps, using manifold-learning techniques to represent a pathological pattern as a
deviation from normality along a smooth manifold, and then comparing individuals to this
pattern (Chap. 5). This concept is a first step towards the reproducible comparison of a
new candidate to specific patterns of mechanical dyssynchrony that actively condition CRT
response.

1.4 Overview of this thesis

The whole structure of the thesis is articulated around atlas-based techniques for inter-
subject comparison, from the construction of a statistical atlas to the extension of its output
under a manifold-learning perspective, and its application to the study of CRT response
(Fig. 1.1). The core contents of this thesis are articulated in four chapters.

Chapter 2 presents a review of the state-of-the-art for the most of the concepts studied
in this thesis, therefore situating each specific part of the thesis within either the clinical or
image analysis communities (or both).

Chapter 3 describes a complete pipeline for the construction of a statistical atlas of
motion built from a healthy population. The atlas is built in a three steps process: motion
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Initial problem:
Understanding CRT response

Methods design:
Atlases and manifold-learning

Clinical impact:
CRT clinical studies

Figure 1.1: Research lines for this thesis.

extraction from cardiac sequences using image registration techniques, normalizing the dif-
ferent sequences to a spatiotemporal reference anatomy, and computing local statistics on
motion fields. The atlas is then used for the comparison of individuals to a healthy pop-
ulation, both represented by myocardial velocities, using abnormality indexes available at
any spatiotemporal location. The method is applied to the analysis of a population of CRT
candidates with left ventricular dyssynchrony, looking for the presence of a specific pattern
of intra-ventricular dyssynchrony called septal flash (SF).

Chapter 4 consists in a clinical study to demonstrate the value of the proposed approach
for the understanding the effect of CRT on patterns of abnormal motion. The method is
applied to the computation of motion abnormalities in a large dataset of 88 CRT candidates
before and after the therapy. The study focuses on the usefulness of the atlas-based tools to
quantify motion abnormalities. The study highlights the importance of statistical indexes
that intrinsically embed the notion of “normality”, to characterize patterns of mechanical
dyssynchrony and their evolution with the therapy.

Chapter 5 presents a new method for representing a pathological pattern as a deviation
from normality along a smooth manifold, and comparing individuals to the population for
which the manifold structure is estimated. Each subject is represented by a 2D map of
local motion abnormalities, obtained from its comparison to a statistical atlas of motion
constructed for a healthy population following the pipeline introduced in Chap. 3. The
algorithm estimates a manifold from a set of patients with varying degrees of the same
disease, and compares individuals to the training population using a mapping to the manifold
and a distance to normality along the manifold. The method is applied in the context of
CRT, comparing both healthy subjects and patients to a population with SF [8].

Each chapter is self-contained, and corresponds to a peer-reviewed journal article, pub-
lished or under review. Some concepts may therefore be repeated, sometimes including some
improvements introduced along the thesis progression.
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2

State-of-the-art

2.1 Looking for CRT responders

2.1.1 Cardiac dyssynchrony in the context of CRT

The role of CRT [1] in improving both clinical condition and cardiac function of heart failure
patients has been now clearly demonstrated [9] [10] [11].

In this therapy, a biventricular pacing device is positioned on the myocardium of the
treated patients, to pace both the septal and lateral wall of the left ventricle (LV), and
compensates deficiencies in the heart conduction system. The primary objective of CRT
is to recover a synchronous contraction of the cardiac chambers. With optimized resyn-
chronization, cardiac function is expected to improve, leading to notable improvements in
patient condition (clinical response) and allowing reverse remodelling of the LV (volume or
echocardiographic response) [12] [13].

Current CRT devices have two or three leads, depending on the pacing strategy. The
septum is activated through a lead positioned in the right ventricle, while the lateral wall is
paced at the coronary sinus level. A third lead may be placed in the right atrium to optimize
the atrio-ventricular contraction. The accuracy of the pacing site and its influence on CRT
response is discussed in [14] [1].

Importance of the patient selection process

Between 25 and 50 % of heart failure patients (at least 15 million people in Europe [15]
[16]) may be candidates for CRT based on the current guidelines [16]. This high potential
societal impact, combined to the high cost of the pacing device and the whole cardiac care
cycle, makes the definition of relevant patient selection criteria a priority [17] [18] [13] [19].

Established international guidelines for the selection of patients currently select subjects
with symptomatic heart failure, electrical abnormalities and decreased LV function (ejection
fraction < 35%, QRS duration > 120ms, and NYHA classification ≥ 3 despite optimal
medical treatment) [20] [15].

However, with such selection criteria, the therapy fails to “improve enough” (Sec. 2.1.1)
patient condition for approximately 30% of the subjects, and reverse remodelling for 50% of
the patients [21]. The guidelines were softened according to these observations and clinical
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practice [13], but making the patient selection more efficient remains an open issue. In a
research perspective, improving patient selection supposes reaching a clear understanding of
the physiological factors (both electrical and mechanical) that condition positive or negative
response.

Definition of CRT response

There is currently no consensus about the definition of CRT response [22] [7], even between
two different papers from the same authors published in the same issue of the same journal [8]
[23]. Studies generally define volume response by measuring reverse remodelling (reduction
of LV end-systolic volume in a majority of studies), while clinical response is set by estimating
the improvement of the patient condition (6 minutes walking test, NYHA functional class
reduction, peak-oxygen consumption, etc.). The relevance of interpretations based on the
clinical response may be discussed, due to non-negligible placebo effects [24].

In any case, the criteria for CRT response should be considered carefully [4] [21]. Indeed,
the use of fixed thresholds for defining response is certainly a limitation to a clear under-
standing of CRT response, in comparison with the use of a spectrum of responses, involving
additional measures of CRT outcome, as recently suggested [25] [18].

2.1.2 Understanding the mechanisms leading to cardiac dyssyn-
chrony

There is still a huge paradox about CRT studies: CRT targets the correction of the dyssyn-
chrony in the motion of the cardiac chambers, but the patient selection process still discards
dyssynchrony (both electrical and mechanical [22]) as a selection criteria. The duration of
the QRS complex is the only exception to this, but the guidelines have been revised to make
its influence lower [13].

Regarding mechanical dyssynchrony, there is currently no consensus for its accurate char-
acterization and its link with CRT response, therefore bringing no conclusions about the way
to include it within the patient selection process [3] [4] [26] [27]. This low enthusiasm is re-
inforced by the abundance of publications about mechanical dyssynchrony measurements,
including promising and extensively advertised, but deceiving, large-scale multi-center stud-
ies [28] [29] [30] [24].

The indexes proposed in the literature are mostly based on the direct comparisons of
temporal measurements (QRS duration and time-to-peak or time-to-onset measures), which
remain highly suboptimal [6] [7] and still discard the complexity of the etiologies of cardiac
dyssynchrony. The combination of these single parameters into a multi-parametric analysis
did neither bring any clear conclusions [31] [32] [33] for similar reasons.

Recent editorials encouraged rather different strategies, which privileged a mechanistic
approach for the understanding of CRT response, rather than looking for a single or mul-
tiple phenomenologically predictive indexes [2] [3] [4]. The high predictive value associated
to the correction of specific abnormal mechanisms, each one amenable to a certain type
of dyssynchrony, was discussed in [8]. This study proposed a separation of patients ac-
cording to specific groups of mechanical dyssynchrony (inter-, intra- and atrio-ventricular
dyssynchrony), each of these groups being associated to one specific pathological pattern of
myocardial motion and deformation, with different grades of abnormality with respect to
a healthy cardiac function. Posterior works also considering similar patterns of mechanical
dyssynchrony supported such a strategy [34] [35] [23].

According to this specific line of research, a straightforward improvement of the patient
selection process for CRT could integrate the recognition of such patterns in new candidates,
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under the condition that the response rate of each of these patterns is roughly known.

The algorithm for improving patient selection proposed in [8] is however an algorithmic
model, the limitations of which should be carefully considered before adapting it. We sum-
marized some of these points in Sec. 6.2, complemented by the critical view we gained about
this strategy during the realization of this thesis.

2.2 Imaging strategies for analyzing myocardial dynam-
ics

2.2.1 Myocardial imaging modalities

A large amount of imaging techniques are used in the clinical practice to analyze the dy-
namics of the myocardial wall, such as magnetic resonance imaging (MRI), tagged MRI
(t-MRI), computed tomography (CT) and 2D/3D ultrasound (US), and techniques derived
from US properties such as tissue doppler (TDI) and strain rate imaging (SRI). In MRI,
t-MRI, CT and standard US imaging, wall motion and deformation can be obtained by using
segmentation, tracking or registration techniques on image sequences. MRI and CT provide
a better spatial resolution but a reduced temporal one compared to US imaging, which is
in addition of easier access in hospitals, with less expensive and constraining devices (MRI
for example cannot be used for patients equipped with pacemakers, due to the use of a high
magnetic field). US and t-MRI allow a more accurate estimation of myocardial deformation
due to the presence of local features on the myocardial wall (speckles [Sec. 2.2.2] or tags).

TDI and SRI provide complementary analyzing tools [36] [37]. Both use the Doppler
effect on US signals to provide information regarding velocities (TDI, [38]) and strain (SRI,
[39] [40]) along the myocardial wall. An up-to-date review on US-based techniques can be
found in [36].

In this thesis, we tried to keep the formulation of the algorithms irrespective of the
input imaging modality. We preferred to apply image processing techniques on standard
sequences of images where the gray-level is directly related to the anatomy, rather than
using functional images. Indeed, TDI only provides a 1D measurement (the projection of
the velocity vector along the observation beam), namely limited information, and is highly
dependent of the insonation angle [36]. SRI is still under development and needs to be
improved for a completely reliable clinical use.

2.2.2 Image-based tracking

Recovering myocardial motion and strain has been targeted by a large number of computer-
assisted techniques, which can be separated in three main trends: identifying anatomical
features of the myocardial wall (using landmark extraction or image segmentation, based
on Active Shape [41] and Appearance [42] [43] Models) (1) along the whole sequence, or on
one frame of the sequence and propagate this information using (2) feature-tracking or (3)
motion and deformation estimation directly from the image sequences, which is the strategy
chosen for this thesis.

Image-based tracking techniques are not specific to a given imaging modality, but some
popular exceptions were specifically designed for t-MRI and US, as reviewed in the following
paragraphs.
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Frequency-based tracking of t-MRI sequences

Frequency-based methods can be used to track the information contained in t-MRI se-
quences, the main ones being HARP [44] [45], SinMod [46] and Gabor filter methods [47]
[48]. All techniques are based on the principle that the phase of a material point is constant
along the cardiac cycle. HARP works in the frequency domain to process phase information,
phase shifts being associated to motion. SinMod improves the HARP technique by allowing
the recovery of the both local spatial phase shift and spatial frequency of the tagged images,
and not only local spatial phase. Gabor filters also allow tracking the anatomy from the
phase response to the filter. A detailed review of these techniques can be found in [49].

Speckle-tracking

Speckle tracking is a rather recent technique which uses block-matching algorithms to track
local speckle patterns along US sequences. Speckle is a random interference pattern of US
imaging which is mainly visible on the myocardial wall, and is conserved over “large enough”
temporal neighborhoods of frames. Thus, tracking the local speckles allows tracking the
myocardial wall along the whole sequence. In this sense, the concept of speckle tracking is
very similar to the tracking achieved through image registration along cardiac sequences,
with the specificity of computing image similarities locally. A majority of speckle tracking
applications in clinical practice process 2D US [36] [50], but its extensions to 3D start gaining
popularity as they do not suffer from out-of-plane motion artifacts [51] [52] [53] [54] [55] [56].

Pairwise image registration

Basic registration takes as input two objects and computes an optimal transformation that
matches one of these two objects to the second one. In our case the input objects are cardiac
images and the expected outputs are displacement fields, reflecting inter-subject changes (in
case the processed images come from two different subjects at the same phase of the cardiac
cycle) or intra-subject changes, namely motion along the sequence. Due to the complexity
of the way the heart moves and deforms, the computed transformations are required to be
non-rigid.

Among the large variety of non-rigid registration techniques that have been developed,
two can be said of very common use: demons algorithm, which is non-parametric [57], and
Free Form Deformation (FFD) [58], which displaces a set a control points and therefore
is parametric. For both techniques, matching mainly consists in the minimization of an
energy including a similarity term between the images to match, and a constraint term on
the transformation to control its smoothness.

Demons algorithm considers non-rigid registration as a diffusion process. It performs
successive updates of a displacement field by adding a small vector field to it, whose ex-
pression is derived from optical flow equations. Smoothing by a Gaussian kernel serves
as regularization technique. Detailed attempts to find a unified theory for demons-based
algorithms can be found in [59] [60] [61] [62].

FFD settles a set of control points over the object to deform and moves them iteratively
according to the optimization scheme. A major characteristic of this registration technique
is that a whole continuous transformation can be characterized by a small number of param-
eters (the control points positions). The transform is then obtained over the whole image
domain by interpolation on a B-spline basis [63] [64].
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Diffeomorphic registration

Tracking the anatomy implies imposing strong constraints on the estimated transformations:
the topology and the orientation of anatomical structures should be preserved by the regis-
tration scheme. Indeed, in case of large displacements, simple registration schemes are likely
to present folding artifacts [65], where image structures could overlap, appear or disappear,
which is completely unrealistic in terms of anatomy. The previous registration schemes can
therefore be adapted to provide diffeomorphic transformations (invertible, smooth and with
smooth inverse) [66] [65].

Intuitive construction of diffeomorphic transformations. During the last decade, specific
works took advantage of the definition of diffeomorphisms to provide optimal trajectories
between two images parameterized by flows of velocities. We refer to these techniques as
the Large Deformation Diffeomorphic Metric Mapping framework (LDDMM), initiated by
the works of [67] and [68].

The intuition behind these works is directly linked to the group structure of the space
of diffeomorphic transformation, the group operator being the composition operator [69].
A large diffeomorphic transformation is built as the composition of small transformations,
computed during an iterative process. A parametrization of this composition process is
generally defined as a time scale between times 0 and 1, which correspond to the fixed
and moving images, respectively. For numerical solvers, the problem is formulated using a
discretized time scale denoted {ti}i∈[0,N ], with t0 = 0 and tN = 1. Thus, the composition
process can be intuitively expressed as:

ϕ(., 1) =©N−1
i=0 (Id + v(., ti)∆ti), (2.1)

where each v(., ti) is a “smooth enough” vector field, Id being the identity transforma-
tion, ∆ti = ti+1 − ti is a “small enough” time interval, and ϕ(., ti) is the diffeomorphic
transformation built until time ti, initialized with ϕ(., 0) = Id.

The composition of the small transformations {Id + v(., ti)∆ti}i∈[0,N−1] is more com-
monly written in an additive way, directly operating on the “small enough” vector fields
{v(., ti)}i∈[0,N−1]:

ϕ(., 1) = ϕ(., 0) +

N−1∑
i=0

v(ϕ(., ti), ti)∆ti, (2.2)

The notion of “smooth enough” conditions the space in which the transformations are
optimized, and should be defined before any computation. In practice, most of LDDMM
algorithms reformulate the registration problem using reproducible kernel Hilbert spaces [70]
[71] [69], which allow controlling the type of desired smoothness depending on the kernel
expression and width [72].

The notion of “small enough” is related to the discretization of the time scale, as condi-
tions the accuracy of replacing the composition of transforms (Eq. 2.1) by the addition of
vector fields (Eq. 2.2). This last notion is easier to understand using a continuous formula-
tion, as follows:

ϕ(., 1) = ϕ(., 0) +

∫ 1

0

v(ϕ(., t), t)dt, (2.3)

or its differential version:

∂ϕ

∂t
|(t=τ) = v(ϕ(., τ), τ). (2.4)
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Figure 2.1: Illustration of folding artifacts on large transforms, with FFD as registration method. (a) fixed
image, (b) moving image, (c) diffeomorphic transform, and (d) non-diffeomorphic transform.

The last formulation of Eq. 2.4 highlights the fact that v(ϕ(., τ), τ) corresponds to the
tangent of the trajectory at time τ , dt being an infinitesimal interval of the temporal scale.
The discretized formulation of Eq. 2.2 is therefore valid only if the {∆ti}i∈[0,N−1] are “small
enough”. Some considerations about the choice of the discretization interval can be found
in [73].

The above-mentioned formulations underline the fact that the group of diffeomorphisms
is of infinite dimension, as there is an infinity of velocity fields v to define a path going
from time 0 to time 1. Some variants of this problem have been proposed in the literature,
restraining the search to a one-parameter subgroup of the group of diffeorphisms by the use
of stationary velocity fields [74] [75] [76] Younes et al., 2009). This computational option may
reduce the computational cost associated to the image registration process, but may present
some limitations when the LDDMM framework is extended to perform image registration
along temporal sequences (Sec. 2.2.2).

Adapting classic registration algorithms to the diffeomorphic framework. Aside the regis-
tration algorithms purely based on the LDDMM framework, the algorithms described in
Sec. 2.2.2 were adapted to be diffeomorphic.

Diffeomorphic demons algorithm used a smoothing of the displacement field at each
iteration to make the transformation invertible [77] [62].

In the FFD method, the displacement of control points is kept within a sphere of influence
to prevent from folding artifacts [78]. An illustration of non-diffeomorphic and diffeomorphic
FFD outputs is shown in Fig. 2.1.

Anatomically consistent refinements of the registration scheme

Higher performance of the registration can be achieved through the addition of anatomically
consistent constraints.
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Increased flexibility and accuracy are obtained by making the registration multi-scale or a
locally consistent definition of its parameters (adaptation of the FFD grid to the anatomical
structures, as targeted in Thin-Plate Splines approaches [79] [80]). Multi-scale demons adapt
the size of the smoothing kernel in the regularization process [81] [82], while in FFD the grid
spacing is progressively reduced [83] [73]. Most of the algorithms derived from the LDDMM
framework redefine the registration problem using reproducible kernel Hilbert spaces to reach
smooth transformations and fast computations, which can therefore be made multi-scale by
changing the kernel width, as discussed in [69] [84].

A second point would rather impose physically-consistent constraints on the computed
transformations, as attempted for example in some works on incompressibility [85] [86] [87]
[88] [89] [90] [91] [92] [73]. There is some controversy in the literature concerning the fully
incompressible nature of the myocardial tissue, some elements being detailed in [73].

Registration along temporal sequences

Image registration algorithms are generally pairwise. Their extension to align simultaneously
all the images contained in one sequence allows the estimation of cardiac motion, as initiated
in [93], and improved in [94] [95].

The formulation of the LDDMM registration between two images (Eq. 2.2 and 2.3) can
be also slightly adapted to make the tracking along temporal image sequences diffeomor-
phic. First formulations only adapted the formulation of the image similarity to include
the temporal dimension in the registration algorithm [96] [97] [98]. Temporal continuity of
the trajectories is guaranteed, but the whole transformation is only piecewise diffeomorphic
(between all instants at which image data exists). This means that the temporal continuity
of the recovered velocities is not necessarily guaranteed, which could be a strong limitation
to the construction of a statistical atlas of motion, where the velocity data is required at
each instant of the continuous timescale.

Recently proposed methods solve this problem, using trajectory interpolation in a second-
order scheme [99] [100], or simply formulating the registration as a full 4D diffeomorphic
problem [101] [73] [102] [103].

Formulation. In the following we denote {ti}i∈[0,N ] the temporal instants at which image
data is available, t0 and tN being the beginning and the end of the image sequence.

The transformation from time t0 to time tn can be therefore be written using a continuous
time scale:

∀n ∈ [0, N ], ϕ(., tn) = ϕ(., t0) +

∫ tN

t0

v(ϕ(., t), t)dt, (2.5)

or a discretized time scale:

∀n ∈ [0, N ], ϕ(., tn) = ϕ(., t0) +

N−1∑
i=0

v(ϕ(., ti), ti)∆ti. (2.6)

Sequential or non-sequential similarity metric? The choice of the image correspondence
to include in the registration scheme highly conditions the registration performance, as
discussed in [104]. The image similarity can be computed between pairs of consecutive
images (with the risk of presenting drift artifacts when chaining all the transformations
along the sequence) [83], between each frame and one relevant reference chosen within the
sequence [101] [73] [102] [103], or a combination of both [104] (Fig. 2.3).
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Figure 2.2: Artifacts due to a non-diffeomorphic temporal image registration scheme. (a) Determinant of
the jacobian of the mapping from time t0 to time tn, n ∈ [0, N ]. (b) Determinant of its inverse, which is
involved in reorienting features to a reference anatomy. (c) Longitudinal component of the velocity, after
reorientation to the reference anatomy. Artifacts are present when the jacobian is no longer invertible
(vertical red lines).

Computation of velocities. The computation of velocities is not straightforward for the reg-
istration schemes not issued from the LDDMM framework. They often require the additional
assumptions such as the stationarity of the velocities between each pair of consecutive frames
[83], or advanced interpolation techniques to guarantee the velocities are differentiable [99]
[100].

In contrast, the formulation derived from the LDDMM framework immediately provides
an exact expression for the velocities by Eq. 2.4.

2.3 Statistical tools for inter-subject comparison

Methods derived from recent advances in computational anatomy [105] [106] [107], computa-
tional functional anatomy [108], and statistical atlases [109] [110], are particularly of interest
for performing inter-subject comparison in our application. The data of each subject (shape
or information defined at each point of this shape) is synchronized to a common anatomical
reference, so that there is no need to define specific comparison points between patients. It
consists in a robust alternative to the methods used in current clinical studies, which suffer
of low reproducibility, as discussed in [3] [4].

Issues related to the integration of the temporal dimension contained in the cardiac
sequences should be integrated in our analysis. This mainly differs from neuroimaging
applications, which represent a majority of the computational anatomy applications. For
these studies, temporal dimension of the data stands for longitudinal studies, making the
challenges related to its integration different from cardiac studies: focus on growth processes,
with few temporal samples for each subject, while studying cardiac function supposes looking
at cyclic information with much more temporal samples for each subject (from 20 to 60
images per cycle in US sequences). Note that longitudinal studies also exist in cardiac
applications, when looking at the evolution of the cardiac function of one subject before and
after the therapy.

2.3.1 Computing statistics on motion and deformation fields

A majority of computational anatomy approaches directly compute statistics on shape,
which has the advantage of allowing the use of Riemannian metrics. In the scope of this
thesis, we aim at characterizing specific aspects of the cardiac function, namely motion and
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Figure 2.3: Propagation of a synthetic grid using the TDFFD tracking. Results for three different weights
λ of the image similarity metrics (comparison frame-to-frame and to the reference image). Drift errors (top
row) and tag jumps (bottom row) are pointed out by the red ellipses. Image taken from [104] with the
permission of the authors.

deformation along the cardiac cycle, and we therefore process velocity and strain informa-
tion, which is attached to the cardiac shape, therefore entering the field of computational
functional anatomy [108]. In comparison with statistical atlases of shape, few works did the
statistical analysis of the velocity and strain information attached to the myocardial shape
[111] [112] [113], initiating the efforts on the statistical analysis of this information, and the
preliminary steps to achieve it (transportation and reorientation).

In particular, the computation of statistics on diffeomorphic transformations, deforma-
tion fields or tensor fields requires some specific precautions, due to the fact that the space of
diffeomorphisms only has a group structure for the composition operator [69], as illustrated
in Fig. 2.4. Statistics compliant with the group of diffeomorphisms should be computed
within its tangent space, as commented in [114] [74] [115] [116] [117].

2.3.2 Where to compute statistics?

The statistical analysis of velocity fields and strain fields can be performed either at each
temporal instant, or at the time-point initiating the sequence. Both strategies have been
adopted in the literature about statistical atlases built for longitudinal or temporal data,
and correspond to the Eulerian or Lagrangian frameworks, respectively. Computations in
an Eulerian system of coordinates [118] [98] [119] [120] raised the issue of estimating the
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Figure 2.4: Statistical artifacts for the group of 2D rotations. From left to right: rotation of 30, −30,
composition and sum of the related displacement fields. As for diffeomorphisms, these transformations
belong to a group structure with the composition law as group action. Hence, classical statistics cannot be
done directly on displacement fields but within the algebraic structure of the corresponding tangent space.

information at each desired temporal instant, using temporal neighborhoods or interpolation
techniques, while computations in a Lagrangian system of coordinates [121] [97] [122] [123]
[124] [125] suppose being able to transport the information along each sequence to have its
definition at the reference time at which statistics are computed.

2.3.3 Which statistics? Local vs. global analysis

Statistical parametric mapping

The popularity of voxel-based image analysis methods has increased in the recent years for
analyzing group-wise and inter-groups differences, and are generally referred to as statistical
parametric mapping (SPM) techniques [126] [127] [128] [129] [130] [131] [132] [133]. When
constructing a SPM, the information attached to the anatomy of each subject is mapped to
a common template and voxel-wise statistics are used to compute local indexes character-
izing the studied populations [134] [135] [136]. This means that the statistical analysis is
performed locally, each voxel being considered independently from the others. This strategy
is distinct from more conventional atlas studies, based on a global statistical analysis (such
as principal component analysis [PCA]) or using localized kernels such as kernel-PCA or
independent component analysis (ICA).

According to the objectives of this thesis, namely characterizing patterns of mechanical
dyssynchrony, a global approach may discard the local aspect of the studied patterns, despite
some efforts realized to highlight local information within a global analysis, as discussed in
Sec. 2.3.3. For this reason, we initially used in this thesis SPM tools to perform the analysis
(Chap. 3), which were adapted to handle multivariate data such as velocity and strain fields,
similarly to the works that have been proposed for diffusion tensor fields [137] [138]. The
limitations of local models are discussed in [139] [140] [141].

In these works and Chap. 3, the regional link between pixels was not taken into ac-
count. This link may come from to the input data (mechanical properties of the studied
anatomy, regional noise patterns such as speckle) or algorithmic issues (image smoothing
or spatiotemporal smoothness of the computed velocity and strain fields inherent to the
registration algorithms used). Keeping a SPM approach, a regional correction could be used
to compensate this voxel-wise dependence, as proposed in multiple comparison correction
strategies. Voxel-wise observations can be considered as independent [142] [143] (the limita-
tions of such a model being discussed in [144]), or dependent on a local neighborhood [126]
[127] [128] [129] [130] [131] [132] [133].
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Advanced pattern analysis techniques

Specific dimensionality reduction techniques can be used to perform inter-subject comparison
taking into account local spatiotemporal patterns that may present on each subject, and
therefore overcoming some limitations of both voxel-based and basic global analysis.

The common link between these methods is the search for an optimal space to perform
inter-subject comparison, in function of a primarily set criteria.

Characterizing the variability within a population can be achieved by multivariate tech-
niques such as PCA, Canonical Correlation Analysis (CCA) and Multivariate Analysis of
Variance (MANOVA), based on functional [145] [132] [146] and structural [147] data. Im-
provements of these techniques made the analysis more local (ICA [148] [149] [150] [151]), or
respectful of the global structure of the data (non-linear methods such as kernel-PCA [152],
principal geodesic analysis (PGA) [115], or manifold-learning techniques, initiated by the al-
gorithms of [153] [154], which optimize geodesic distances along the manifold [Isomap [153]]
or the local planarity of the estimated manifold [Laplacian eigenmaps [154]], respectively).

A well-documented review on multivariate techniques to find the optimal discrimination
between groups of subjects was made by [155]. Classical multivariate analysis of data is
achieved by linear discriminant analysis (LDA) [156], a special case of Canonical Correlation
Analysis [157]. An article unifying the theory of multivariate analysis can be found in [158].

Advanced classification of subjects is achieved by pattern-recognition techniques [159]
[160] [161] [162], support-vector machine (SVM) [163] [164] [165], Non-linear pattern classi-
fiers [166] [167], and pattern-based morphometry [168], this non-exhaustive list being com-
plemented in [155].

For the characterization of patterns of mechanical dyssynchrony, as targeted in this
thesis, we decided to rely on non-linear techniques to overcome the limitation of a voxel-
wise analysis, looking for adaptations of manifold-learning techniques to our problem. This
allows subject comparison to a specific population, while modeling the non-linear structure
of this reference population (Chap. 5).
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3

A spatiotemporal statistical atlas of motion

for the quantification of abnormalities in

myocardial tissue velocities

This chapter presents a new method for the automatic comparison of myocardial motion
patterns and the characterization of their degree of abnormality, based on a statistical atlas of
motion built from a reference healthy population. Our main contribution is the computation
of atlas-based indexes that quantify the abnormality in the motion of a given subject against
a reference population, at every location in time and space. The critical computational cost
inherent to the construction of an atlas is highly reduced by the definition of myocardial
velocities under a small displacements hypothesis. The indexes we propose are of notable
interest for the assessment of anomalies in cardiac mobility and synchronicity when applied,
for instance, to candidate selection for cardiac resynchronization therapy (CRT). We built
an atlas of normality using 2D ultrasound cardiac sequences from 21 healthy volunteers,
to which we compared 14 CRT candidates with left ventricular dyssynchrony (LVDYS).
We illustrate the potential of our approach in characterizing septal flash, a specific motion
pattern related to LVDYS and recently introduced as a very good predictor of response to
CRT.

The content of this chapter is adapted from the following publication:

N. Duchateau, M. De Craene, G. Piella, E. Silva, A. Doltra, M. Sitges, B.H. Bijnens, and A.F. Frangi. A
spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Medical
Image Analysis, 15:316-328, 2011.
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3.1 Introduction

3.1.1 Patient selection for CRT

Cardiac resynchronization therapy (CRT) has proved its benefits over the last few years
for the treatment of patients with heart failure and evidence of ventricular conduction de-
lays [11]. The objective of CRT is to restore the coordination in the motion of the cardiac
chambers, leading to notable improvements in cardiac function and reverse remodeling [12].
However, with current selection criteria, the therapy fails to improve patient condition for
approximately 30% of the subjects [169]. The main current clinical challenge behind CRT
is therefore the understanding of the physiological mechanisms conditioning positive or neg-
ative response.

In recent years, a large number of studies focused on the computation of quantitative
indexes for cardiac dyssynchrony, with the underlying objective of predicting CRT response
[22]. The indexes proposed in the literature are mostly based on direct comparisons of
temporal measurements (QRS duration and “time-to-peak” measures) [170], but they remain
suboptimal as discussed in [2] and [3] (poor reproducibility and over simplification of the
complex mechanisms involved in CRT response to single observations of dyssychrony). The
lack of consensus about indexes able to accurately predict CRT response proves that generic
indexes that try to capture dyssynchrony with limited reference to pathophysiology fail in
the CRT context [3]. To fundamentally improve the prognostic value of novel indexes it is
crucial that they are inspired in a deep understanding of the pathophysiological mechanisms
involved in electrical and mechanical dyssynchrony. Recently, [8] proposed a classification
of patients into specific etiologies of heart failure, and evaluated the response of each of
these groups. Using this classification, one group showing a specific left ventricle (LV)
dyssynchrony pattern called septal flash (SF) [23] demonstrated a very high response rate
to CRT [8].

3.1.2 Quantifying abnormality in cardiac motion

The SF pattern has been characterized in [8] [23], using M-mode echocardiography. The
protocol presented allows quantitative assessment of the SF (presence, timing and maximal
excursion). More automatic methods focusing on abnormal patterns associated with dyssyn-
chrony have also been proposed, using speckle tracking strain analysis from 2D ultrasound
(2D US) [171], volume curves analysis from 3D US [172], and circumferential shortening
indexes from tagged magnetic resonance (t-MRI) images [173]. However, for such methods,
the analysis is only performed in a limited set of points that are observer-defined or only
representative of specific heart segments. The definition of these points is therefore highly
subjective and patient-dependent. Thus, the variability in their localization limits the rel-
evance of defining statistical indexes at such locations. In methods derived from recent
advances in computational anatomy [105], and particularly when using statistical atlases
[110], patient data is normalized to a common anatomical reference, so that there is no need
to define specific comparison points between patients. Such methods represent a promising
alternative to compute relevant statistical indexes for the whole cardiac anatomy.

In our study, we aim at characterizing one aspect of the cardiac function, namely, motion
throughout the heart cycle. Hence we rely on dynamic atlases, taking advantage of previous
works on statistical atlases of motion and deformation initiated in [112], [111] and [113]. We
can distinguish three steps in the process of building such a statistical atlas:
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Extracting motion from cardiac sequences. [93] [174] [175]. In [96] and [176] [101] the
tracking along longitudinal datasets is combined with the diffeomorphic framework [66],
particularly suitable when handling cardiac sequences, since it preserves the topology and
the orientation of anatomical structures.

Normalizing the different sequences to a reference anatomy. A pipeline adapted to cardiac
studies was used in [177] and [178]. In [97] and [98], the synchronization of longitudinal
datasets is combined with the use of diffeomorphic paths to compare the evolution of shapes
along different sequences. These approaches still need to prove their feasibility (e.g. in
terms of robustness and computational cost) when applied to real data, especially when the
topology of the structure of interest is not preserved along the sequence, due to the presence
of image artifacts, noise or the motion itself.

Computing statistics on motion fields. To preserve the diffeomorphic properties of the com-
puted vector fields, the use of log-Euclidean metrics is recommended when computing statis-
tics, as summarized in [117]. Abnormality assessment at every desired point of the anatomy
requires the use of voxel-based morphometry tools (VBM) [135], for which an overview of
some applications in brain morphometry can be found in [136]. Extending VBM tools to
multivariate statistics [158] allows to handle statistics on vector fields, similarly to the works
that have been proposed for tensor fields [137] [138].

3.1.3 Proposed approach

In this paper, we propose a complete and flexible pipeline for the construction of an atlas
of motion based on these three construction steps, which were kept as simple as possible
to minimize the computational burden. Thus, each of these steps can further be improved
using a more elaborated technique, provided this guarantees a noticeable improvement in
the identification of abnormal motion patterns.

Cardiac anatomy is tracked using the chaining of diffeomorphic paths between pairs
of consecutive frames. We take advantage of the high temporal resolution of 2D US to
work under a small displacements hypothesis. The use of small displacements reduces the
computational complexity of estimating velocities over the whole continuous timescale, and
allows direct computation of classical statistics on the velocity fields without the need of the
log-Euclidean framework.

The atlas is then used for the comparison of individuals to a healthy population, both
represented by myocardial velocities, using abnormality indexes available at any location
(x, t). One interesting feature of such indexes is that they intrinsically perform a comparison
to normality. This contrasts with the indexes generally used for CRT, which usually measure
one clinical parameter, and subsequently compare the ranges obtained for populations of
healthy and diseased subjects to define an optimal separation threshold.

The method is applied to the analysis of a population of CRT candidates with left
ventricular dyssynchrony, looking for the presence of SF. A first preliminary version of this
work was presented in [179], in which we illustrated the feasibility of such an approach for
assessing abnormality on a reduced number of patients.
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3.2 Computation of myocardial velocities

3.2.1 Intra-series registration

In the following sections we will denote S = {S(t0), ...,S(ti), ...,S(tN−1)} the temporal series
of 2D images for one given patient, which contains N images taken at time-points ti. To
track the anatomy along cardiac cycles, pairwise registration between consecutive frames
provides a sequence of transformations ϕti,ti+1

: x 7→ x′ for each series, which map any
point x of image S(ti) to its corresponding point x′ in the following frame S(ti+1). Our non-
rigid registration uses the diffeomorphic free-form deformation (FFD) method [78], which
is made multi-resolution to improve its robustness to the position and spacing of control
points. We used spacings of 64, 32 and 16 mm, and mutual information as matching term.
The L-BFGS-B algorithm [180] was chosen as optimizer for the registration procedure.

3.2.2 Small displacement hypothesis and definition of velocities

As explained in [74], a diffeomorphism can be represented as the flow of a stationary velocity
field uniquely defined by its logarithm. In compliance with the registration scheme we use,
velocities can be written as piecewise stationary, using:

v(ϕti,t(x), t) = v(x, ti), (3.1)

where ti is the closest time-point that precedes t at which the series S is defined, and ϕti,t(x)
is the estimated position at time t of the anatomical point that was at x at time ti.

If the displacements are small, the logarithm of a transformation log
(
ϕti,ti+1

)
can be

approximated at the first order by its corresponding displacement field ϕti,ti+1
− I (where

I is the identity). Velocities are directly obtained at the discrete time-points ti where the
data is defined using:

(ti+1 − ti) · v(., ti) = log
(
ϕti,ti+1

)
(3.2)

≈ ϕti,ti+1
− I. (3.3)

These equations are coherent with the classical definition of velocities in mechanics, that
is to say a displacement normalized by time.

The use of small displacements allows some additional simplifications in the computation
of velocities at every time t, initially based on Eq. 3.1. First, ϕti,t can be estimated from
ϕti,ti+1

using:

ϕti,t − I ≈ t− ti
ti+1 − ti

·
(
ϕti,ti+1

− I
)
. (3.4)

In a similar way, its inverse can be written as:

ϕ−1
ti,t = ϕt,ti ≈ −ϕti,t. (3.5)

This leads to the following simplified expressions for the velocities:

v(., t) ≈

{(
ϕti,ti+1 − I

)
/(ti+1 − ti) if t = ti,

v
(
− ϕti,t(.), ti

)
otherwise.

(3.6)
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Figure 3.1: Distribution of the dissimilarity measure dsmall for all the mappings between consecutive
frames of seven volunteers and seven CRT candidates with SF (blue and red dots). The same distance was
computed for the mapping between the initial frame in the cycle and the frame at aortic valve closure (AVC),
which produces larger displacements (crosses).

3.2.3 Verifying the small displacements hypothesis on 2D US se-
quences

We can reasonably assume that the displacements between consecutive frames are small.
Such a choice is justified by the good temporal resolution of 2D US imaging (around
60 frames/s [fps] for the healthy subjects and 30 fps for the CRT ones, details are in
Sec. 3.4.1). We demonstrated the validity of this assumption by comparing the computed
displacement fields to the logarithm of their relative transformations. We used

dsmall(ϕ1, ϕ2) =
1

card(Ω)
·
∑
x∈Ω

|ϕ2 ◦ ϕ−1
1 − I|

|ϕ1 − I|
(x)

as normalized dissimilarity measure between two transformations ϕ1 and ϕ2, where Ω is
the image domain. Details about the computation of the logarithm and the inverse of the
transformations ϕti,ti+1

are given in [74].
This comparison is illustrated in Fig. 3.1 for seven healthy volunteers and seven CRT

candidates with SF. The computation involved all the frames contained into one cardiac cy-
cle. The distance is computed for the mappings between consecutive frames (dots), showing
there is on average less than 5% difference between the computed displacement fields and
the logarithm of their relative transformations. This confirms that the displacements can be
considered small, and that the velocities can therefore be computed using the simplified ex-
pression of Eq. 3.6. For comparison purposes, this computation was also carried out for the
transformation mapping the initial frame in the cycle and the frame at end-systole (aortic
valve closure event, defined in Sec. 3.3.1), resulting in larger displacements (crosses), and a
distance dsmall between 20 and 40%.

Small displacements and computational speed-up

The use of the small displacements hypothesis and the simplifications from Eq. 3.3, 3.4, and
3.5 allow much faster computations, which are particularly recommended in the context of
building an atlas involving a large amount of data. Without the use of small displacements,
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Figure 3.2: Temporal synchronization of two patients with different heart rates (71 bpm and 80 bpm,
respectively), and different dynamics within their cardiac cycles (A: onset of QRS, B: aortic valve opening,
C: aortic valve closure). Left: non-synchronized ECG, in seconds. Right: synchronized ECG, normalized
timescale.

computing velocities at times ti (Eq. 3.2) and t (Eq. 3.1) requires 50 and 15 seconds respec-
tively, using a Intel Core i7 920 (2.66 GHz CPU, 6 GB RAM) computer. In comparison,
the computational time is negligible when using the simplified expressions summarized in
Eq. 3.6, since no logarithm nor inverse computation is required.

3.3 Construction of the Atlas

The registration steps previously explained provide velocity fields defined in the anatomy of
each patient. Building an atlas requires bringing these fields to a common spatiotemporal
coordinate system, so that a statistical representation of the data can be provided at every
desired location (x, t).

In the following, we use k to refer to the k-th sample patient, and we index variable
names accordingly.

3.3.1 Temporal synchronization

The heart rate variability across patients changes the length of their respective cardiac cycles,
as well as the synchronization of the different phases composing each cycle. Sequences
may also differ in terms of trigger time and frame rate. Temporal synchronization will
therefore consist in establishing correspondences between the cardiac events of the considered
sequences and in bringing them to a normalized timescale.

Landmark-based piecewise linear warping is applied to the electrocardiogram (ECG) sig-
nals to map the sequences to a normalized timescale, as illustrated in Fig. 3.2. We use the
following three landmarks:

• The onset of the QRS complex, which is located on the ECG using tools from the EchoPac
software (GE Vingmed Ultrasound A.S., Horten, Norway).

• The aortic valve opening (AVO) and closure (AVC), which are determined using continu-
ous wave Doppler imaging on the aortic valve. AVO serves as a marker for the identification
of the end of the isovolumic contraction (IVC) period, where SF is expected to be over.
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Figure 3.3: Illustration of the spatial reorientation at time t.

We used the absolute timing of ECG events proposed in the EchoPac software to locate
these two events on the ECG associated to the studied sequence. This is done under the
assumption that the timing between these events does not change between the sequences.
This assumption is valid because the sequences have close heart rates, as they belong to
the same session of acquisitions. In addition, in case of changes in heart rates, the diastolic
period is mainly affected, while the timing of the events we chose is preserved as they belong
to the systolic period.

Similar synchronization methods [177] identified a set of control points over sequences
from MRI, but used image similarity. We preferred to rely on physiological information, as
for US images the identification of these points using image data can be biased by respiratory
or probe motion. In addition, the use of physiological events as temporal landmarks is
believed to be more robust to pathology, as commented in [178].

3.3.2 Spatial normalization

Spatial normalization consists in reorienting the computed velocity fields vk(x, t), initially
defined according to the anatomy of patient k, to a reference anatomy used for local statis-
tical comparison. We chose a simple strategy for spatial reorientation, which is illustrated
in Fig. 3.3. It consists of four consecutive stages: defining a reference anatomy for the atlas,
estimating mappings between every patient and the atlas at time t = 0 (by convention,
time t = 0 was defined as the onset of the QRS complex), chaining paths to compute these
mappings at time t, and reorienting the velocity fields vk to the atlas anatomy at every time
t using these inter-series mappings.

Definition of a reference anatomy. The importance of using an average anatomy as refer-
ence to limit statistical bias has been commented in some publications about atlas construc-
tion [181] [182] [183]. In the case of atlases of shape, the distance between the compared
shapes is defined from the mappings between the patients and the atlas. In our case, these
mappings only serve for reorientation purposes, and do not directly intervene in the com-
putation of a distance between patients. We therefore preferred to choose one series as
reference for the sake of simplicity.

The choice of a reference among the set of healthy volunteers was addressed using the
group-wise normalized mutual information metric (GWNMI) proposed in [184], and criteria

23



C
H

A
P

T
E

R
3
.

 

0  0.5 1  

EC
G

(s) 

'
µ

x ' (x)
tS ,tE

^

tS tE

without drift correction
with drift correction

Figure 3.4: Illustration of the drift correction on one cycle. Black: tracking along the longitudinal direction
without drift correction. Red: idem with drift correction.

based on image quality (LV fully visible along the whole sequence, and low heart rate to
achieve a higher temporal resolution of the atlas). The influence of such a reference choice is
discussed in Sec. 3.4.4, showing that the statistical bias it may introduce on the abnormality
indexes remains small.

Mapping patients to the atlas at t = 0. For every patient k, we compute the transformation
ϕk→ref (0), which maps the initial frame of this patient to the reference at time t = 0. This
mapping is estimated using diffeomorphic FFDs as in Sec. 3.2.1.

Aside from speckle noise, the visible anatomy differs in each sequence because of intrinsic
characteristics of each patient (heart size and shape) and extrinsic parameters due to the
US acquisition (probe orientation and US window size adapted to see the whole LV). As
a consequence, we made the FFD registration start from a bulk affine transform. This
step models rough differences common to the whole sequence, namely the ones due to US
acquisition parameters and heart size.

Tracking the anatomy along sequences. Chaining the pairwise transformations defined in
Sec. 3.2.1 allows to track the anatomy of each patient along the sequence. We obtain the
transformations ϕk0,t, which map the anatomy between times t = 0 and t.

When chaining transformations resulting from registrations of consecutive frames, small
errors accumulate, manifesting themselves as net drifts observed in the final myocardial point
positions when computing full trajectories. These artifacts can be removed by applying to
each point of the trajectory a correction ensuring that:

©
tS≤ti<tE

ϕti,ti+1
= ϕ̂tS ,tE .

Here, © denotes the composition operator, tS and tE are the time-points starting two
consecutive cardiac cycles, and ϕ̂tS ,tE is the estimated transformation mapping frames at
these time-points.

This correction is illustrated in Fig. 3.4. The transformation ϕ̂tS ,tE is estimated using
diffeomorphic FFDs as in Sec. 3.2.1, preceded by an affine registration step. It aims at
taking into account probe motion during the acquisition, and adds robustness toward out-
of-plane motion and filling variations between the different cardiac cycles, as the assumption
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Figure 3.5: Illustration of the push-forward action on velocity fields at each location (x, t)

ϕ̂tS ,tE = I generally made in other works [93] does not hold true in our database of 2D US
sequences.

Mapping patients to the atlas at every time t. We estimate the transformations ϕk→ref at
time t using the following chaining of transformations, which is illustrated in Fig. 3.3:

ϕk→ref (t) = ϕref0,t ◦ ϕk→ref (0) ◦ ϕkt,0. (3.7)

This strategy could later on be improved using the tools presented in [178], in terms of
robustness in the estimation of ϕk→ref at every time t.

Reorientation to the reference. Reorientation of the velocity fields vk is achieved at every
point (x, t) using a push-forward action on vector fields [185]:

Pφ(v) =
(
Dφ ◦ φ−1

)
·
(
v ◦ φ−1

)
, (3.8)

where v = vk, φ = ϕk→ref and D is the Jacobian operator. In Eq. 3.8, Dφ ◦ φ−1

represents the reorienting action on the vector fields moved to the new anatomical location
by v ◦ φ−1.

Reorientation of vector fields is illustrated in Fig. 3.5 and Fig. 3.6, which display the
velocity field of one healthy subject before reorientation, i.e. directly over the anatomy of
this subject, and after reorientation to the reference anatomy.

3.3.3 Statistics on velocities

Velocities as defined in Sec. 3.2.2 belong to the tangent space of the group of diffeomorphisms.
It means that because of the algebraic structure of the tangent space, classical statistics can
be computed directly on the spatiotemporally normalized velocity fields, without the need
of the log-Euclidean metrics described in [117].

We first compute their average and covariance to characterize the atlas population. Given
K different sample series

{
Sk| k = 1...K

}
, we obtain at any desired point (x, t) the average

v and the covariance matrix Σv from the set of velocities vk, defined as:

v =
1

K

K∑
k=1

vk and Σv =
1

K − 1
Vt ·V

25



C
H

A
P

T
E

R
3
.

Figure 3.6: Velocity field vk over the anatomy of subject k (a) and after reorientation to the anatomy of
subject ref (b). Images correspond to the LV region during systole. Arrows have been scaled for optimal
visibility.

Here Vt =
[
(v1 − v)|...|(vK − v)

]
is the M ×K matrix whose columns are the centered

velocity samples at (x, t) and M is the dimensionality of the data. In our case, M = 2
(2D US).

Then, we use the atlas for the comparison of the velocities of a given patient to the
population used for its construction. We chose Hotelling’s T -square statistic [186] to perform
abnormality tests on multivariate data, which is equivalent to the Mahalanobis distance in
the particular case where a single sample is compared to a population:

τ2 = α (v − v)t · Σ−1
v · (v − v), (3.9)

where α = K/(K + 1), v is the velocity to compare to the atlas, and v and Σv are the
previously described average and covariance matrix computed for the population atlas.

We use the p-value obtained from the Hotelling’s T -test as quantitative index assess-
ing abnormality. The p-value is computed from the cumulative function associated to the
studied statistical distribution. This computation is performed under the assumption that
the local distribution of myocardial velocities within the atlas population is Gaussian. This
assumption is justified in Sec. 3.4.3. Leave-one-out cross-validation is used to compute the
p-values within the atlas population.

In the following sections, we apply the previously described framework to build a statis-
tical atlas of motion from a population of healthy subjects. We then use the atlas for the
individual comparison of CRT candidates to the atlas population chosen as reference, using
the tools described in Sec. 3.3.3.

3.4 Validation on 2D US image sequences

In this section, the atlas construction steps are validated in terms of registration accuracy
and reproducibility of the spatiotemporal alignment scheme. Special attention is paid to the
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Figure 3.7: Left: Local representation of radial and longitudinal, defined as orthogonal and tangential
to the septum medial line (dashed line), respectively. Right: Representation of the septal segments visible
in the 4-chamber view (basal inferoseptal [BI], mid inferoseptal [MI], and apical septal [AS]) and used as
vertical axis in the spatiotemporal maps of abnormality.

quality of the atlas population (number of subjects, statistical distribution, chosen reference,
and temporal resolution compared to the population of CRT candidates).

3.4.1 Patient population and data acquisition

Two-dimensional echocardiographic image sequences were acquired in an apical 4-chamber
view for two populations of subjects, using a GE Vivid 7 echographic system (GE Vingmed
Ultrasound A.S., Horten, Norway). The choice of the apical 4-chamber view is led by the
fact that it is the one used in clinical routine for the assessment of the fast SF pattern. The
atlas of normal velocities was constructed from 21 healthy volunteers (age 30 ± 5 years, 14
male). The patient population studied included 14 patients (age 67 ± 8 years, 8 male) that
were candidates for CRT based on current clinical guidelines (symptomatic heart failure with
long QRS length and low ejection fraction) and that visually had abnormal septal motion
on a transthoracic echocardiographic examination. The study protocol was approved by
the Hospital Cĺınic (Barcelona, Spain) ethics committee and written informed consent was
obtained from all patients.

Physiological differences between patients constrain the acquisition parameters, which
will differ in terms of temporal resolution and image quality. Images were acquired during
breath-hold to minimize the influence of respiratory motion. Resolution was optimized
during the acquisition of healthy subjects’ sequences, and corresponds to an average frame
rate of 60 fps and a pixel size of 0.24 × 0.24 mm2. The CRT candidates involved in this
study have dilated hearts compared to the healthy population. Thus, they require the use
of a broader US sector so that the whole LV is still covered by the US beam. The temporal
resolution of the sequences is thus lower for these patients due to this constraint (around
half the frame rate). Their average pixel size is 0.29× 0.29 mm2.
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3.4.2 Tools for visualizing spatiotemporal abnormalities

The statistical tools described in Sec. 3.3.3 return a p-value index at every location (x, t),
which can be visualized with the following tools, depending on the type of application
targeted. Decoupling the spatial and temporal dimensions is particularly adapted for a
precise localization of any motion abnormality (Sec. 3.5.1). In the following sections, another
convenient mode of representation is used to visualize abnormalities in both spatiotemporal
dimensions at the same time. In such maps, the horizontal axis represents time and the
position in the septum (basal inferoseptal [BI], mid inferoseptal [MI], and apical septal [AS])
is used as vertical axis (right part of Fig. 3.7). The representation of the p-value in this space
is similar to anatomical M-mode echocardiographic images, classically used to visualize wall
motion over time. To highlight the inward and outward events of SF, in comparison with
other patterns of abnormal motion of the septum (Sec. 3.5.3), the color-code used in these
maps encodes the p-value in a logarithmic scale, multiplied by the sign of the radial velocity.
Blue color represents highly abnormal inward motion of the septum, red color representing
highly abnormal outward motion. The definition of local longitudinal and radial directions
is illustrated in the left part of Fig.3.7.

3.4.3 Relevance of the atlas population

The computation of a distance to normality assumes that the atlas population is represen-
tative of normality. In this study, the atlas population has non-dilated hearts, no cardiac
dysfunction, and its baseline characteristics (QRS width, LV volumes and ejection fraction)
match with the values found in the literature for a population of patients with normal cardiac
function [187].

Number of subjects. To justify that the statistics are not biased due to the number of
subjects in the atlas population (K = 21), we computed the evolution of the motion abnor-
mality index (p-value) for an atlas population made of Ks < K subjects. This experiment
is summarized in Fig. 3.8, in which the indexes were computed for a reduced set of 14 CRT
candidates at each spatiotemporal location (x, t). These values were normalized towards the
value obtained for the largest atlas population, so that the evolution is represented in the
same magnitude scale (%). The plot on the top represents this evolution for the three septal
segments of one CRT candidate. For each value of Ks < K, the experiment was repeated
for 100 random combinations of Ks subjects (vertical error bars). In each spatiotemporal
region, the number of subjects above which this evolution stabilizes to its final value ±5%
is summarized in the table of Fig. 3.8 (average ± standard deviation over the set of 14
CRT candidates). Based on these values, we can reasonably trust an atlas built with all the
available healthy volunteers (21 subjects).

Statistical distribution assumptions. We computed the Shapiro-Wilk and the Lilliefors tests
[188] [189] at each location (x, t) to check the gaussianity of the local distribution of the atlas
velocities, as assumed for the computation of local p-values. The results are summarized
in Tab. 3.2, which shows the average values and standard deviation of these tests over the
three septal segments, along each eigendirection of the velocity distribution, independently.
The last line presents the values of these tests for the generation of 21 normally distributed
random numbers, repeated 10000 times. Based on these values, we can reasonably consider
that the distribution of velocities is Gaussian at each point (x, t).
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(%) Segment SW LF

v1

BI 93.5± 4.2 14.4± 4.0
MI 92.8± 4.7 15.0± 3.8
AS 92.9± 4.9 14.7± 4.0

v2

BI 88.7± 8.3 17.7± 5.0
MI 89.6± 7.7 17.1± 5.4
AS 86.9± 10.1 18.6± 6.0

randn(21, 10000) 95.2± 0.3 13.1± 3.1

Table 3.2: Shapiro-Wilk (SW) and Lilliefors (LF) tests for the distribution of myocardial velocities from
21 healthy volunteers, at each septal segment. The components of velocities along each eigendirection (v1

and v2) were treated independently. Bottom line: generation of 21 normally distributed random numbers,
repeated 10000 times.

3.4.4 Validation of the atlas construction steps

Intra-sequence registration accuracy

We first evaluated the quality of our intra-sequence registration by comparing it to manual
landmarking. Three observers manually segmented the endocardium border of the septal
wall for the whole set of subjects (21 volunteers and 14 CRT candidates), at four tempo-
ral instants: onset of QRS, AVO, AVC and onset of QRS for the subsequent cycle. For
each observer, the shape delineated at the first of these instants was then propagated along
the whole cycle using the displacement fields computed by our registration algorithm. Fi-
nally, its position at the three remaining instants was compared to the delineation made
by the observer at these instants. Intra- and inter-operator variability (δintra and δinter)
were computed at each of the four instants listed above. For the intra-operator variability,
each observer repeated the manual delineation ten times for one healthy volunteer, while
inter-operator variability was obtained by comparing the delineations made by the three
observers, for the whole set of subjects. We used a point-to-line distance for the comparison
of the delineated curves and the propagated ones (average over the points of each septal
segment). Table 3.1 presents the distance between the automatically propagated shapes
and the delineation made by the observers, and compares it to the intra- and inter-observer
variability. The intra-sequence tracking showed a precision comparable to the observers
variability for all the instants. Lower accuracy is observed near the apex, due to the lower
quality of the US images in this region, as commented in the discussion section of this paper.

Inter-sequence registration accuracy

The accuracy of the inter-sequence registration was evaluated in a similar way to the ex-
periment described in Sec. 3.4.4 for the intra-sequence registration. For each subject, the
shape delineated in the initial frame of the cycle was mapped to the reference anatomy
using the transformation estimated by the inter-sequence registration. Then, the distance
between the mapped shape and the shape delineated in the reference anatomy was used
as an estimator of the inter-sequence registration accuracy. The experiment showed that
inter-sequence registration accuracy is comparable to the observers variability.

Influence of the temporal resolution

In principle, differences in the temporal resolution of the atlas population and the set of
CRT candidates could introduce bias on the abnormality measured. The two following
experiments illustrate the influence of different frame rates on the computation of the p-
value maps.
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In the first experiment (left part of Fig. 3.9), a volunteer was compared to the atlas (using
leave-one-out cross-correlation) at its original frame rate (around 60 fps) and at a reduced
frame rate, obtained by using one frame out of every two in the volunteer’s sequence. As can
be inferred from Fig. 3.9, the two abnormality maps are very consistent with each other in
spite of their large frame-rate differences: the pattern in both maps indicates low statistical
support for abnormal motion. This confirms that the spots of motion abnormality observed
on the p-value maps of the CRT candidates cannot just originate from the lower frame rate
of these patients, compared to the atlas frame rate.

The second experiment illustrates the effect of a lower temporal resolution for the whole
atlas population on the p-value maps. In the right part of Fig. 3.9, a CRT candidate with
SF is compared to the atlas built with its original temporal resolution (around 60 fps, left
column) and at a lower frame rate (around 30 fps, right column). The figure shows that the
localization of motion abnormalities is still feasible with an atlas built at a lower frame rate,
but with seemingly less contrast and less resolution along the timescale.

Influence of the reference choice

To understand the effects of the reference choice on the p-value maps, we repeated the atlas
construction using different subjects as reference. We chose the subjects with the three best
GWNMI scores (VOL #15, which is the one used in the rest of the paper, #6 and #1), and
the two worst ones (VOL #13 and #21). Few influence is observed on the p-value maps,
as shown in Fig. 3.10 for CRT candidate #6. This confirms the assumption introduced in
Sec. 3.3.2, namely that the bias on the abnormality indexes introduced by the use of another
reference anatomy remains small.

Overall synchronization

To evaluate the quality of the spatiotemporal synchronization described in Sec. 3.3, we
acquired four sequences for the same subject and checked that the estimated velocities over-
lapped after the synchronization to the reference spatiotemporal system of coordinates. A
bad overlap would directly reflect artifacts introduced by the spatiotemporal synchroniza-
tion. These sequences differ in terms of probe orientation and zoom of the US window, which
were changed intentionally between the different acquisitions. They also differ in terms of
heart rate, and have therefore different numbers of frames (56, 59, 62 and 64 frames for
one cardiac cycle, respectively). In that way, the variability in the acquisition parameters
is comparable to the one reached for the acquisition of different patients. Figure 3.11 il-
lustrates the overlap between the velocities at four levels of the septum. The dispersion of
the reoriented velocities (vertical bars) is measured in each direction from the corresponding
diagonal coefficient of the covariance matrix Σv, defined in Sec. 3.3.3. This dispersion re-
flects the accuracy of the spatiotemporal synchronization scheme, but may also result from
differences in the myocardial velocities and the speckle patterns of the four acquisitions,
which could not be quantified with the imaging tools available for this study.

3.5 Application to the analysis of the CRT population

The experiments described in this section demonstrate the performance of the proposed
method for the accurate characterization of septal motion abnormalities, with particular
attention paid to the SF mechanism. This characterization comprises a two-stage analysis:
first, the localization of abnormal motion patterns in time and space (Sec. 3.5.1), then the
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Figure 3.10: Influence of the reference choice on the p-value maps. VOL #15 is the reference used in the
rest of the paper, VOL #6 and #1 are the subjects with the two other best GWNMI scores, and VOL #13
and #21 the subjects with the two worst ones.
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Figure 3.11: Repeatability in the normalization of velocities from four different acquisitions of the same
subject, at four levels of the septum. Left: longitudinal velocities after reorientation; average ± 1 standard
deviation in the longitudinal direction. Right: idem with radial velocities. We only display one bar plot out
of every three temporal instants for the sake of clarity.

interpretation of the observed patterns, which is done regionally focusing on the magnitude of
the observed abnormalities (Sec. 3.5.2), and locally on p-value maps coupling the temporal
and spatial dimensions (Sec. 3.5.3). The underlying objective of this section is to check
whether the abnormality information obtained by our method is in agreement with the
observations made by clinicians.

3.5.1 Localization of motion abnormalities

Temporal localization of septal flash. The left part of Fig. 3.12 illustrates the temporal
analysis on two CRT candidates presenting SF, at the location of the septum where max-
imal excursion is observed, including both velocity and p-value curves along one cardiac
cycle. Low p-value means high degree of abnormality. Both plots exhibit a large abnormal
inward velocity when the septum is activated, which is almost immediately followed by a
fast outward motion at the time when the infero-lateral wall contracts. This specific fast
pattern, when occurring during the IVC period, determines the presence of SF, as described
in [190].

Spatial localization of septal flash. The p-value indexes obtained from our method directly
allow a quantitative diagnosis at every point in space, as illustrated in the right part of
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Figure 3.13: Comparison between regional p-values and clinical diagnosis. Arrows on the right represent
the value of 0.05 below which abnormality is considered significant. Dashed line indicates the median value
of the atlas population.

Fig. 3.12. We display p-value maps at inward and outward events to analyze the way SF
abnormality is distributed along the septum. For each block, we represent the initial velocity
field in the anatomy of the studied patient, together with the corresponding p-value map,
defined in the reference anatomy. This mode of representation illustrates the agreement in
the location of SF between our abnormality maps (warmer colors) and the existing velocity
fields (septum moves inward/outward, faster than the normal [higher magnitude of the
velocities]. In contrast, healthy hearts would contract along the longitudinal direction).

3.5.2 Accuracy in the quantification of abnormalities

Three experts characterized the whole set of CRT candidates involved in the study, using
analysis tools similar to those proposed in [8]. As a precise and objective localization using
echographic tools is hard to reproduce, we asked the observers to make their diagnosis for
three regions along the septum (basal inferoseptal, mid inferoseptal and apical septal). For
each zone, they associated a score to the patient, among four possible values related to the
degree of observed abnormality: 1 (no SF), 2 (uncertain), 3 (small SF), and 4 (large SF). For
each zone of comparison, an agreement value between the observations from the different
experts was obtained from the median value of their respective scores. The observed zone
was marked as uncertain if the standard deviation between the different scores exceeded 1.

For each zone, we compared the previous observations to the motion abnormality indexes
obtained from our analysis, as summarized in Fig. 3.13. For the patients with SF, the
comparison was performed within the temporal window in which the inward and outward
events occur, which were defined specifically for each patient, using the information on radial
velocity vρ as follows:

IN =
{
t ∈ IV C

∣∣ vρ(t) < 0
}

OUT =
{
t ∈ IV C

∣∣ vρ(t) > 0
}

IN precedes OUT
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Figure 3.14: Motion abnormality maps and radial velocity profiles at the level of the septum with highest
abnormality, during systole, for the whole set of CRT candidates. Black arrows point out the inward and
outward motion during SF events, when present.

The analysis was carried out on the whole IVC interval for the subjects with normal
motion (atlas population) and for the patients without SF.

The diagnosis from the experts is only available regionally in time (within the temporal
windows previously described) and space (the three regions along the septum). Thus, the
comparison of their observations to the atlas-based quantification of abnormality was also
done regionally. As the atlas-based p-values locally define a distance to normality, a repre-
sentative p-value was computed for each region from their median over the spatiotemporal
comparison zone.

A range for normality was obtained by including the atlas subjects in the analysis, for
which p-values were obtained using leave-one-out cross-validation on the atlas population.

Figure 3.13 presents the comparison between the atlas-based diagnosis and the experts
classification. In this figure, we observe the agreement between the comparison methods at
the basal inferoseptal and mid inferoseptal levels. Indeed, each group of patients show lower
abnormality than the atlas group, with noticeable differences depending on the grade of SF.
This is mainly visible at the mid inferoseptal level, for which the septum has the highest
amplitude of motion on the tested patients. In contrast, the whole atlas population lays in
the normality range (p-value < 0.05). The different populations remain harder to distinguish
at the apical septal level. The quality of the analysis in this region is commented in Sec. 3.6,
together with the interpretation of the results for the zones for which the diagnosis was
uncertain.

3.5.3 How to differentiate between patterns? Added-value of spa-
tiotemporal maps of motion abnormalities

Combining both spatial and temporal quantification of motion abnormalities into a single
map, as described in Sec. 3.4.2, facilitates the interpretation of the observed patterns and
their comparison across patients. Figure 3.14 represents these abnormality maps for all the
14 CRT candidates, during the systole period. These maps are accompanied with a plot
of the radial component of the velocity at the level of the septum with the highest motion
abnormality for a better understanding of the observed abnormality patterns. The grade of
SF obtained from experienced observers (Sec. 3.5.2) is indicated on the top. In this figure,
a clear succession of inward (blue) and outward (red) abnormal motion starting during the
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Figure 3.15: Motion abnormality maps during systole, for the set of volunteers.

IVC is visible on patients #1, #2, #6, #8, #9 and #10, which were all diagnosed as “large
SF” by the observers. Patients #3 and #4 were also diagnosed as “large SF,” but the degree
of motion abnormality is lower for both events. The inward motion pattern is almost absent
for patient #7, while both events are less visible for patient #14. These two patients were
diagnosed as “small SF.” The SF pattern is absent in the remaining patients (#5, #11, #12
and #13), which were all categorized as “ambiguous SF” or “no SF.” Patients #5, #11 and
#12 only show inward motion abnormalities. These patterns are interpreted in Sec. 3.6.

As a comparison, Fig. 3.15 represents these abnormality maps for the whole set of vol-
unteers. Almost no abnormality is observed for most of these subjects. Volunteers for which
abnormality is visible on these maps generally have higher velocities during the whole se-
quence, which is particularly noticeable on the radial velocity of #12 and #19. However, all
these subjects belong to the atlas population, which means that these deviations from the
average velocity profile are part of the atlas variance, and are therefore taken into account
in the quantification of abnormalities for the set of CRT candidates.

3.6 Discussion

We have described a complete framework for the computation of a statistical atlas of motion,
from its construction steps to the comparison of the atlas-based diagnosis to the observations
made by experts. Our experiments demonstrate the feasibility of the proposed method on
2D US sequences. We first evaluated the quality of the atlas construction steps, and then
demonstrated its applicability for an accurate localization of abnormal motion patterns,
focusing on a specific pattern of the septum, namely SF.

The localization and quantification tools illustrated in Fig. 3.12, 3.13, 3.14 and 3.15
shed light on the added value of the proposed indexes for the characterization of cardiac
motion, in comparison with the tools currently used in clinical practice. By comparing
patients within an atlas framework, we propose a local analysis of motion abnormalities, at
every point in time and space (Fig. 3.12, 3.14 and 3.15) of a standardized anatomy. The
use of our atlas-based indexes, which intrinsically embed a notion of normality, allows an
accurate quantification of abnormality at every desired location. As illustrated in Fig. 3.13,
our method agrees with the regional diagnosis performed by experts along the septum. In
addition, it refines the information on the degree of abnormality observed and proposes some
elements of interpretation for the zones where the diagnosis remained ambiguous.
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In the case the subendocardium of the concerned region is infarcted, passive motion of
the septal wall is observed when the lateral wall starts contracting and pushes the septum.
Septal motion is therefore in the outward direction, but lasts longer than the IVC and is not
a flash anymore. These patients are likely to belong to the left-right interaction class pointed
out in [8]. In both cases, the observed zone will show lower abnormality (higher p-value)
for the outward event, which is visible in particular in the plot of Fig. 3.13 representing
the mid inferoseptal level, and in the maps of Fig. 3.14 for patients #5, #11 and #12. A
complementary analysis based on strain may help in discarding the ambiguities between
true SF and infarcted zones with passive motion.

For clarity reasons, we preferred to set the focus of this paper on the construction of an
atlas based on velocities, and the demonstration of the atlas performance in localizing and
quantifying abnormalities in motion. Extension of the present method to strain measure-
ments will be included in further work for a more complete characterization of the cardiac
function, as recommended in [191], and the assessment of other cardiac abnormalities.

Limitations. We chose to work with 2D US as it is the only modality used in clinical practice
with sufficient temporal resolution to accurately identify fast motion patterns such as SF.
However, the concepts developed in this paper could readily be applied to 3D US and other
imaging modalities once the required temporal resolution is available in standard clinical
acquisition protocols. The use of real-time 3D echocardiography [192] [101] is particularly
of interest to capture out-of-plane motion, which may increase the accuracy of the proposed
analysis, and extend it to specific 3D motion patterns currently not captured by our method,
such as torsion.

The quality of US images is however determinant for the relevance of the observations
made in this study. Depending on the tissue properties of each patient, the structure of the
LV can be masked on some frames, especially at the apical level. Both the tracking accu-
racy and the clinical observations are affected, making the separation between the different
populations less evident in this zone of the septum, as observed in Fig. 3.13.

3.7 Conclusion

In this paper, we proposed a new framework for the construction of an atlas that repre-
sents motion in a standard spatiotemporal coordinate system, and allows the comparison of
patients against the atlas using quantitative indexes of abnormality. We evaluated the qual-
ity of the atlas construction steps, and illustrated the accuracy of the proposed indexes by
applying the methodology to a population of healthy volunteers and CRT candidates with
left ventricular dyssynchrony. Our experimental results demonstrated the ability of the pro-
posed method to quantify motion abnormalities at every location in time and space. The
underlying objective was the characterization of the septal flash mechanism, which proved
its interest for understanding response to CRT. Our pipeline could easily be extended to
the quantification of abnormalities in strain for a more advanced characterization of the
mechanisms influencing the response to CRT.
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4

Atlas-based Quantification of Myocardial

Motion Abnormalities: added-value for

Understanding the effect of Cardiac

Resynchronization Therapy

In this chapter, we take advantage of the atlas-based indexes introduced in Chap. 3, which
intrinsically contain a definition of “normality”, to quantify the evolution of motion abnor-
malities in a large group of patients pre- and post- CRT, and link it to CRT response. The
aim of this study is to validate the clinical value of a statistical atlas of myocardial motion on
a large set of patients treated with cardiac resynchronization therapy (CRT) and to better
understand the effect of CRT by the use of this atlas.

The content of this chapter is adapted from the following publication:

N. Duchateau, A. Doltra, E. Silva, M. De Craene, G. Piella, M.A. Castel, L. Mont, J. Brugada, A.F. Frangi,
and M. Sitges. Atlas-based Quantification of Myocardial Motion Abnormalities: added-value for Understanding
the effect of Cardiac Resynchronization Therapy. 2012. Under review.
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4.1 Introduction

The role of cardiac resynchronization therapy (CRT) in improving both clinical condition
and cardiac function of heart failure patients has been clearly demonstrated [9]. The recovery
of a synchronous contraction is a first necessary step to guarantee such an improvement, and
from a broader perspective, that the patient can respond to the therapy. The importance of
understanding the complexity and variety of the etiologies of cardiac dyssynchrony has been
recently highlighted [8] [193], as an explanation to the limitations of single measurements
of mechanical dyssynchrony [3] [4]. Echocardiography [36] with tissue Doppler and speckle
tracking has shown its potential for estimating myocardial motion and deformation locally,
and therefore quantifying mechanical dyssynchrony on individuals. However, its capability
for intra- and inter- population comparison is limited, the analysis being performed at the
regional level (myocardial segments) at some specific instants of the cardiac cycle, due to
the lack of a common spatiotemporal system of coordinates to perform this comparison at
any spatiotemporal location. In contrast, in methods derived from statistical atlases [109]
[110], the data from each subject of a given population (shape or information defined at
each point of this shape) is synchronized to a common reference anatomy, which provides a
multivariate representation of the local anatomical and functional features of this population.
For example, a statistical atlas of the left ventricle (LV) can contain information about
myocardial velocities, strain or fiber structure at any spatiotemporal location of a reference
shape of the LV. Recently, an atlas-based quantification of myocardial motion abnormalities
was proposed [83], where the velocities of each studied patient were characterized according
to their distance to normality. In the present study, we aim at demonstrating the usefulness
of this technique for the characterization of abnormal patterns of cardiac motion, specifically
applied to the field of CRT. Accordingly, we aim at showing the value of the atlas approach
to characterize patterns of abnormal septal motion and the relation between their evolution
and CRT response in a large group of patients pre- and post- CRT.

4.2 Methods

4.2.1 Patient population

For the present study, data was collected from 21 healthy volunteers and 88 patients under-
going CRT implantation. The baseline characteristics for these subjects are summarized in
Tab. 4.1. Data from the healthy volunteers (age 30 ± 5 years, 14 male) served as control
group for the construction of an atlas of normal motion. Enrollment criteria were that they
had no history of cardiac disease and a normal echocardiographic exam. All of them showed
a QRS duration < 120 ms, and their baseline characteristics matched the values found in
the literature for a population of patients with normal cardiac function [187]. Differences
in age with the set of CRT candidates may be a limitation of this study, and is discussed
at the end of this paper. Additional justifications about this population were extensively
described in [83]. The use of 21 healthy volunteers was justified by computing the evolu-
tion of the motion abnormality index depending on the size of the atlas population, and
leave-one-out was used to check the normality of the motion of healthy volunteers. The
88 patients compared to the atlas (age 68 ± 9 years, 64 male) were patients treated with
CRT based on current international clinical guidelines [13]: left ventricular ejection fraction
(LVEF) < 35%, QRS duration > 120 ms, and NYHA classification III-IV or NYHA II who
covered less than 500 meters in the 6 minutes walking test. The research complied with the
Declaration of Helsinki and the study protocol was accepted by our local ethics committee.
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CRT (N=88) VOL (N=21)
Age (years) 68 ± 9 30 ± 5
Male gender 64 (73%) 14 (67%)
Ischemic etiology 29 (33%) 0
QRS width (ms) 178 ± 29 81 ± 10
6 min walking test (m) 271 (168-332) .

I 0 21 (100%)
NYHA II 23 (26%) 0
class III 56 (66%) 0

IV 7 (8%) 0
LV end-diastolic volume (mL) 247 ± 88 104 ± 27
LV end-systolic volume (mL) 186 ± 76 41 ± 9
LV ejection fraction (%) 25 ± 8 60 ± 5
MR grade III-IV (%) 26 (43%) 0
TDI Septum-to-lateral delay (ms) 63 ± 41 .
ST anteroseptal-to-posterior delay (ms) 66 (28-158) 17 ± 27
LV: left ventricular; MR: mitral regurgitation.

Table 4.1: Baseline characteristics of volunteers and CRT candidates.

Written informed consent was obtained from all subjects.

4.2.2 Definition of response

Response was defined as a reduction ≥ 15% in the LV end-systolic volume [21]. Patients who
died or had heart transplantation during the study were also considered as non-responders.
Clinical improvement was defined as an increase ≥ 10% in the 6 minutes walking test, or a
NYHA functional class reduction ≥ 1 point for patients unable to complete the 6 minutes
walking test at baseline.

4.2.3 Echocardiographic acquisition

An echocardiographic examination using a commercially available system (Vivid 7, GE
Healthcare, Milwaukee, WI) was performed in all patients at baseline and at 12 months
follow-up after the implant. A zoomed-in 4-chamber view of the LV was acquired during
breath-hold to minimize the influence of respiratory motion. LV volumes and ejection frac-
tion were measured using the 2D Simpson’s method (biplane). Mitral regurgitation was
semi-quantitatively classified into 4 degrees according to the color flow jet area method. LV
dyssynchrony was also evaluated by two techniques: (1) measuring differences in time-to-
peak myocardial velocity between the septal and the lateral walls of the LV, derived from
color tissue Doppler 4 chamber views [17]; (2) measuring the time difference between peak
systolic strain of the anteroseptal and posterior LV walls [171].

4.2.4 Automatic quantification of myocardial motion abnormalities

The atlas pipeline described in [83] was applied to the acquired 4-chamber views of the LV,
focusing on the septal region (Fig. 4.1). Myocardial velocities were extracted from each
sequence using speckle tracking based on image registration algorithms. Each sequence was
spatiotemporally aligned to a common reference anatomy, chosen among the set of healthy
volunteers, using ECG matching (time) and image registration (space). The importance
of this alignment step is commented in the Results section. Average and covariance of
myocardial velocities over the set of healthy volunteers encoded a representation of nor-
mal motion. Abnormality in local motion was computed through a statistical distance on
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Figure 4.1: Pipeline for the atlas-based quantification of septal motion abnormalities, as described in [83].
Right part represents the motion abnormality map computed for one patient with SF during systole (p-value
in logarithmic scale weighted by the sign of the radial velocity vp). Red arrows indicate the localization
of inward (IN) and outward (OUT) events of SF. The vertical line indicates the end of the isovolumic
contraction period.

velocities, between each individual and the atlas population (Mahalanobis distance). This
computation returned a p-value at every location of the myocardial wall, low p-value indicat-
ing high degree of abnormality. A convenient way of representing this information consists
of color-coded maps, inspired from anatomical M-mode echocardiographic images, in which
the septal wall has been unfold around its medial line and used as vertical dimension, time
being used as horizontal axis (Fig. 4.1). The color code for these maps encodes the p-value
in a logarithmic scale, multiplied by the sign of the radial velocity, to distinguish between
septal abnormal motion patterns (Fig. 4.1 and Sec. 4.3). Blue color represents highly ab-
normal inward motion of the septum, while red color represents highly abnormal outward
motion. No abnormality is therefore represented by white color.

4.2.5 Statistical analysis

Normal distribution of quantitative variables was assessed using the Kolmogorov-Smirnov
test. Normally distributed quantitative variables were expressed as mean ± standard de-
viation, and unpaired Student’s t-test was used for inter-groups comparison. When large
deviations from the Gaussian distribution were noticed, the variable was expressed as me-
dian and (interquartile) range, and Mann-Whitney U -test was preferred for inter-groups
comparison, while Wilcoxon signed-rank test was used for the comparison of paired data.
Categorical variables were expressed in percentage over the number of patients for which
data was available, and were compared using Fisher’s exact test. p-values below 0.05 were
considered as statistically significant difference between the tested groups. All data were
analyzed using the SPSS statistical package (version 15.0, SPSS, Inc., Chicago, IL).

4.3 Results

4.3.1 Patterns of motion abnormality at baseline

Figure 4.2 represents the motion abnormality maps of five different subjects at baseline,
during systole, illustrating the variety of patterns of abnormal motion that may be observed
along the septal wall: (A) intra-ventricular dyssynchrony, assessed by the presence of a fast
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Figure 4.2: Variety of the patterns observed on the motion abnormality maps.

−10
−5

0
5

10

lo
g(
p

)  
 s

ig
n(

vρ
)

.

−10
−5

0
5

10

lo
g(
p

)  
 s

ig
n(

vρ
)

.

Ra
di

al
 v

el
oc

ity
(m
m
/s
)

No atlas synchronization With atlas synchronization No atlas synchronization With atlas synchronization

−20

−10

0

10

−20

−10

0

10

−20

0

20

−20

0

20

Lo
ng

. v
el

oc
ity

(m
m
/s
)

CRT #06 VOL #02

Figure 4.3: Radial velocity and motion abnormality map for one patient and one healthy volunteer without
and with the atlas spatiotemporal synchronization.

inward / outward motion of the septum during the isovolumic contraction period, otherwise
called septal flash (SF) [8]. Variations in the amplitude of SF are associated to variations
in the intensity of the blue- and red-colored abnormalities on the map (Fig. 4.2a and 4.2b).
This pattern was present in 60 patients (68%) of our study group; (B) inter-ventricular
dyssynchrony, with late systolic outward motion (Fig. 4.2c), or with inward motion only
(Fig. 4.2d), referenced in the literature as left-right interaction (LR) [8] [193]. In contrast,
no abnormal pattern is observed on a healthy volunteer (Fig. 4.2e).

4.3.2 Importance of the atlas spatiotemporal alignment

Figure 4.3 compares the maps of abnormality obtained for one patient with SF and one
healthy volunteer, without (left) and with (right) the spatiotemporal alignment step inher-
ent to the atlas construction. On the SF patient, the lack of spatiotemporal alignment
overestimates the abnormality and the duration of the abnormality pattern, which does not
fit anymore within the isovolumic contraction period. On the healthy volunteer, the lack
of spatiotemporal alignment induces large abnormalities at the end of systole, which would
make the subject being considered a false positive.
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Figure 4.4: Average abnormality map for the set of volume responders and non-responders, at baseline
and follow-up.

4.3.3 Response to CRT

Fifty-three patients (60%) showed significant reverse remodeling and were considered re-
sponders. The clinical condition improved in 72 patients (82%), 46 of them being also
volume responders. One patient had heart transplantation, and died during the study. A
second patient died from heart failure without heart transplantation.

4.3.4 Overall effects of CRT

There were no statistically significant differences at baseline between responders and non-
responders for all the parameters (Tab. 4.2), except for (1) the amount of mitral regurgita-
tion, moderate-severe mitral regurgitation being more frequent in non-responders (p = 0.04),
and (2) septal-to-lateral delay derived from tissue Doppler, responders having more dyssyn-
chrony at baseline as measured by this parameter (p = 0.04). Evolution of motion abnor-
malities with CRT The population of responders showed lower abnormalities at follow-up,
and higher reduction of abnormalities in comparison with baseline. Values for the evolution
of motion abnormalities in each spatiotemporal region are displayed in Tab.4.3, the highest
reduction being observed for responders at basal- and mid-inferoseptal levels (p < 0.001).
The spatiotemporal localization of the motion abnormalities at baseline and follow-up is vis-
ible in Fig. 4.4, which represents the average abnormality map for the groups of responders
and non-responders. Little abnormality in septal motion was observed at follow-up for the
group of responders, while non-responders still presented a peak of abnormality with inward
motion at the end of the isovolumic contraction period, predominant at mid-inferoseptal
level, supporting the regional observations of Tab. 4.3. The patterns visible at baseline
also indicated that large SF predominated in the group of responders, and was corrected at
follow-up, while small SF and LR predominated in the group of non-responders.
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Resp. (N=53) Non-resp. (N=35) p-value
Age (years) 67 ± 9 69 ± 8 NS
Male gender 36 (68%) 28 (80%) NS
Ischemic etiology 15 (28%) 14 (31%) NS
QRS width (ms) 181 ± 27 172 ± 31 NS
6 min walking test (m) 275 (197-320) 270 (0-336) NS

I 0 0 .
NYHA II 14 (27%) 9 (27%) NS
class III 36 (69%) 20 (59%) NS

IV 2 (4%) 5 (15%) NS
LV end-diastolic volume (mL) 256 ± 95 231 ± 75 NS
LV end-systolic volume (mL) 196 ± 79 172 ± 68 NS
LV ejection fraction (%) 25 ± 7 27 ± 9 NS
MR grade III-IV (%) 10 (29%) 16 (59%) 0.04
TDI Septum-to-lateral delay (ms) 70 ± 36 51 ± 46 0.04
ST anteroseptal-to-posterior delay (ms) 70 (33-182) 48 (21-120) NS
LV: left ventricular; MR: mitral regurgitation.

NS: Non-significant statistical difference (p-value ≥ 0.05).

Table 4.2: Baseline characteristics of CRT candidates according to the response at follow-up.

Responders Non-responders
OFF FU p-value OFF FU p-value

S
Y

S BI 1.02 (0.84-1.27) 0.74 (0.64-0.99) < 0.001 0.96 (0.72-1.16) 0.81 (0.73-0.97) NS
MI 1.15 (0.97-1.74) 0.86 (0.66-1.22) 0.001 1.26 (0.81-1.58) 1.03 (0.80-1.30) NS
AS 0.82 (0.65-0.99) 0.78 (0.63-1.06) textNS 0.68 (0.54-1.10) 0.78 (0.66-0.99) NS

D
IA

BI 0.76 (0.52-1.22) 0.76 (0.52-1.22) 0.014 0.65 (0.51-0.89) 0.57 (0.47-0.74) NS
MI 0.96 (0.62-1.71) 0.68 (0.52-1.20) 0.013 0.78 (0.55-1.62) 0.77 (0.53-0.94) NS
AS 0.90 (0.62-1.23) 0.66 (0.51-1.03) 0.030 0.84 (0.46-1.45) 0.70 (0.51-1.04) NS

p-value corresponds to the discrimination score between baseline and follow-up abnormalities.

BI: Basal Inferoseptal; MI: Mid Inferoseptal; AS: Apical Septal; SYS: Systole; DIA: Diastole.

NS: Non-significant statistical difference (p-value ≥ 0.05).

Table 4.3: Abnormality reduction according to the response at follow-up.

4.4 Discussion

The results of this study demonstrate the usefulness of the proposed atlas-based quantifica-
tion of myocardial motion abnormalities for CRT studies, highlighting (1) the relevance of
statistical indexes that intrinsically embed the notion of “normality”, to characterize pat-
terns of mechanical dyssynchrony and their evolution with the therapy; and (2) the need for
a spatiotemporal synchronization of the data to avoid bias in the inter-subject comparison.

4.4.1 Abnormal patterns of septal motion and cardiac dyssynchrony

[8] proposed a classification of patients according to their pattern of mechanical dyssyn-
chrony, and studied CRT response for each of these groups. Half of the patients had SF,
which was associated to CRT response when the mechanism had been corrected at follow-
up. Similar observations were made on patients with contractile reserve, for which SF was
induced by dobutamine stress echocardiography [23]. The presence of an abnormal motion
of the septum associated to an intra-ventricular type of dyssynchrony was first reported
from M-mode observations [194] [195] [196] [197]. The authors described a specific pattern
of mechanical dyssynchrony interpretable as a direct consequence of Left Bundle-Branch
Block (LBBB) [8] [193] [198]. [199] interpreted it as the result of active septal contraction
during LBBB and therefore suggested its inclusion in LV dyssynchrony studies. High re-
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sponse rates were recently reported for septal rebound stretch [34] and apical rocking [35],
two patterns very closely related to SF. Inter-ventricular dyssynchrony (LR) was described
as a passive motion of the septum [8] [193] due to the presence of infarcted septal regions
and a long inter-ventricular delay, the correction of which led to clinical improvement but
not volume response. More complex patterns were also reported, resulting from prolonged
atrio-ventricular delays or combined mechanisms [8]. The objective of the present study
was to consider all types of septal motion abnormalities that may be observed on our study
group (Fig. 4.2). This was achieved through the comparison of the motion of any individual
to a control group with normal cardiac function, using a common system of coordinates to
perform this comparison. This framework also allowed intra-subject comparison between
baseline and follow-up data (Fig. 4.4 and Tab. 4.3).

4.4.2 Conventional methods for dyssynchrony assessment

The limits of single measurements from current echocardiographic techniques6 such as tissue
Doppler and speckle tracking have been largely discussed [3] [4]. In particular, the relevance
of considering individual components of the measured parameters (either temporally using
time-to-peak or time-to-onset measurements, or spatially by considering segmental values)
has been pointed out. The practical difficulties of identifying the peak values [6] may bias the
analysis, despite the fact that statistical difference may be observed between responders and
non-responders using these parameters (Tab. 4.2). To overcome these limitations, we chose
a mechanistic approach inspired from the protocol presented in [8], therefore considering the
whole patterns of dyssynchrony that may be observed along the septum (Fig. 4.2).

4.4.3 Added-value of atlas-based quantification of motion abnor-
malities

The protocol described in [8] allows quantitative assessment of the abnormal patterns of
septal motion (presence, timing and maximal excursion, if measurable), but is not auto-
matic, pattern-dependent, and requires expert interpretation. Current echocardiographic
techniques [36] such as tissue Doppler and speckle tracking allow the quantification of mo-
tion and deformation locally, but are still not adapted to perform intra- and inter-subject
comparisons. Tissue Doppler is highly dependent of the insonation angle and only provides
a one-dimensional measurement (the projection of the velocity vector along the observation
beam), which limits its interest for our application. Both techniques process the sequence of
each patient individually, but do not allow any comparison at any spatiotemporal location
of a common system of coordinates. The need for such a comparison space, guaranteed
by the use of a statistical atlas framework, was illustrated in Fig. 4.3. One of the main
contributions of the present work consists in the computation of statistical indexes that
intrinsically perform a comparison to normality. This concept is analogue to the learning
process made by a clinical observer, which uses healthy and pathological sequences to learn
the representations of specific patterns of abnormal motion. In our case, the analysis is
completely quantitative, which allows baseline and follow-up comparisons, either regionally
(Tab. 4.3) or locally at every point of the septal wall (Fig. 4.4).

4.4.4 Changes in LV dyssynchrony induced by CRT

The primary objective of CRT is to restore the coordination in the motion of the cardiac
chambers. With optimized resynchronization, cardiac function is expected to improve, lead-
ing to notable improvements in patient condition and allowing reverse remodeling of the LV
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[12]. The link between mechanical dyssynchrony and CRT response is still a controversial
issue, partially due to the limitations of single measurements of mechanical dyssynchrony
[3] [4]. In contrast, mechanistic approaches [8] [193] do not discard the complexity of the
etiologies of cardiac dyssynchrony and shed new light on the understanding of the effects of
CRT. The therapy is expected to be highly efficient on patients with SF, for which mechan-
ical dyssynchrony is mainly the consequence of an electrical problem (LBBB) [193] [198]
[199]. In contrast, the therapy may have lower effect in case of passive motion of the septum
(LR) or more complex mechanisms where mechanical dyssynchrony is a consequence of wall
necrosis and akynesia of a given LV segment, rather unable to be corrected through electri-
cal resynchronization [8]. Additional factors may also condition the ability of a patient to
respond despite the reduction of the abnormal dyssynchrony patterns present at baseline.
The presence of an extensive scar can limit the ability of the LV to show reverse remodeling
in this region. The lack of contractile reserve [200], the presence of atrial fibrillation [201],
an inappropriate lead position [202], and the patient condition at baseline (too advanced
heart failure so that the patient could not respond [203]) may also strongly influence CRT
response. The inclusion of additional variables of non-response such as the ones identified
above is highly recommendable, and will lead to refinements of current multi-parametric
analysis of CRT response [31] [32].

4.4.5 Other potential clinical applications of statistical atlases of
motion to cardiac imaging

We chose to work with 2D echocardiography as it is the most widespread modality in clin-
ical practice with sufficient temporal resolution to accurately identify fast motion patterns
such as SF. Using 3D echocardiography would allow the characterization of all myocardial
segments, but this modality does not currently fulfill the above-mentioned technical require-
ment. We considered that apical 4-chamber represented the most relevant 2D view for our
application, as we focus on types of mechanical dyssynchrony that may affect the whole
septum, from base to apex. A reproducible position of the observation plane is harder to
achieve in short axis views, which may be a strong limitation for building a statistical atlas
from this view. Nonetheless, the methodology applied in this study is not specific to echocar-
diography and abnormal septal motion, and could be readily applicable to other imaging
modalities (magnetic resonance, computed tomography ...), other clinical settings (stress
echocardiography, ischemic cardiomyopathy ...), and other mechanisms of abnormal motion.
The proposed technique could also be extended to compare individuals to a population with
one of these specific abnormal motion patterns, and not only to normality, as described
elsewhere.32 Limitations The study focuses on motion abnormalities only. Computing maps
of strain abnormalities would certainly help refining the analysis for patients who may have
similar motion abnormality patterns despite different mechanisms. In particular, this may
improve the understanding of CRT response, as the presence of local infarction may affect
both the dyssynchrony patterns and the ability of the LV to remodel, and therefore, condi-
tion CRT response. The atlas of normal motion was built from a group of healthy volunteers
recruited for research purposes, within our institution, which explains the difference in age
with the set of CRT candidates, and may be a limitation to our study. Recruitment of older
volunteers was not performed for practical reasons. Nonetheless, the definition of a normal
cardiac function still remains a paradigm. Cardiac efficiency may not be preserved when
the subject gets older, resulting in a less “normal” function. In addition, the parameter we
look at, namely, motion, may not be as sensitive to such aging changes as compared to other
motion parameters such as strain. The current study focused on observations of voxel-wise
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motion abnormalities and did not attempt to do any classification of patients based on the
observed patterns of abnormal motion, which would require the use of specific pattern anal-
ysis techniques [204]. The relation between patterns of mechanical dyssynchrony and CRT
response is still complex [8] and such an analysis may also take into account external factors
that condition CRT response, as commented in the Discussion section. Finally, the criteria
for CRT response should also be considered carefully [205] [206]. In particular, the definition
of fixed thresholds for defining response is certainly a limit for a clear understanding of the
effects of CRT, in comparison with the use of a spectrum of responses, involving additional
measures of CRT outcome [25].

4.5 Conclusion

The results presented in this study demonstrated the usefulness of an atlas-based quan-
tification of motion abnormalities for characterizing the evolution of specific patterns of
dyssynchrony with CRT. In particular, its combination with a comprehensive understand-
ing of the etiologies of cardiac dyssynchrony allowed a better interpretation of the effects of
the therapy.
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5

Constrained manifold learning for the

characterization of pathological deviations

from normality

This paper describes a technique to (1) learn the representation of a pathological motion
pattern from a given population, and (2) compare individuals to this population. Our
hypothesis is that this pattern can be modeled as a deviation from normal motion by means
of non-linear embedding techniques. Each subject is represented by a 2D map of local motion
abnormalities, obtained from a statistical atlas of myocardial motion built from a healthy
population. The algorithm estimates a manifold from a set of patients with varying degrees
of the same disease, and compares individuals to the training population using a mapping
to the manifold and a distance to normality along the manifold. The approach extends
recent manifold learning techniques by constraining the manifold to pass by a physiologically
meaningful origin representing a normal motion pattern. Interpolation techniques using
locally adjustable kernel improve the accuracy of the method. The technique is applied
in the context of cardiac resynchronization therapy (CRT), focusing on a specific motion
pattern of intra-ventricular dyssynchrony called septal flash (SF). We estimate the manifold
from 50 CRT candidates with SF and test it on 37 CRT candidates and 21 healthy volunteers.
Experiments highlight the relevance of nonlinear techniques to model a pathological pattern
from the training set and compare new individuals to this pattern.

The content of this chapter is adapted from the following publication:

N. Duchateau, M. De Craene, G. Piella, and A.F. Frangi. Constrained manifold learning for the characterization
of pathological deviations from normality. 2012. Under review.

51



C
H

A
P

T
E

R
5
.

5.1 Introduction

5.1.1 Patient selection for CRT

In this paper, we address the issue of learning the representation of a pathological motion
pattern from a given population, and its use for the comparison of individuals to this pop-
ulation. Our strategy is based on the fact that different grades of the same disease, for
a patient or within a population, can be seen as progressive impairments of the normal
condition of an organism. This notion is particularly of interest for the understanding of
this disease, from the early detection of its onset to the quantification of its progression and
its monitoring post-treatment. In particular, we would like to apply these considerations
to cardiac resynchronization therapy (CRT) studies, supported by the following paradigm:
CRT targets the correction of the dyssynchrony in the motion of the cardiac chambers,
leading to improvements in the cardiac function, the patient condition, and ventricular size
[12]; however, CRT patient selection still discards mechanical dyssynchrony as a selection
criteria [13]. There are several reasons for this: there is currently no consensus regarding
the accurate characterization of mechanical dyssynchrony, its link with CRT outcome, and
the way to include it within the patient selection process [3] [4] [26] [27].

Recently, [8] discussed the advantages of considering specific groups of mechanical dyssyn-
chrony in the CRT selection process. Each of these groups was associated to one specific
pathological pattern of myocardial motion and deformation, with different grades of ab-
normality with respect to a healthy cardiac function. The relevance of similar patterns of
mechanical dyssynchrony was also described in [34, 35], using more quantitative measure-
ments. Based on these findings, a straightforward improvement of CRT patient selection
would be achieved through the recognition of such patterns in new CRT candidates, as the
response rate of each of these patterns is roughly known. The same concept could also be
applied to quantitatively grading the severity of the disease or the response to the therapy.
Nonetheless, all the above-cited methods still lack reproducible tools to perform inter-subject
comparison, as discussed in [4], which limits their applicability.

5.1.2 Robust comparison through statistical atlases

Statistical atlases were initially designed for representing instances of a given population, by
modelling the statistical distribution of anatomical and functional features within this pop-
ulation [109, 110]. In these frameworks, the data of each subject is normalized to a common
anatomical reference, which allows reproducible intra- and inter- population comparison.
Atlases of motion and deformation [113, 112, 111] fit for the study of cardiac dyssynchrony,
namely comparing the myocardial velocities and strain of individuals to a reference pop-
ulation (either healthy or with the same disease) used to build the atlas. In particular,
[83] proposed a pipeline for the characterization of abnormal patterns of ventricular dyssyn-
chrony, in comparison with a healthy population, using an atlas-based quantification of
local myocardial motion abnormalities. However, the tools used for statistically modelling
the variability of healthy subjects may not be adequate if the strategy is extended to build
an atlas for a specific pattern of dyssynchrony. Variations of the pattern localization within
the cardiac cycle and along the myocardial wall may bias the estimation of the local variabil-
ity for this population, despite its synchronization to a common system of spatiotemporal
coordinates, therefore requiring the inclusion of more complex statistics or pattern analysis
techniques in the atlas construction.
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Figure 5.1: (a) Set of synthetic images representing a black disk over a white background. The maximum
dimensionality of the space of images corresponds to the number of pixels of each image, but each synthetic
image lies in a 2D subspace, the position of each disk being associated to a coordinate in a 2D space (blue
dots). (b) Average image, without considering that data is arranged according to a 2D structure. (c) Fréchet
mean image on the data-driven manifold, corresponding to coordinates (25, 0).

5.1.3 Comparison to a given population

The comparison of individuals to a specific pattern of dyssynchrony can be seen as a two-
steps approach: (1) finding a relevant space to model this pattern, and (2) defining a distance
to this population through the mapping of any individual to this space.

The definition of an optimal space for representing and comparing populations has been
extensively commented in the literature [155]. A k-nearest neighbours comparison in the
original space, or linear dimensionality reduction techniques may bias the analysis in case
the modeled population lies on a non-linear space ([207] [153] and Fig. 5.1).

In contrast, a manifold representation is particularly of interest for our application as
it assumes that the global structure of the modeled population may be non-linear, and its
parametrization allows inter-subject comparison along this structure.

Principal geodesic analysis [115] is a generalization of PCA for data lying on a manifold,
but is described in cases where the manifold structure is already known and independent of
the processed data.

Manifold learning algorithms were proposed to estimate the low-dimensional structure
of the studied dataset by taking into account the local properties of the input data in the
dimensionality reduction process (Isomap [153], Local Linear Embedding [208], Laplacian
eigenmaps [209], kernel-PCA [210]).

The comparison of individuals to the modeled population requires mapping this new
data to the manifold. Methods solving the “pre-image problem” [152, 211, 212] estimate the
image generated from the manifold that shares the same coordinates than the input image,
but do not explicitly provide a formulation for the mappings between the ambient space and
the manifold system of coordinates.

Several works provided an explicit formulation of the above-mentioned mappings, extend-
ing the concept of principal curves [213], a non-linear generalization of PCA, using kernel
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regression on scattered data. [214] demonstrated the analogy between these two concepts
when the number of points tends to infinity. [215] proposed a framework to map new data
to the manifold system of coordinates. The computation of the inverse mapping (estimating
the image from the initial ambient space corresponding to a given manifold coordinate) was
targeted in [216, 214, 217, 218, 118].

5.1.4 Proposed approach

In this paper, we propose a framework for comparing the myocardial motion of individuals to
a population with a specific pattern of abnormal motion, using manifold learning techniques
to represent this population as a progressive deviation from normality. We extend manifold
learning techniques to embed the definition of a relevant origin within the manifold, and use
kernels with locally adjustable bandwidth to improve the accuracy of the mappings between
the space of input images and the space of coordinates parameterizing the manifold.

The originality of our method resides in the use of 2D maps of local myocardial motion
abnormalities as input, as introduced in [83]. This highlights the presence of specific ab-
normal motion patterns, which can be represented by a manifold structure specific to each
pattern, and allows the definition of a physiologically meaningful origin within the manifold,
representing a normal motion pattern. Each pathological pattern is therefore considered a
deviation from normality along a manifold structure. The proposed technique represents a
step forward for patient comparison in clinical applications, as it facilitates the identification
of the closest class a sample falls in (distance to the manifold) and the localization of this
sample within the identified class (distance to normality along the manifold).

The method is applied in the context of CRT, comparing both healthy subjects and
patients to a population with a specific pattern of intra-ventricular dyssynchrony called
septal flash (SF) [8]. This pattern consists of a fast inward / outward radial motion of the
septum during the isovolumic contraction period, contrasting with healthy hearts, which
contract along the longitudinal direction (Fig. 5.2, 5.3 and 5.4). [199] interpreted SF as
the result of active septal contraction during left bundle-branch block, which was shown to
actively condition CRT outcome [8] [198].

A preliminary version of this work was presented in [204], in which we illustrated the
feasibility of such an approach. The current paper improves the whole methodology, from
the atlas construction steps (use of temporal diffeomorphic free-form deformation, [73]) to
the patient comparison to the manifold (use of locally adjustabe kernels) and in-depth tuning
of the whole set of parameters, using both synthetic and real data.

5.2 Methods

The computation of a distance between individuals and a given population considered as
a pathological deviation from normality consists of three steps: (1) the quantification of
motion abnormalities for all the subjects in the dataset, (2) the estimation of a relevant
manifold for the training population, constrained to pass by an origin representing normal
motion, and (3) the mapping of any subject to the manifold.

5.2.1 Atlas-based computation of myocardial motion abnormalities

The input images for our method consist of 2D spatiotemporal maps of myocardial motion
abnormalities, obtained from a statistical atlas of motion built from healthy volunteers. The
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Figure 5.2: Radial velocities at one point of the septum (mid-inferoseptal level) during one cardiac cycle,
for one CRT candidate with SF (black curve, arrows indicate the inward and outward events of SF), and the
atlas of healthy volunteers (gray, average velocity ± standard deviation). Comparison between diffeomorphic
FFD between each pair of consecutive frames, providing piece-wise stationary velocities [83], and tempo-
ral diffeomorphic free-form deformation (TDFFD, [73]), which enforces temporal consistency and provides
differentiable velocities, all pairs of frames being considered simultaneously during the computation.

implementation used in the current paper for computing these maps improves the pipeline
proposed in [83], as described in the following paragraphs.

Motion extraction

Myocardial velocities are extracted from the image sequence of each volunteer, at each point
in time and space, using image-based registration. The diffeomorphic free-form deforma-
tion (FFD) implementation used in [83] provides piece-wise stationary velocities, which may
be a limitation for the temporal synchronization step of the atlas building (Fig. 5.2). In
our current implementation, we preferred the temporal diffeomorphic free-form deforma-
tion (TDFFD) method proposed in [73], which enforces temporal consistency and provides
differentiable velocities.

We used a multi-resolution implementation of the TDFFD, the initial grid size being of
5 x 3 control points in the spatial direction and 1 control point per frame in the temporal
direction. Mean square error was used as similarity metric, combining a comparison to
the first frame of the sequence and the comparison of consecutive frames [104], with equal
weights. The L-BFGS-B algorithm [180] was chosen as optimizer for the whole registration
procedure.
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Figure 5.3: Map of septal motion abnormalities during systole, for one CRT candidate with SF. The
color-scale encodes abnormality (p-value) in a logarithmic scale, multiplied by the sign of the radial velocity
vρ to highlight the inward and outward events of SF.
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Figure 5.4: Abnormality maps for four different subjects: two with SF (top row, arrows indicate the
inward and outward events of SF), one with left-right interaction (bottom left), a type of inter-ventricular
dyssynchrony [8] where the septum moves passively inward, as indicated by the black arrow, and one healthy
volunteer (bottom right).

Atlas-based comparison to normality

The velocities extracted from each sequence are spatiotemporally synchronized to a common
reference anatomy, using ECG matching (time) and local reorientation derived from image
registration (multiscale diffeomorphic FFD, [78]) between the first frames of each sequence
(space). At each instant of the cardiac cycle and each point of the septum, the velocity
vector of each individual is compared to the distribution of velocity vectors for the atlas
population at this location, using the Mahalanobis distance. Average and covariance of
myocardial velocities over the set of healthy volunteers encode a representation of normal
motion. Assuming that the local distribution of velocities for the atlas population is Gaus-
sian, the cumulative function associated to this distribution returns a two-tailed p-value,
low p-value indicating high degree of abnormality. In contrast, a p-value close to 1 indicates
normal motion.

Representation of p-value maps of abnormalities

We chose to represent this spatiotemporal information by means of color-coded maps, in
which the horizontal axis is time (systole) and the vertical one is the position along the
septum (Fig. 5.3). Similar displays, inspired from anatomical M-mode echocardiographic
images, were previously used in strain rate imaging [40] or speckle tracking applications
[50]. In the current paper, each pixel value corresponds to the p-value index used to locally
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Figure 5.5: Pipeline for the method presented in this paper.

encode abnormality, in a logarithmic scale, multiplied by the sign of the radial velocity. The
color-code associates blue and red color to highly abnormal inward and outward motion
of the septum, respectively. This choice was made to highlight the inward and outward
events of SF, in comparison with other patterns of left ventricular dyssynchrony (Fig. 5.4).
According to these conventions, the origin used to constrain the manifold (Sec. 5.2.4) is
defined as an image having 0 value at every pixel, representing a normal motion pattern.

5.2.2 Definition of variables

Each of the abnormality maps described in Sec. 5.2.1 corresponds to one subject in the
dataset, and is used as a 2D input image for the manifold learning process. The rationale
of manifold learning on maps of statistical significance is discussed in Sec. 5.4.

All the images considered in this paper belong to an ambient space A ⊂ RP , P being
the number of pixels of each image. We denote I = {I0, ..., IN} ⊂ A the dataset of N + 1
images used for the manifold estimation. The image I0 corresponds to the image origin for
normality. This is a synthetic image with 0 value at each pixel, as explained in Sec. 5.2.1.
This image is added to the original dataset {I1, ..., IN} before any computation. Every
image Ii, i > 0 is therefore connected to I0 through the isomap graph resulting from the
computations described below (Sec. 5.2.3). This amounts to considering every element of I
as a deviation from the origin along a specific path on the manifold structure.

The coordinate space of the surface estimating the manifold is denoted C ⊂ RM , M being
the estimated dimensionality of the manifold. Note that M < N + 1 due to its estimation
from a training set of N + 1 images, this size being lower than P , the number of pixels of
each image. We denote f : A → C and g : C → A the correspondence functions between A
and C. The computation of these functions is based on interpolation techniques (Sec. 5.2.4),
inspired from the concept of principal curves [213].

We preferred to keep notations general for the formulation of our problem, and we denote
SA : A × A → R and SC : C × C → R the metrics used to compare elements of A and C,
respectively. In our implementation, we used the Euclidean distance for both metrics SA
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and SC , for both synthetic and CRT datasets, this choice being discussed in Sec. 5.4.

5.2.3 Manifold learning through Isomap

The isomap algorithm [153] is used to estimate the manifold (Fig. 5.5a). First, a graph
is built for the dataset I, based on the k-NN algorithm, connecting all the images among
themselves according to the metric SA. The geodesic distance between two points, defined
as the shortest path connecting these two points, along the graph, is denoted dkNN. Then,
Euclidean embedding of this k-NN connected graph provides a set of coordinates X =
{x0, ...,xN} ⊂ C.

5.2.4 Mapping new patients: from A to C
The estimation of f : A → C is an interpolation problem, which can be re-defined on a
reproducible kernel Hilbert space (RKHS) [70, 219, 69, 71] F of functions A → C. The
solution of this problem belongs to a subspace FI ⊂ F , where the pairs (I,a) ∈ A × C are
constrained to be located in a specific set I × X .

In our case, I = {Ii}i∈[0,N ] is finite-dimensional. As commented in [71], FI is therefore
finite-dimensional, and f can be searched in the closure of the set spanned by the vectors:

KF (., Ii) · ai, (Ii,ai) ∈ I × C, (5.1)

where KF : A × A → MM,M is the reproducible kernel of F , and MM,M is the set of
M ×M -dimensional real-valued matrices.

The Riesz’s representation theorem implies that ∀f ∈ F , ∀I ∈ A, ∀a ∈ C, ∃KI
F ∈ F

such that:
〈f(I),a〉RM = 〈KI

F · a, f〉F , (5.2)

where KI
F = KF (I, .).

The interpolation problem can be formulated as an exact or inexact matching problem,
depending if we assume that the manifold should pass exactly by the training set, or if we
tolerate some dispersion of the data around the manifold.

The choice of the kernel determines the RKHS in which the problem is solved. This
point is discussed in App. A.

In the following subsections, we describe the basic formulation of this problem and the
improvements made to adapt it to our framework.

Exact matching

In case the interpolation is formulated as an exact matching problem, we look for the optimal
f : A → C passing by all the coordinates xi ∈ X at the data points Ii ∈ I: argmin

f∈F

(
1
2‖f‖

2
F

)
,

under the constraint f(Ii) = xi, ∀i ∈ [0, N ].
(5.3)

As commented in Sec. 5.2.4 and App. B, the solution for Eq. 5.3 can be written as:{
f(I) =

∑N
i=0KF (I, Ii) · ai,

with A = K−1
A ·X,

(5.4)

where:
• A = (a0, . . . ,aN )t ∈MN+1,M , with ai ∈ C and .t the transposition operator,
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• KA =
(
KF (Ii, Ij)

)
(i,j)∈[0,N ]2

∈MN+1,N+1,

• X = (x0, . . . ,xN )t ∈MN+1,M .

In this paper, the kernel KF is chosen of the exponential form:

KF (I,J) = exp
(
− SA(I,J)2/σ2

F
)
, (5.5)

σF being its bandwidth and (I,J) ∈ A2. The choice of such a function is commented in
App. A, while the choice of a relevant bandwidth is discussed in Sec. 5.2.4.

Inexact matching

In case we tolerate some dispersion of the data around the manifold, the previous interpo-
lation needs to be re-written as an inexact matching problem, now looking for the optimal
f : A → C best approximating the coordinates xi ∈ X at the data points Ii ∈ I:

argmin
f∈F

(1

2
‖f‖2F +

γf
2

N∑
i=0

SC
(
f(Ii),xi

)2)
, (5.6)

where γf is a weighting coefficient balancing the smoothness of the interpolation and the
adherence to the data.

Eq. 5.6 has the following analytical solution:{
f(I) =

∑N
i=0KF (I, Ii) · ai,

with A =
(
KA + 1

γf
IdN+1,N+1

)−1 ·X,
(5.7)

IdN+1,N+1 being the identity matrix in MN+1,N+1.

Constrained problem

In this paper, the formulation of Eq. 5.6 is adapted to force the interpolation function to
pass by the coordinates origin x0: argmin

f∈F

(
1
2‖f‖

2
F +

γf
2

∑N
i=1 SC

(
f(Ii),xi

)2)
,

under the constraint f(I0) = x0.
(5.8)

The analytical solution for this problem is written as:{
f(I) =

∑N
i=0KF (I, Ii) · ai,

with A =
(
KA + 1

γf
M
)−1 ·X,

(5.9)

where M =
(
Mi,j

)
(i,j)∈[0,N ]2

∈MN+1,N+1, with Mi,i = 1 ∀i 6= 0 and 0 otherwise.

With this formulation,

xi =

N∑
j=0

(
KF (Ii, Ij) +

1

γf
Mi,j

)
· aj . (5.10)

Thus, x0 =
∑N
j=0KF (I0, Ij) · aj , which corresponds to the exact matching formulation

of Eq. 5.4, meaning that the constraint f(I0) = x0 is satisfied.
The addition of such a constraint is illustrated in Fig. 5.6, which displays the curve

interpolated from a 1D synthetic dataset, using inexact matching, before and after forcing
the curve to pass by a given point, as described in Eq. 5.8.
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Figure 5.6: Interpolation of a 1D synthetic dataset using inexact matching, before and after the addition
of a constraint forcing the curve to pass by the point indicated by the black arrow.

Use of locally adjustable kernel

In the previous formulations, no constraint is made on the kernel bandwidth, which fully
conditions the accuracy of the interpolation. Previous works used a fixed bandwidth, defined
as average k-NN distance, namely:

σF =
1

N + 1

N∑
i=0

SA(Ii,nnk(Ii)), (5.11)

where nnk(Ii) is the kth neighbour of Ii [217].

In fact, the use of a fixed bandwidth has some limitations in case the points distribution
is not uniform, which is our case (Sec. 5.3.1 and 5.3.2). Indeed, a small kernel in a sparse
region of the dataset would result in mapping points in this region to zero, or closer to zero
than they should. On the contrary, a kernel with a too large bandwidth could result in
a too planar interpolation in comparison with the manifold curvature, therefore mapping
points far from the manifold structure. Similar concerns were raised in the literature about
probabilistic density estimation [220, 221]. The manifold learning algorithm described in
[222] used a linear interpolation scheme with equal weights on each neigbourhood, proposing
to locally adapt the number of k-NN to adress this issue. In the sequel, we propose to use a
varying bandwidth for the interpolation kernel, which is locally adapted depending on the
neighbourhood size:

σF (I) =
1

K2

K∑
k=1

K∑
l=1
l 6=k

SA(nnk(I),nnl(I)), (5.12)

where the right term in the equation is the average distance between the K nearest neigh-
bours of I.

The advantage of using such a varying bandwidth over a formulation with a fixed band-
width is demonstrated in Sec. 5.3.1.
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5.2.5 Mapping new patients: from C to A
The formulation for the estimation of g : C → A is similar to the one of f : A → C, namely
a matching problem on a RKHS G of functions C → A, equipped with a norm ‖.‖G : argmin

g∈G

(
1
2‖g‖

2
G +

γg
2

∑N
i=1 SA

(
g(xi), Ii

)2)
,

under the constraint g(x0) = I0,
(5.13)

where γg is a weighting coefficient balancing the smoothness of the interpolation and the
adherence to the data.

Eq. 5.13 has the following analytical solution:{
g(x) =

∑N
i=0KG(x,xi) · bi,

with B =
(
KC + 1

γg
M
)−1 ·Y,

(5.14)

where:
• B = (b0, . . . ,bN )t ∈MN+1,P , with bi ∈ A,
• KC =

(
KG(xi,xj)

2
)

(i,j)∈[0,N ]2
∈MN+1,N+1,

• and Y = (I0, . . . , IN )t ∈MN+1,P .
The kernel KG is chosen of the exponential form:

KG(x,y) = exp
(
− SC(x,y)2/σ2

G
)
, (x,y) ∈ C2, (5.15)

its bandwidth being defined as:

σG(x) =
1

K2

K∑
k=1

K∑
l=1
l 6=k

SC(nnk(x),nnl(x)). (5.16)

5.2.6 Distance computation

With the previous formulations of the mappings f and g, any image I ∈ A is associated to
another image Î belonging to the manifold, by means of the composition of these mappings,
using:

Î = g
(
f(I)

)
. (5.17)

This composition allows defining a distance between any image I ∈ A and the manifold
[217], namely:

dP (I) = SA(Î, I). (5.18)

This distance is complemented by a second one, which compares individuals to normality
along the manifold structure:

dM (I) = SC
(
f(I),x0

)
. (5.19)

The relation between these two distances and the total abnormality contained in each
map I, defined as SA(I, I0), is discussed in App. C.

5.2.7 Additional metrics

We used the objective metrics described in [223] to evaluate the quality of the dimensionality
reduction, in comparison with linear dimensionality reduction techniques.
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Compactness

Compactness estimates the convergence speed of the dimensionality reduction, namely its
ability to represent the studied objects by the very first dimensions. We measure compact-
ness as:

C(M) =
1

Γ

M∑
m=1

λm, (5.20)

where M is the number of retained dimensions for the coordinate space C, λm is the
eigenvalue corresponding to the mth dimension, and Γ =

∑N+1
m=1 λm.

The eigenvalues for the non-linear dimensionality reduction technique (ML) are obtained
from the diagonalization of the k-NN distance matrix τ(D) ∈ MN+1,N+1 involved in the
isomap process [153], where τ(D) = −HDH/2, with D =

(
dkNN(xi,xj)

2
)

(i,j)∈[0,N ]2
, and

H =
(
δij − 1/(N + 1)

)
(i,j)∈[0,N ]2

is a centering operator. Each λm is associated to the mth

principal direction along the manifold structure.
The eigenvalues for the linear dimensionality reduction technique (PCA) come from the

diagonalization of the covariance matrix computed for the images of the training set I. Each
λm is associated to the mth principal direction along which the data variance is maximal.

The standard error of C(M) is defined as:

σC(M) =
1

Γ

M∑
m=1

√
2

N + 1
λm. (5.21)

Generalization ability

The generalization ability estimates the reconstruction error for points included within the
range of noise of the training set. It represents the ability of the method to describe instances
outside the training set. Each point in the training set Ii ∈ I is reconstructed using leave-
one-out, namely, estimating the space of reduced dimensionality from the other points in
the dataset. This leads to the following reconstruction error:

G(Ii,M) = SA(ÎLV Oi , Ii), (5.22)

where M is the number of retained dimensions, and ÎLV Oi is the reconstruction of Ii
using the reduced set I\Ii = {Ij}j 6=i.

We computed the median, the 1st and 3rd quartiles of G(Ii,M) for all Ii ∈ I to fully
characterize the generalization ability, the normality of its distribution not being guaranteed.

Compactness and generalization ability both reflect the amount of variance explained
by the model, but these metrics are not redundant. For the compactness, the amount of
variance explained depends on the retained eigenvalues, while for the generalization ability
it depends on the distribution of the training set.

Specificity

Specificity characterizes the relevance of objects generated from the low dimensional coor-
dinates, with respect to the training set:

S(x,M) = SA
(
g(x),nn1(g(x))

)
, (5.23)

where g(x) is the image generated from the M -dimensional coordinate x, and nn1(g(x))
is its first nearest neighbour.
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Figure 5.7: 3D swiss roll and 2D random distribution of points used as 2D parametrization for its con-
struction.

We computed the median, the 1st and 3rd quartiles of S(x,M) over a set of randomly
generated coordinates x to fully characterize the specificity, the normality of its distribution
not being guaranteed.

5.3 Experiments

In the sequel, we detail the experiments designed for tuning the parameters of our method,
namely: the manifold dimensionality, the number of k-NN, the bandwidth of the interpola-
tion kernels, and the inexact matching weights γf and γg. We first use a synthetic dataset
to understand the behaviour of some specific parameters. Then, these parameters are tuned
for a real dataset of CRT candidates. The algorithm with optimal values is finally applied
to compare a set of individuals to a specific population.

5.3.1 Parameter tuning - Synthetic data

We created a three dimensional dataset of 1000 points, arranged according to a 2D structure
in the 3D space (swiss roll, Fig. 5.7), defined as:

Ii,1 = cos
(
3π/2 · (1 + 2xi,1)

)
,

Ii,2 = sin
(
3π/2 · (1 + 2xi,2)

)
,

Ii,3 = xi,2 ∈ [0, 20],

(5.24)

(Ii,1, Ii,2, Ii,3) = Ii referring to a point in the 3D space, obtained from the coordinate
(xGTi,1 , x

GT
i,2 ) = xGTi , randomly generated from a uniform distribution. In the following, we

denote gGT : C → A the parametrization function allowing the generation of points in the
3D space from ground truth coordinates, and Eq. 5.24 can be rewritten as Ii = gGT (xGTi ).

For this synthetic dataset, the Euclidean distance ‖.‖ was used for both metrics SA and
SC .

Number of k-NN

The output from the isomap algorithm is a low-dimensional approximation of a Riemannian
space. We used the metric described in [224] to estimate the quality of this approximation.
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Figure 5.8: Influence of the number of k-NN on the isomap output, for the 3D swiss roll data. Top: isomap
output for K = {5, 8, 13, 14}. Bottom: evolution of the isomap error εI (Eq. 5.25) with the number of k-NN.
Mean error over all the pairs (xi,xj) ∈ X 2. A jump is present on this curve for K = 14, reflecting the
apparition of a short-circuit in the k-NN graph.

The error in the approximation of the path between two coordinates (xi,xj) ∈ X 2 is defined
as the relative difference between the geodesic distance dkNN, and the distance defined by
SC :

εI(xi,xj) = 1− SC(xi,xj)

dkNN(xi,xj)
. (5.25)

We evaluated the influence of the number of k-NN on the isomap output using this
error. The experiment is illustrated in Fig. 5.8, and displays the mean error over all the
pairs (xi,xj) ∈ X 2. When the number of k-NN increases, the 2D distribution of points
estimated by the isomap algorithm gets closer to the 2D parametrization used for building
the swiss roll, until a short-circuit appears for K = 14, visible both in the curve representing
the isomap error εI and in the subfigure of the isomap output. The optimal number of k-NN
for this dataset is therefore K = 13.

The error εI could also be used for parameter tuning in case the dimensionality M
is unknown (Sec. 5.3.2), but this strategy may not be optimal to assess the presence or
absence of a short-circuit, in particular if the number of samples in the training set is low.
We adapted the measurement of node flow on a graph [225] to assess the apparition of a
short-circuit in the k-NN graph. We first defined the flow of a given edge Fedge(edgexi 7→xj

)

as the number of shortest paths
(
pathxr 7→xs

)
(r,s)∈[0,N ]2

of the graph passing on the edge.

The total flow at a node xi ∈ X is therefore defined as:

Fnode(xi) =

K∑
k=1

Fedge(edgexi 7→nnk(xi)). (5.26)

The node flow reflects the spatial arrangement of the nodes of the graph, conditioned
by the number of k-NN used. Optimal K should minimize εI within the spatial domain
occupied by the nodes of the graph. The uniformity of the spatial arrangement of the nodes
(K being set to its optimal value) leads to the uniformity of the node flow distribution. In
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Figure 5.9: Influence of the graph number of k-NN and the spatial arrangement of the graph nodes on
the the node flow distribution. Synthetic dataset of 1000 points within a given spatial domain. (a) Initial
spatial domain with K = 20. (b) Same spatial domain with K = 5. Large local variations of the node flow
are locally observed, reflecting a too low connectivity within the graph. (c) Modified spatial domain with
K = 20. Node flow is higher where the spatial domain is narrow, reflecting that a large number of shortest
paths along the graph pass within this region.

the absence of short-circuit, the local density of the graph and local variations of the spatial
domain occupied by the nodes of the graph may change the node flow locally (Fig. 5.9). The
evolution of the node flow distribution with the number of k-NN, for all the points of the
k-NN graph, is shown in Fig. 5.10. Low variability of the node flow distribution is observed
when the estimated coordinates xi tend to be uniformly distributed (K getting closer to 13).
Note that the points on the border of the graph have slightly lower node flow, due to a lower
probability that a shortest path passes by these points. When a short-circuit appears at a
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Figure 5.10: Influence of the number of k-NN on the node flow, for the 3D swiss roll data. Top: isomap
output for K = {5, 8, 13, 14}, where each node is colored according to its flow (Eq. 5.26). For all points, the
variability of the flow distribution is low when K ≤ 13, while the apparition of a short-circuit for K = 14
makes one specific point having almost the highest flow possible (black arrow). Bottom: evolution of the
node flow distribution with the number of k-NN. Black arrow indicates the value of the node flow for the
point where the short-circuit appears.
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Figure 5.11: Comparison of locally adjustable kernel (red) and fixed bandwidth kernels (green levels) in
terms of interpolation error εK (Eq. 5.28), for 100 testing points belonging to the swiss roll, generated using
Eq. 5.24. (a) Median and 1st/3rd quartiles for each kernel size. (b) Median of the interpolation error εK for
the points within a given interval of neighbourhood size (right term in Eq. 5.12), highlighting the accuracy
of the locally adjustable kernel for each type of neighbourhood.

specific point (K = 14, black arrow), a majority of the shortest paths pass by this point,
which has therefore a much higher node flow.

Varying kernel

The accuracy of an interpolation based on a locally adjustable kernel (Sec. 5.2.4) was com-
pared to the one of kernels with fixed bandwidth. We first generated a testing set of 100
points belonging to the swiss roll (note that these points are different from the already
existing set of 1000 points generated in Sec. 5.3.1), as follows:

1. We first generated 100 ground truth coordinates xGT , randomly obtained from a uni-
form distribution.

2. For each ground truth coordinate, we computed the weighted center of mass of its
neighbourhood:

W (xGT ,p) =

K∑
k=1

pk · nnk(xGT ), (5.27)

where p is a vector of weights pk, randomly generated for each coordinate xGT from
a uniform distribution, such that

∑K
k=1 pk = 1.

3. Finally, we computed the point on the swiss roll associated to this center of mass,
using the parametrization described in Sec. 5.3.1, namely: I = gGT (W (xGT ,p)).

The kernel interpolation is accurate if the point I = gGT (W (xGT ,p)) is mapped to the
weighted center of mass of the coordinates f(nnk(I)), with the same weights pk. We defined
the interpolation error as:

εK(I) = SC

(
f(I),

K∑
k=1

pkf(nnk(I))
)
. (5.28)
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Figure 5.12: Histogram of the distribution of neighbourhood sizes (right term in Eq. 5.12) for the 3D swiss
roll dataset. Non-uniformity in the data distribution supports the use of a kernel with varying bandwidth
for this dataset.

The median and 1st/3rd quartiles of the interpolation error εK over the generated set
of 100 points, for each kernel size, is represented in Fig. 5.11a, and is complemented by
Fig. 5.11b, representing the median of the interpolation error εK for the points within a
given interval of neighbourhood size (right term in Eq. 5.12). As commented in Sec. 5.2.4,
small kernels (dark green) introduce more errors for large neighbourhoods, while on the
contrary, larger kernels (light green) are less accurate for small neighbourhoods. In contrast,
the proposed kernel (red) with adjustable bandwidth results in an accurate interpolation for
any neighbourhood size. The performance of kernels with fixed bandwidth of 2.25 and 2.75
is very similar, probably as a consequence of this specific dataset (100 randomly selected
points, using randomly generated testing weights pk).

The relevance of using a kernel with varying bandwidth depends on the extent of non-
uniformity in the data distribution. This was assessed by representing the histogram of the
distribution of neighbourhood sizes (right term in Eq. 5.12) over the studied dataset, which
supports the use of such a kernel (Fig. 5.12).

5.3.2 Parameter tuning - CRT data

Dataset description

Using the method presented in Sec. 5.2.3, a manifold was estimated from a population of 50
CRT candidates with SF. This manifold is expected to represent pathological deviations from
normal motion, each point of the manifold being a SF pattern. The parameter optimization
described in the following sections was performed on this population. Justifications about
the size of this population are given in Sec. 5.3.2. Note that this number is conditioned by
the number of patients undergoing CRT in the hospital from which the data was collected
(Hospital Cĺınic, Barcelona, Spain), and among them, by the presence of SF for these patients
(generally half of the population undergoing CRT). As a comparison, the clinical study of
[8], which motivated our approach, considered a population of 161 patients, 87 of which had
SF.

A second population was used for testing the distances proposed in Sec. 5.2.6, as described
in Sec. 5.3.3. This population was made of 37 CRT candidates (6 having SF and 31 without
SF) and 21 healthy volunteers. All patient data was acquired before the implantation of the
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Figure 5.14: (a) Evolution of the isomap error εI with the dimensionality M and the number of k-NN, for
the training set of CRT candidates with SF. White crosses indicate the minimum value of εI for each value
of k-NN. (b) Evolution of the isomap error εI with the number of k-NN, for M = 4.

CRT device. The presence of SF was assessed by two experienced cardiologists, from the
visual inspection of echocardiographic M-mode images, as described in [8].

A 2D spatiotemporal map of myocardial motion abnormalities obtained from a statistical
atlas of motion [83] was associated to each subject, as explained in Sec. 5.2.1. The atlas
was built from the set of 21 healthy volunteers. Abnormality maps for the set of volunteers
used for the atlas construction were computed using leave-one-out on this population. The
abnormality maps had a size of 20× 31 pixels, corresponding to the sampling of the systolic
period (horizontal dimension) and the septum along its medial line (vertical dimension),
respectively.

For this dataset, the Euclidean distance ‖.‖ was used for both metrics SA and SC . The
choice of this distance for SA is discussed in Sec. 5.4. This distance was used for the metric
SC : C → R due to the Euclidean embedding of the coordinate space provided by the isomap
algorithm (Sec. 5.2.3).
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first dimensions. The black arrow indicates the origin image used to constrain the manifold, representing a
normal motion pattern.

Dimensionality reduction and k-NN

An overview of methods for estimating the intrinsic dimensionality of a dataset was given in
[226], but there is no standard manner of performing this step. For the CRT dataset, both
optimal dimensionality and number of k-NN were unknown, and were determined using the
same experimental design as in Sec. 5.3.1.

We first computed the evolution of the node flow distribution (Eq. 5.26) with the number
of k-NN, as represented in Fig. 5.13. Note that this measurement is directly performed on
the k-NN graph, before the dimensionality reduction step, and is therefore independent of
the retained dimensionality M . No jump in the node flow distribution was observed when
the number of k-NN increased, meaning that no short-circuit had been introduced. We
therefore chose the dimensionality looking at the value of M minimizing the isomap error
εI for each value of K (white crosses on Fig. 5.14a), taking its median value as final value
for M . Then, we determined the value of K from the evolution of εI with the number of
k-NN, when M is set to its optimal value (Fig. 5.14b). According to this experiment, we set
M = 4 and K = 5, as hardly any influence on εI is observed for values of K < 30, and high
values of K represent a substantial increase in terms of computational time.

A 2D embedding of the computed manifold (output of isomap) is represented in Fig. 5.15
for illustration purposes, showing the link in the coordinate space between each image and its
nearest neighbours. We can qualitatively observe that subjects are arranged in the 2D space
according to the pattern present on the map. In particular, subjects with high abnormal
motion patterns are located on the border zone of the graph, while the closest subjects to
normality are located at the center. However, further investigation is required to determine
which characteristic of the SF abnormality pattern (e.g. magnitude, temporal location or
spread, spatial location or spread, etc.) is modeled by each of the principal directions of the
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manifold dataset, as also observed in Fig. 5.22.

Kernel bandwidth

We used a locally adjustable kernel for the interpolation performed by f : A → C and
g : C → A, as described in Sec. 5.2.4. The relevance of using such a kernel for the CRT
dataset is illustrated in Fig. 5.16, through the histogram of the distribution of neighbourhood
sizes, similarly to the experiment performed in Fig. 5.12 for the synthetic dataset. The
accuracy of such a kernel, in comparison with kernels of fixed bandwidth, was already
demonstrated on synthetic data (Sec. 5.3.1). This experiment cannot be repeated for the
CRT dataset due to the lack of ground truth parametrization of the manifold.

Weighting the closeness to the data

The generalization ability metric (Sec. 5.2.7) was used to determine the optimal values of the
weighting terms γf and γg in Eq. 5.8 and 5.13, respectively. Both weights were determined
jointly, as illustrated in Fig. 5.17. Optimal values were those that minimized the median
generalization ability. These values were found to be log(γf ) = 1 and log(γg) = 0.5 for our
dataset.

Fig. 5.18 represents the reconstruction of five patients from the training set (using leave-
one-out), for the optimal values of γf and γg.

Performance of the dimensionality reduction

We used the objective metrics described in Sec. 5.2.7 to evaluate the performance of the non-
linear dimensionality reduction technique (manifold learning, ML) we used, in comparison
with a linear technique (PCA). This comparison is presented in Fig. 5.19.

Note that in PCA and ML methods, the eigenvalues used for the estimation of com-
pactness correspond to different objects (comparison of images using the Euclidean distance
[linear case] or the geodesic distances [Isomap]). This limits the value of comparing the PCA
and ML methods in terms of compactness, despite the fact that compactness is a normalized
measure (Eq. 5.20).
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Figure 5.16: Histogram of the distribution of neighbourhood sizes (right term in Eq. 5.12) for the training
set of CRT candidates with SF. Non-uniformity in the data distribution supports the use of a kernel with
varying bandwidth for this dataset.
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Figure 5.17: Generalization ability in function of the weighting terms γf and γg . Median value (color)
and 1st/3rd quartiles (gray) over the training set of CRT candidates with SF.

The results in Fig. 5.19 indicate that the PCA approach is more compact than the ML
one, and has a lower generalization ability and higher specificity. We provide in the following
some elements of interpretation of these results. Main concerns are (1) the relevance of
using non-linear techniques to estimate the manifold structure, and (2) preventing from
over-fitting.
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Figure 5.18: Reconstruction of five patients from the training set of CRT candidates with SF (using
leave-one-out), for the optimal values of γf and γg .
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ML PCA p-value

Compactness 0.52± 0.03 0.77± 0.04 0.000†

Generalization ability 20.27(17.01− 28.37) 17.26(13.83− 22.78) 0.011‡

Specificity 13.23(11.52− 16.00) 16.71(14.63− 19.16) 0.000‡
† unpaired Student’s t-test; ‡ Mann-Whitney U -test.

Figure 5.19: Comparison between non-linear (ML) and linear (PCA) dimensionality reduction techniques
using the objective metrics described in Sec. 5.2.7. Mean ± standard deviation (compactness) or median and
1st/3rd quartiles (generalization ability and specificity) over the training set of CRT candidates with SF.
Generalization ability and specificity experiments were performed up to M = 20 due to the poor relevance
of using ML for M > 20 (Fig. 5.14). Vertical dashed line indicates the retained dimensionality M = 4.
Top: Values for a range of dimensions. Optimal values for γf and γg were determined for each tested
dimensionality using the framework of Sec. 5.3.2 (ML case). Bottom: Values for the retained dimensionality
M = 4. Unpaired Student’s t-test (a) and Mann-Whitney U -test (b) were used for inter-groups comparison
(last column), depending if normal distribution of the values can be assumed or not.

Relevance of using a non-linear model First, consider the dataset represented in Fig. 5.20.
When computing the generalization ability, one sample is removed (black dot), and the
ability of the model to reconstruct it measured. In the ML case (left), this reconstruction
will be affected by the changes in the local structure of the estimated manifold (dashed line)
induced by the leave-one-out process. In contrast, few changes are expected on the PCA
coordinates if such a point is left out. The generalization ability will therefore have lower
values in the PCA case.

Now, consider the dataset represented in Fig. 5.21. When computing the specificity,
synthetic data is generated from the manifold coordinates, and their closeness to the training
set is measured. Points generated from the model coordinates (black dots #1, #2 and #3)
will still be close from the training set (red dots) in the non-linear case (left), while nothing
prevents them to be far from it in the linear case (right). The specificity will therefore have
higher values in the PCA case.

These illustrative examples may help interpreting the values obtained in Fig. 5.19, but
nothing guarantees that the manifold estimated for the SF patients has a structure similar
as the one represented in Fig. 5.20 and 5.21.

The experiment illustrated in Fig. 5.22 goes in the direction of the above interpretation.
It represents synthetic images generated from the model coordinates (progressive deviations
from the map used as origin for normality I0, along the two first principal directions of the
manifold dataset I), obtained using either PCA or ML. As indicated by the black arrows,
PCA does not guarantee that the computed maps still contain the characteristic inward and
outward events of SF, while this pattern is preserved by the use of ML. This supports the
relevance of using non-linear techniques to estimate the manifold structure.
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Figure 5.20: Influence of the removal of one sample (black dot) on the ability of the model to reconstruct
the training set (red dots).

Prevention of over-fitting An over-fitting model has bad generalization ability (high values
for G(Ii,M)), and good specificity (low values of S(x,M)). The results of Fig. 5.19 may
raise the possibility that our model is over-fitting (higher generalization and lower specificity
for the ML method, compared to PCA). However, the experiment illustrated in Fig. 5.17
aimed at determining the optimal weights γf and γg to fit to the data, optimality being
associated to the lowest generalization ability values. This limits over-fitting, which would
correspond to high values of this metric.

Size of the training population To justify that the subject comparison is not biased due
to the size of the training population (N = 50 + 1 synthetic image), we computed the
evolution of the distances dM and dP for a training population made of Ns < N patients.
This experiment is summarized in Fig. 5.23. Little variation was observed for the learning

#1
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#3

#3

#2

#1

ML PCA

Figure 5.21: Comparison of three points generated from the model coordinates (black dots #1, #2 and
#3) to the training set (red dots).
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Figure 5.22: Progressive deviations from the map used as origin for normality I0, along the two first
principal directions of the manifold dataset I, obtained using either PCA or manifold learning (ML). Arrows
indicate the characteristic inward and outward motion events of SF. Total abnormality is defined as SA(I, I0)
(Sec. 5.2.6).

parameters (M , K, γf and γg) with training population sizes 30 ≥ Ns ≥ 50, and we kept
for this experiment the parameters estimated for Ns = N . Curves were normalized against
the value obtained for the largest training population, so that the evolution is represented in
the same magnitude scale (%). The plot on the top represents this evolution for one subject
of each tested population. For each value of Ns < N , the experiment was repeated for 100
random combinations of Ns subjects (vertical error bars). For each tested population and
each distance (dM and dP ), the number of subjects above which this evolution stabilizes to
its final value ±5% is summarized in the table of Fig. 5.23 (average ± standard deviation
values over each tested population). Based on this convergence, we can reasonably trust a
manifold estimation with the 50 patients of the training population.

5.3.3 Patient analysis - CRT data

Fig. 5.24a represents the distance between all the subjects involved in this study and the
manifold. We separated the analysis between dM and dP for interpretation purposes. The
patients from the training set have low dP (distance to the manifold), which corresponds
to the reconstruction error inherent to the estimation of f and g using an inexact matching
formulation (Eq. 5.8 and 5.13), and largely span the space associated to dM (distance to
normality along the manifold). As the training population size is finite, the density in the
space of coordinates around patients with the most abnormal patterns is lower, and these
patients have higher reconstruction error, namely higher dP . Few patients from the training
set are close to the origin according to dM , in comparison with the healthy volunteers. This
may come from the accuracy of the patient selection process using M-mode images [8], small
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Figure 5.23: Top: Normalized evolution of the distances dM and dP for each subject of each tested
population, versus the size of the training population (number of SF patients). Error bars represent the
standard deviation over 100 random combinations of Ns < N subjects. Bottom: values above which this
evolution stabilizes to its final value ±5% (dashed line). Average ± standard deviation values over each
tested population.

SF being harder to identify, and from the accuracy of the abnormality maps to detect low
abnormalities [83]. Among the testing subjects, patients having SF are closer to the manifold
than patients without SF, according to dP , and almost within the range of the reconstruction
error for the training set. Higher values of dM are observed in the subjects having higher SF
abnormalities on the maps. Large values of dP can be observed for some volunteers. These
subjects actually have high velocities during the cardiac cycle, reflected by high values of
abnormality on their associated 2D maps. Their pattern of motion abnormality cannot be
accurately reconstructed from the training population, which does not include any healthy
subject. Thus, their corresponding image on the manifold Î tends to be close to I0, resulting
in a low dM and a high dP .

Fig. 5.24b uses a similar display to represent the ordering of subjects obtained using
PCA, separating the analysis between d?M and d?P , defined as:{

d?P (I) = SA(Î?, I),

d?M (I) = SC(x
?,x?0),

(5.29)

where Î? is the reconstruction of I using the first M principal directions obtained from
PCA, and x? are the M -dimensional coordinates of I in the PCA space.

This figure highlights the limitations of PCA to perform patient comparison to a popula-
tion with a specific abnormal pattern. Little discrimination is observed between the healthy
volunteers, the testing patients having SF, and patients without SF. Both patients with and
without SF appear equally distant from the SF training set according to d?P , and volunteers
do not have necessarily low values of d?M . The PCA-based approach therefore does not
guarantee that our main objectives for CRT studies (characterizing patients according to
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Figure 5.24: (a) Subject ordering according to dM and dP (Sec. 5.2.6), used as horizontal and vertical axis,
respectively. (b) Subject ordering according to d?M and d?P (Eq. 5.29), used as horizontal and vertical axis,
respectively. The black arrow indicates the image used to constrain the manifold, representing a normal
motion pattern, and used as origin. Asterisk-marked miniatures refer to two subjects with the same amount
of total abnormality, but belonging to different populations (cf. App. C).

their distance to patterns of dyssynchrony for which the response rate is roughly known,
and grading of the disease severity) are fulfilled, in comparison with the manifold learning
approach.

5.3.4 Total distance to normality

Each 2D map processed in this study locally contains a measure of abnormality, and the
total abnormality contained in each map is therefore defined as SA(I, I0) (Sec. 5.2.6).

It is therefore interesting to look for the link between SA(I, I0) and the distances dM
and dP defined in Sec. 5.2.6. We can show that the dimensionality reduction inherent to
the manifold estimation preserves the concept of abnormality embedded in the input maps,
but also takes into account the geometry of the training set. This interpretation and the
comparison between the ML and PCA cases are detailed in App. C.

5.4 Discussion

We have described a complete pipeline to compare individuals and a population with a spe-
cific pattern of abnormal motion in terms of myocardial motion. The extension of manifold
learning techniques to embed the definition of a physiologically meaningful origin allowed
representing the learnt population as progressive deviations from normality along a manifold
structure. The originality of our work resides in using 2D maps of motion abnormalities as
input, obtained from a statistical atlas of myocardial motion built from a set of healthy
volunteers, which facilitates the definition of an origin for normality. Our experiments
demonstrated the relevance of manifold learning techniques to learn a population with a
specific pathological pattern, and to compare individuals to this pattern. We first selected
the optimal values for the parameters involved in our method, using a synthetic dataset and
the training set of CRT candidates for which the manifold is learnt. Then, we demonstrated
the performance of our method to characterize both training and testing datasets.
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As described in Sec. 5.3.2, we used the Euclidean distance for the metric SA. This met-
ric evaluates pixel-wise the difference between two maps of abnormality, being considered
as 2D images. The relationship between this metric and the statistical information locally
contained in each map will be addressed in further work. Choosing the Euclidean distance
may introduce some bias towards global and local shifts of the observed patterns. However,
the use of TDFFD [73] guarantees the velocities computed for each subject to be differ-
entiable, and therefore introduces smoothness on the abnormality maps, which limits the
above-mentioned bias. We preferred to choose a simple metric for the sake of computational
speed. Metrics based on image registration (as used in other manifold learning applications
working directly on real images [217]) or image correlation-based metrics cannot be applied
in our case as they require the processed images to share the same topology. Indeed, a large
variety of patterns are observed on the maps of abnormality we used either for the manifold
estimation or for the comparison to the manifold, as visible in Fig. 5.4. In particular, these
alternative metrics would certainly fail in case of the lack of abnormal pattern, typically for
the maps of healthy volunteers.

We preferred a strategy in which the manifold is estimated for one specific population
only (SF patients). This approach differs from classic methods for population comparison
[155], which generally consider all subjects as part of a single dataset, and look for the
space of reduced dimensionality that allows the best discrimination between different pre-
identified groups. Nonetheless, the flexibility of these techniques is limited when a new
subject or a new population is added to the existing dataset, as dimensionality reduction is
applied to the whole set of studied subjects. In addition, the dimensionality reduction could
be biased towards certain populations if they show higher variability. An alternative for
moving beyond these limitations consists in separating the analysis for each coherent group
of subjects, which is the strategy we have opted for.

In this work, we assumed that the training set contained members close from the origin,
namely close from normality. This allows modeling the pathological pattern of SF as a
progressive degeneration from normality. In case this methodology is applied to other popu-
lations where this assumption does not hold, the ML process can be made simpler (without
the additional constraint of exact matching for one point), as formulated in Sec. 5.2.4.

The approach we proposed represents a potential step forward to improve patient selec-
tion in the context of CRT. As highlighted in [4], current approaches lack of reproducible
tools to perform patient comparison pre- and post- therapy. Our method is ready to be
used in both cases: (1) using baseline data, it would allow grading a pattern (distance to
normality) and estimating the ability of a patient to respond (distance to patterns for which
the response rate is known [8]); (2) using baseline and follow-up data, it would improve the
understanding of the link between the evolution of abnormal patterns and CRT outcome.
Both aspects will be studied in further work as part of a thorough clinical study.

Limitations The pipeline presented in this study was applied to the characterization of
individuals against patients with SF, as this pattern is clearly defined on the maps we used
as input, which were validated in [83]. Besides, this pattern has been shown to highly
condition CRT outcome [8] [198].

The maps were computed from 2D echocardiographic sequences, as it is currently the
most clinically widespread modality with sufficient temporal resolution to accurately quan-
tify SF.

The study focused on motion abnormalities only. Its extension to strain abnormalities
may refine the analysis of the patterns of cardiac dyssynchrony by allowing the characteri-
zation of locally infarcted segments, which may affect CRT outcome [227].

77



C
H

A
P

T
E

R
5
.

Nonetheless, the methodology described in the present work is generic, and therefore
not specific to SF, or abnormality maps obtained from 2D echocardiography. Other poten-
tial strategies for building the maps of abnormality could include other imaging modalities
(3D echocardiography, magnetic resonance and tagged magnetic resonance as recently pro-
posed [228]) and other pathological cardiac mechanisms such as the classes of mechanical
dyssynchrony identified in [8].

The quality of the maps of abnormality is primordial for the accuracy of the proposed
method. Both the echocardiographic acquisition and the atlas construction steps (velocity
extraction and spatiotemporal synchronization) may influence the patterns observed on the
maps and the subject comparison, within the manifold learning process (construction of the
k-NN graph and intra-manifold distance) and when mapping patients to the manifold.

The current strategy, namely first compute maps of abnormality and then perform ML,
may not be optimal as both steps are independent. An improvement of our method could
combine both steps, learning directly from 2D maps of velocities. Optimality of the method
should however be carefully defined, depending on the objective (population modeling or
classification, for instance).

5.5 Conclusion

We have proposed a method for representing a specific pathological motion pattern as a
deviation from normality along a manifold structure, normality being by construction the
manifold origin. The method was used to characterize individuals according to their dis-
tance to normality, and to the pathological pattern used to estimate the manifold. We first
evaluated the optimal set of parameters involved in our pipeline. Then, we illustrated the
performance of such an approach in the context of CRT, learning the manifold for a set of
patients with SF, a specific pattern of intra-ventricular dyssynchrony, and comparing both
healthy volunteers and CRT candidates to this population. Experiments demonstrated the
advantage of non-linear embedding of the training set, and the relevance of the proposed
method for grading different stages of motion abnormalities and comparing subjects to a
specific pathological pattern.

Appendix A. Choice of the kernel.

The theory of RKHS provides specific results about the link between the properties of the
RKHS and the kernel ones. [69] extensively discusses these properties, among which are
regularity and invariance by rigid transforms, and the definition of an observation scale.

Taking as example the matching problem of Sec. 5.2.4, simple parametric kernels are of
the form KF (I,J) = h(SA(I,J)) · IdM,M , ∀I,J ∈ A, namely isotropic scalar and invariant
by rigid transforms, where h : R+ → R is a given scalar function, and IdM,M the identity
matrix in MM,M .

Examples of such kernels that are semi-definite positive, given x ∈ R+, are:
• Bessel kernels [229, 69],
• Gaussian kernels: h(x) = exp

(
− x2/σ2

F
)
,

• Cauchy kernels: h(x) =
(
1 + x/σ2

F
)−1

,
• Sobolev kernels, for which h is the inverse Fourier transform of (1 + x2)−s, s > P + 1/2.

Gaussian and Cauchy kernels are particularly of interest as they introduce an observation
scale σF . However, the choosing the optimal function h defining the kernel is still an open
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issue. In our application, we opted for Gaussian kernels due to their wide use in the machine
learning community.

Appendix B. Formulation of the exact matching problem.

According to the formulation of Eq. 5.3 (Sec. 5.2.4), the exact matching problem has the
following analytical solution:

f(I) =

N∑
i=0

KF (I, Ii) · ai, (5.30)

where the vectors ai ∈ C are solutions of the following linear system:

N∑
j=0

KF (Ii, Ij) · aj = xi, ∀i ∈ [0, N ]. (5.31)

Note that KF (Ii, Ij) ∈MM,M with this formulation.
Eq. 5.31 can be condensed using the product of block matrices:

KA ·A = X, (5.32)

where:
• At = (at0, . . . ,a

t
N ) ∈ R(N+1)M ,

•KA ∈M(N+1)M,(N+1)M is the matrix made of theM×M -dimensional blocksKF (Ii, Ij), (i, j) ∈
[0, N ]2,
• Xt = (xt0, . . . ,x

t
N ) ∈ R(N+1)M .

If we choose a reproducing kernel of the form (App. A):

KF (I,J) = h
(
SA(I,J)

)
· IdM,M , (5.33)

where IdM,M is the identity matrix in MM,M , the solution for Eq. 5.3 can be re-written in
a simpler form, namely: {

f(I) =
∑N
i=0KF (I, Ii) · ai,

with A = K−1
A ·X,

(5.34)

where:
• A = (a0, . . . ,aN )t ∈MN+1,M ,
• KA =

(
KF (Ii, Ij)

)
(i,j)∈[0,N ]2

∈MN+1,N+1,

• X = (x0, . . . ,xN )t ∈MN+1,M .

Appendix C. Link between the total abnormality in each
map and proposed distances.

In this paper, we used the Euclidean distance for both metrics SA and SC . Thus, the total
abnormality contained in each map is:

SA(I, I0) = ‖I− I0‖ = ‖I‖. (5.35)
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Figure 5.25: Subject ordering according to the amount of total abnormality contained in each map and
(a) the PCA-based distance to normality with residual, or (b) without residual, or (c) the ML-based total
distance to normality. The black arrow indicates the image used to constrain the manifold, representing a
normal motion pattern, and used as origin.

In the PCA case, we can demonstrate that:

‖I‖2 = ‖I− Î?‖2 + ‖Î? − Î?0‖2 + ‖I0 − Î?0‖2 − 2

N+1∑
m=M+1

x?m · x?0,m, (5.36)

where Î? and Î?0 are the PCA-based reconstruction of I and I0 using the first M principal
directions, and x?m and x?0,m correspond to the mth component of x? and x?0, respectively.

Proof: We denote e?m the eigenvector of the PCA basis corresponding to the mth com-
ponent. We can write from the PCA definition:

I =
1

N + 1

N∑
i=0

Ii +

N+1∑
m=1

x?me?m. (5.37)

From the dimensionality reduction process, we also have that:

Î? =
1

N + 1

N∑
i=0

Ii +

M∑
m=1

x?me?m. (5.38)

Thus, for the left side of Eq. 5.36:

‖I‖2 = ‖I− I0‖2 =

N+1∑
m=1

(x?m − x?0,m)2,

=

N+1∑
m=1

(
(x?m)2 + (x?0,m)2 − 2 · x?m · x?0,m

)
.

(5.39)

And for each term of the right side of Eq. 5.36:

‖I− Î?‖2 = ‖
N+1∑
m=1

x?me?m −
M∑
m=1

x?me?m‖2 =

N+1∑
m=M+1

(x?m)2. (5.40)

Similarly, we have:

‖I0 − Î?0‖2 =

N+1∑
m=M+1

(x?0,m)2. (5.41)
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Figure 5.26: Relationship between the total abnormality contained in each map and the proposed distances
for comparing subjects to the training population.

And finally:

‖Î? − Î?0‖2 = ‖
M∑
m=1

x?me?m −
M∑
m=1

x?0,me?m‖2,

=

M∑
m=1

(
(x?m)2 + (x?0,m)2 − 2 · x?m · x?0,m

)
.

(5.42)

The result of Eq. 5.36 is therefore straightforward. �
In the PCA case, and according to the computations above, we also have:

‖Î? − Î?0‖2 =

M∑
m=1

(x?m − x?0,m)2 = SC(x
?,x?0)2, (5.43)

and Eq. 5.36 can be rewritten as:

‖I‖2 = d?P (I)2 + d?M (I)2 + d?P (I0)2 − 2

N+1∑
m=M+1

x?m · x?0,m. (5.44)

This is illustrated in Fig. 5.25a, confirming that both expressions are equal. Note that dM
and dP calculate the Euclidean norm of M - and P - dimensional vectors, respectively. The
validity of using such distances in the same equation is therefore ensured by the residual
term 2 ·

∑N+1
m=M+1 x

?
m · x?0,m.

Fig. 5.25b compares the amount of total abnormality to the right term of Eq. 5.36 with-
out this residual term, namely to√
‖I− Î?‖2 + ‖Î? − Î?0‖2 + ‖I0 − Î?0‖2, showing this mostly affects the images close to nor-

mality.
We performed the same comparison in the ML case, for which the manifold is constrained

to pass by I0, and therefore Î?0 = I0, namely dP (I0) = 0. As visible in Fig. 5.25c, the property
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Figure 5.27: Example of two patients having the same amount of total abnormality SA(I, I0), but different
patterns (presence and absence of SF, respectively). These subjects are clearly discriminated by the use of
the proposed distances dM and dP (cf. table values and asterisks-marked miniatures on Fig. 5.24).

discussed above is not satisfied in this case, linear regression over the plotted data leading
to slope coefficients of 1.13 (manifold data only, dashed red line) and 1.04 (whole data,
black line), associated to R2 coefficients of 0.96 and 0.93, respectively. The dimensionality
reduction inherent to the manifold estimation still preserves the concept of abnormality
embedded in the input maps, but also takes into account the geometry of the training set,
as summarized in Fig. 5.26.

These observations are also supported by the fact that some images may contain the
same amount of total abnormality, but be clearly discriminated by the proposed distances
dM and dP . Fig. 5.27 illustrates this point for two subjects with different patterns on the
maps (one with SF, and the other without SF). Both maps contain the same amount of
total abnormality despite the fact that they belong to different groups, but are correctly
discriminated by the distances we propose (Fig. 5.27 and asterisk-marked miniatures in
Fig. 5.24).
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6

Conclusions

6.1 Overview

During the realization of this thesis, we investigated ways of characterizing myocardial mo-
tion and deformation patterns, and to include this information in a robust computational
scheme for inter-subject comparison. Requirements for this approach (Sec. 1.2) were:
• Quantifying myocardial motion and deformation on each subject. Our solutions for

this objective were reported in Chap. 3.
• Estimating the degree of abnormality for each subject, based on the statistical analysis

of groups of subjects. This objective was reached in Chap. 3 and 4.
• Being able to compare patients in terms of patterns of dyssynchrony, and not only on

a voxel-wise basis. This contribution was reported in Chap. 5.
The underlying clinical objective was to apply these tools to a population of CRT can-

didates, and demonstrate their added-value for the characterization of pattern-related ab-
normalities and their evolution. A clinical study was designed on this specific point in
Chap. 4.

6.2 Outlook and future work

The work carried out in this thesis constitutes a first step towards the use of motion and
deformation patterns to understand the effects of CRT and consequently improve the patient
selection process. We expect that the work done in this thesis will definitely contribute to
further progress in this direction, as discussed in the following paragraphs.

Registration-based motion and deformation estimation. The estimation of myocardial mo-
tion and deformation has been achieved in this thesis using image registration techniques
to track the myocardium along cardiac sequences. As a first step, the registration scheme
considered independently each pair of consecutive frames (Chap. 3). The estimated trans-
formations were estimated using a parametric approach (multiscale FFD), and constrained
to be diffeomorphic. This approach provided piece-wise stationary velocities, which may
be a limitation for the temporal synchronization step of the atlas building, as discussed in
Chap. 5.
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The design of the atlas pipeline allows the improvement of the registration step indepen-
dently from the synchronization and statistical steps coming further. Thus, in a subsequent
application to the initial atlas publication [83], we improved this step by using temporal dif-
feomorphic free-form deformation (TDFFD) [73], which enforces temporal consistency and
provides differentiable velocities at each instant of the cardiac sequence.

Further work at this level of the atlas pipeline could consist in the improvement of the
registration accuracy for any imaging modality, as initiated by some recent registration
challenges [230].

Voxel-based vs. pattern-based inter-subject comparison. As discussed in Sec. 2.3, the sta-
tistical comparison of motion and deformation in sets of subjects can be performed on a
voxel-wise or a pattern-wise basis, this latter option being conditioned by the definition of
a relevant comparison space. We preferred to keep the analysis general in the first part of
the thesis work (Chap. 3) and therefore started with observations at the voxel level. Thus,
the interpretation of the patterns of dyssynchrony that may be observed for each patient
remained qualitative in a first time. Pattern-based analysis were proposed in Chap. 4 and
5, extending the voxel-wise analysis to groups of voxels or to a space of reduced dimension-
ality. In particular, the work described in Chap. 4 illustrated the importance of analyzing
dyssynchrony in patients at a pattern level before relating it with the therapy outcome.

Future work on this field should first clearly state the space or arrangement of voxels
to be considered, depending on the observations to be made: introducing smoothness in
the voxel-based analysis (as a consequence of a smooth registration scheme), recognizing
abnormal patterns, or comparing subjects to a population (Chap. 5), for example.

Going beyond Parsai’s paper. The paper of Parsai et al. [8] pointed out several interesting
issues for CRT studies that we can answer or comment after the work developed in this
thesis:

• Value of SF: The results presented in [8] may suggest that due to its high response
rate, SF should be used as criteria for selecting CRT candidates. Nonetheless, we would
like to nuance this statement, based the findings described in Chap. 4. In our data, the
detection of SF at baseline led to a modest sensitivity to predict CRT response. There are
still few studies about SF targeting the physiological understanding of this mechanism [199]
[198]. In terms of its link with CRT response, we agreed with the findings of [8] and [23]
in that the correction of SF highly conditions CRT response, but this is not a sufficient
condition for CRT response, particularly regarding reverse remodeling. The inclusion of
additional variables of non-response such as the ones discussed in Chap. 4 (presence of atrial
fibrillation [201], lack of contractile reserve [200], lead position [227], etc.) would be highly
recommendable before any consideration of the SF mechanism for selecting patients.

• Baseline comparison to specific patterns of dyssynchrony: The paper of Par-
sai et al. [8] invited the cardiologists to rethink their strategy for patient selection. The
comparison of a new patient to different mechanisms of dyssynchrony for which the response
rate is known may help for estimating the probability of a patient to respond. We started
investigating this line of research in Chap. 5 through the proposition of an algorithm for
comparing the patterns of abnormal motion of a patient to a population with a given pat-
tern of dyssynchrony. The method is currently applied to baseline data, for the SF pattern.
Future work should (1) extend it to the patterns proposed in [8], looking at the predictive
value of these classes using baseline data only; (2) apply it to baseline and follow-up data
to complement the findings of the study performed in Chap. 4.
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• Which patterns of dyssynchrony? The paper of [8] presents an algorithmic ap-
proach to improve patient selection for CRT, based on the classification of patients according
to specific patterns of dyssynchrony (inter-, intra- and atrio-ventricular dyssynchrony). The
rationale behind such a classification is that it covers the most common types of patterns
of dyssynchrony affecting the LV. Additional patterns of dyssynchrony such as the ones
affecting the right ventricle, or a combination of mechanisms (which forms a specific group
of patients in [8]) may also be observed. Their influence on CRT response requires further
analysis, in particular due to the implantation of the CRT device on the septal and lateral
wall of the LV only.
• A threshold for CRT response? As discussed in Sec. 2.1.1, a strong limitation to

CRT studies may be the definition of CRT response. The concept of quantifying motion and
deformation abnormality is particularly interesting with respect to this point, as it overcomes
the limitations of a qualitative description or a binary recognition of the mechanisms of
dyssynchrony conditioning CRT response. Further studies should not rely on a binary
threshold for defining CRT response, but rather consider a spectrum of responses, which
may include measures of the abnormality evolution with the therapy.

Application to other imaging modalities and other mechanisms. Most of the work realized
during this thesis was applied to 2D echocardiographic sequences of the LV, acquired in a
4-chamber view. The 2D US modality was chosen for its high temporal resolution, and its
availability pre- and post-implant. The apical 4-chamber view represented the most relevant
2D view to visualize the type of LV dyssynchrony we focused on. Using 3D echocardiogra-
phy would allow the characterization of all myocardial segments, but with a lower temporal
resolution. The application of the atlas framework to other 2D US views, other imag-
ing modalities (magnetic resonance, computed tomography ...) and other clinical settings
(stress echocardiography, ischemic cardiomyopathy ...) is relatively straightforward, and
only requires a careful tuning of the registration parameters, as we started to do in [73] for
3D US and [104] for t-MRI.

In a similar manner, the methodology developed during the thesis is not specific to the
study of LV dyssynchrony and more particularly patterns of intra-ventricular dyssynchrony
such as SF, but could perfectly be applied to the characterization of other mechanisms of
abnormal motion and deformation. The only requirement to this would be that the use of
a complex framework such as building a statistical atlas or learning a manifold represents
an added-value for the quantification and the characterization of these mechanisms, as we
attempted to demonstrate in Chap. 4 and 5.
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A. Strömberg, D. J. van Veldhuisen, D. Atar, A. W. Hoes, A. Keren, A. Mebazaa, M. Nieminen, S. G.
Priori, and K. Swedberg, “ESC Guidelines for the diagnosis and treatment of acute and chronic heart
failure 2008. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008
of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association
of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM),”
European Heart Journal, vol. 29, pp. 2388–442, 2008.

[16] D. J. van Veldhuisen, A. H. Maass, S. G. Priori, P. Stolt, I. C. van Gelder, K. Dickstein, and K. Swed-
berg, “Implementation of device therapy (cardiac resynchronization therapy and implantable car-
dioverter defibrillator) for patients with heart failure in Europe: changes from 2004 to 2008,” European
Journal of Heart Failure, vol. 11, pp. 1143–51, 2009.

[17] J. Bax, J, T. Abraham, S. S. Barold, O. A. Breithardt, J. W. H. Fung, S. Garrigue, J. Gorcsan III, D. L.
Hayes, D. A. Kass, J. Knuuti, C. Leclercq, C. Linde, D. B. Mark, M. J. Monaghan, P. Nihoyannopoulos,
M. J. Schalij, C. Stellbrink, and C.-M. Yu, “Cardiac resynchronization therapy: Part 1 - Issues before
device implantation,” Journal of the American College of Cardiology, vol. 46, pp. 2153–67, 2005.

[18] C.-M. Yu, J. E. Sanderson, and J. Gorcsan III, “Echocardiography, dyssynchrony, and the response
to cardiac resynchronization therapy,” European Heart Journal, vol. 31, pp. 2326–39, 2010.

[19] S. Stewart, A. Jenkins, S. Buchan, A. McGuire, S. Capewell, and J. J. McMurray, “The current cost
of heart failure to the National Health Service in the UK,” European Journal of Heart Failure, vol. 4,
pp. 361–71, 2002.

[20] S. A. Hunt, W. T. Abraham, M. H. Chin, A. M. Feldman, G. S. Francis, T. G. Ganiats, M. Jessup,
M. A. Konstam, D. M. Mancini, K. Michl, J. A. Oates, P. S. Rahko, M. A. Silver, L. W. Stevenson,
C. W. Yancy, E. M. Antman, S. C. J. Smith, C. D. Adams, J. L. Anderson, D. P. Faxon, V. Fuster,
J. L. Halperin, L. F. Hiratzka, S. A. Hunt, A. K. Jacobs, R. Nishimura, J. P. Ornato, R. L. Page,
and B. Riegel, “ACC/AHA 2005 Guideline update for the diagnosis and management of chronic heart
failure in the adult: A report of the American College of Cardiology/American Heart Association
task force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation
and management of heart failure): Developed in collaboration with the American College of Chest
Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart
Rhythm Society,” Circulation, vol. 112, pp. e154–235, 2005.

[21] G. B. Bleeker, J. J. Bax, J. W.-H. Fung, E. E. van der Wall, Q. Zhang, M. J. Schalij, J. Y.-S.
Chan, and C.-M. Yu, “Clinical versus echocardiographic parameters to assess response to cardiac
resynchronization therapy,” The American Journal of Cardiology, vol. 97, pp. 260–3, 2006.

[22] N. M. Hawkins, M. C. Petrie, M. R. MacDonald, K. J. Hogg, and J. J. V. McMurray, “Selecting
patients for cardiac resynchronization therapy: electrical or mechanical dyssynchrony?,” European
Heart Journal, vol. 27, pp. 1270–81, 2006.

[23] C. Parsai, A. Baltabaeva, L. Anderson, M. Chaparro, B. H. Bijnens, and G. R. Sutherland, “Low-dose
dobutamine stress echo to quantify the degree of remodelling after cardiac resynchronization therapy,”
European Heart Journal, vol. 30, pp. 950–8, 2009.

[24] J. B. Young, W. T. Abraham, A. L. Smith, A. R. Leon, R. Lieberman, B. Wilkoff, R. C. Canby,
J. S. Schroeder, L. B. Liem, S. Hall, K. Wheelan, and the Multicenter InSync ICD Randomized
Clinical Evaluation (MIRACLE-ICD) trial investigators, “Combined cardiac resynchronization and
implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD trial,”
Journal of the American Medical Association, vol. 289, pp. 2685–94, 2003.

[25] P. W. X. Foley, F. Leyva, and M. P. Frenneaux, “What is treatment success in cardiac resynchroniza-
tion therapy?,” Europace, vol. 11, pp. v58–65, 2009.

[26] V. Delgado and J. J. Bax, “Assessment of systolic dyssynchrony for cardiac resynchronization therapy
is clinically useful,” Circulation, vol. 123, pp. 640–55, 2011.

[27] R. K. Sung and E. Foster, “Assessment of systolic dyssynchrony for cardiac resynchronization therapy
is not clinically useful,” Circulation, vol. 123, pp. 656–62, 2011.

[28] E. S. Chung, A. R. Leon, L. Tavazzi, J.-P. Sun, P. Nihoyannopoulos, J. Merlino, W. T. Abraham,
S. Ghio, C. Leclercq, J. J. Bax, C.-M. Yu, J. Gorcsan III, M. St John Sutton, J. De Sutter, and
J. Murillo, “Results of the predictors of response to CRT (PROSPECT) trial,” Circulation, vol. 117,
pp. 2608–16, 2008.

ii



[29] A. Achilli, C. Peraldo, M. Sassara, S. Orazi, S. Bianchi, F. Laurenzi, R. Donati, G. B. Perego,
A. Spampinato, S. Valsecchi, A. Denaro, and A. Puglisi, “Prediction of response to cardiac resyn-
chronization therapy: the selection of candidates for CRT (SCART) study,” Pacing and Clinical
Electrophysiology, vol. 29, pp. S11–9, 2006.

[30] M. Richardson, N. Freemantle, M. J. Calvert, J. G. Cleland, L. Tavazzi, C. S. S. Committee, and
Investigators, “Predictors and treatment response with cardiac resynchronization therapy in patients
with heart failure characterized by dyssynchrony: a predefined analysis from the CARE-HF trial,”
European Heart Journal, vol. 28, pp. 1827–34, 2007.

[31] S. Lafitte, P. Reant, A. Zaroui, E. Donal, A. Mignot, H. Bougted, H. Belghiti, P. Bordachar,
A. Deplagne, J. Chabaneix, F. Franceschi, J.-C. Deharo, P. Dos Santos, J. Clementy, R. Roudaut,
C. Leclercq, and G. Habib, “Validation of an echocardiographic multiparametric strategy to increase
responders patients after cardiac resynchronization: a multicentre study,” European Heart Journal,
vol. 30, pp. 2880–7, 2009.

[32] M. Santaularia-Tomas and T. P. Abraham, “Criteria predicting response to crt: is more better?,”
European Heart Journal, vol. 30, pp. 2835–7, 2009.

[33] E. K. Heist, C. Taub, D. Fan, D. Arzola-Castaner, C. R. Alabiad, V. Y. Reddy, M. Mansour, T. Mela,
M. H. Picard, J. N. Ruskin, and J. P. Singh, “Usefulness of a novel “response score” to predict
hemodynamic and clinical outcome from cardiac resynchronization therapy,” The American Journal
of Cardiology, vol. 97, pp. 1732–6, 2006.

[34] B. W. L. De Boeck, A. J. Teske, M. Meine, G. E. Leenders, M. J. Cramer, F. W. Prinzen, and P. A.
Doevendans, “Septal rebound stretch reflects the functional substrate to cardiac resynchronization
therapy and predicts volumetric and neurohormonal response,” European Journal of Heart Failure,
vol. 11, pp. 863–71, 2009.

[35] M. Szulik, M. Tillekaerts, V. Vangeel, J. Ganame, R. Willems, R. Lenarczyk, F. Rademakers,
Z. Kalarus, T. Kukulski, and J.-U. Voigt, “Assessment of apical rocking: a new, integrative approach
for selection of candidates for cardiac resynchronization therapy,” European Journal of Echocardiog-
raphy, vol. 11, pp. 863–9, 2010.

[36] V. Mor-avi, R. M. Lang, L. P. Badano, M. Belohlavek, N. M. Cardim, G. Derumeaux, M. Galderisi,
T. Marwick, S. F. Nagueh, P. P. Sengupta, R. Sicari, O. A. Smiseth, B. Smulevitz, M. Takeuchi,
J. D. Thomas, M. Vannan, J.-U. Voigt, and J. L. Zamorano, “Current and evolving echocardiographic
techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on
methodology and indications endorsed by the Japanese Society of Echocardiography,” Journal of the
American Society of Echocardiography, vol. 24, pp. 277–313, 2011.

[37] G. R. Sutherland, L. Hatle, P. Claus, J. D’hooge, and B. Bijnens, Doppler Myocardial Imaging, A
Textbook. BSWK bvba, Scientific Consulting and Publishing-Hasselt, Belgium, 2006.

[38] P. Søgaard, H. Egeblad, W. Y. Kim, H. K. Jensen, A. K. Pedersen, B. Ø. Kristensen, and P. T.
Mortensen, “Tissue doppler imaging predicts improved systolic performance and reversed left ventric-
ular remodeling during long-term cardiac resynchronization therapy,” Journal of the American College
of Cardiology, vol. 40, pp. 723–30, 2002.

[39] J. D’hooge, A. Heimdal, F. Jamal, T. Kukulski, B. Bijnens, F. Rademakers, L. Hatle, P. Suetens,
and G. Sutherland, “Regional strain and strain rate measurements by cardiac ultrasound: Principles,
implementation and limitations,” European Journal of Echocardiography, vol. 1, pp. 154–70, 2000.

[40] A. Heimdal, , A. Støylen, H. Torp, and T. Skjaerpe, “Real-time strain rate imaging of the left ventricle
by ultrasound,” Journal of the American Society of Echocardiography, vol. 11, pp. 1013–9, 1998.

[41] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models - their training and
application,” Computer Vision and Image Understanding, vol. 61, pp. 38–59, 1995.

[42] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, pp. 681–5, 2001.

[43] S. C. Mitchell, J. G. Bosch, B. P. F. Lelieveldt, R. J. van der Geest, J. H. C. Reiber, and M. Sonka, “3-d
active appearance models: Segmentation of cardiac MR and ultrasound images,” IEEE Transactions
on Medical Imaging, vol. 21, pp. 1167–78, 2002.

[44] N. F. Osman, W. S. Kerwin, E. R. McVeigh, and J. L. Prince, “Cardiac motion tracking using CINE
harmonic phase (HARP) magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 42,
pp. 1048–60, 1999.

[45] N. F. Osman, E. R. McVeigh, and J. L. Prince, “Imaging heart motion using harmonic phase MRI,”
IEEE Transactions on Medical Imaging, vol. 19, pp. 186–202, 2000.

iii



[46] T. Arts, F. W. Prinzen, T. Delhaas, J. Milles, A. Rossi, and P. Clarysse, “Mapping displacement and
deformation of the heart with local sine wave modeling,” IEEE Transactions on Medical Imaging,
vol. 29, pp. 1114–23, 2010.

[47] Z. Qian, D. N. Metaxas, and L. Axel, “Non-tracking-based 2D strain estimation in tagged MRI,” in
Proc. IEEE International Symposium on Biomedical Imaging (ISBI), pp. 711–4, 2008.

[48] T. Chen, X. Wang, and L. Axel, “Automated 3D motion tracking using Gabor filter bank, robust
point matching, and deformable models,” IEEE Transactions on Medical Imaging, vol. 9, pp. 1–11,
2010.

[49] H. Wang and A. Amini, “Cardiac Motion and Deformation Recovery from MRI: A Review,” IEEE
Transactions on Medical Imaging, vol. 31, no. 2, pp. 487–503, 2012.

[50] T. H. Marwick, C.-M. Yu, and J. P. Sun, Myocardial Imaging: Tissue Doppler and Speckle Tracking.
Wiley-Blackwell, 2007.

[51] Q. Duan, E. Angelini, S. Homma, and A. Laine, “Validation of optical-flow for quantification of
myocardial deformations on simulated RT3D ultra-sound,” in Proc. IEEE International Symposium
on Biomedical Imaging, pp. 944–7, 2007.

[52] A. Elen, H. Choi, D. Loeckx, H. Gao, P. Claus, P. Suetens, F. Maes, and J. D’hooge, “Three-
dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images:
a feasibility study,” IEEE Transactions on Medical Imaging, vol. 27, pp. 1580–91, 2008.

[53] T. Kawagishi, “Speckle tracking for assessment of cardiac motion and dyssynchrony,” Echocardiogra-
phy, vol. 25, pp. 1167–71, 2008.

[54] Y. Abe, T. Kawagishi, and H. Ohuchi, “Accurate detection of regional contraction using novel 3-
dimensional speckle tracking technique,” Journal of the American College of Cardiology, vol. 51,
pp. 903–1253, 2008.

[55] Y. Wang, B. Georgescu, H. Houle, and D. Comaniciu, “Volumetric myocardial mechanics from 3d+t
ultrasound data with multi-model tracking,” in Proc. Statistical Atlases and Computational Models
of the Heart (STACOM), MICCAI’10 Workshop, LNCS vol. 6364, pp. 184–93, 2010.

[56] J. Andrade, L. Cortez, O. Campos, A. Arruda, J. Pinheiro, L. Vulcanis, T. Shiratsuchi, R. Kalil-Filho,
and G. Cerri, “Left ventricular twist: comparison between two-and three-dimensional speckle-tracking
echocardiography in healthy volunteers,” European Journal of Echocardiography, vol. 12, p. 76, 2011.

[57] J. P. Thirion, “Image matching as a diffusion process: An analogy with Maxwell’s demons,” Medical
Image Analysis, vol. 2, pp. 243–60, 1998.

[58] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration
using free-form deformations: application to breast MR images,” IEEE Transactions on Medical
Imaging, vol. 18, pp. 712–21, 1999.

[59] X. Pennec, P. Cachier, and N. Ayache, “Understanding the “demon’s algorithm”?: 3D non-rigid
registration by gradient descent,” in Proc. International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), LNCS vol. 1679, pp. 597–605, 1999.

[60] P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache, “Iconic feature based nonrigid
registration: the pasha algorithm,” Computer Vision and Image Understanding, vol. 89, pp. 272–98,
2003.

[61] S. Modersitzki, Numerical Methods for Image Registration. Oxford University Press, 2004.

[62] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-
parametric image registration,” Neuroimage, vol. 45, pp. S61–72, 2009.

[63] S. Lee, G. Wolberg, K.-Y. Chwa, and S. S. Y., “Image metamorphosis with scattered feature con-
straints,” IEEE Transactions on Visualization and Computer Graphics, vol. 2, pp. 337–54, 1996.

[64] S. Lee, G. Wolberg, and S. S. Y., “Scattered data interpolation with multilevel b-splines,” IEEE
Transactions on Visualization and Computer Graphics, vol. 3, pp. 228–44, 1997.

[65] G. Christensen, R. Rabbit, and M. Miller, “Deformable templates using large deformation kinematics,”
IEEE Transactions on Image Processing, vol. 5, pp. 1437–47, 1996.
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[69] J. A. Glaunes, Transport par difféomorphismes de points, de mesures et de courants pour la compara-
ison de formes et l’anatomie numérique. Phd thesis, Université Paris 13, 2005.
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Figure 2.1, page 10:
Illustration of folding arti-
facts on large transforms,
with FFD as registration
method. (a) fixed image,
(b) moving image, (c)
diffeomorphic transform,
and (d) non-diffeomorphic
transform.

Figure 2.3, page 13: Prop-
agation of a synthetic grid us-
ing the TDFFD tracking. Re-
sults for three different weights
λ of the image similarity metrics
(comparison frame-to-frame and
to the reference image). Drift
errors (top row) and tag jumps
(bottom row) are pointed out by
the red ellipses. Image taken
from [104] with the permission
of the authors.
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Figure 3.9, page 31: Left: Effect of a lower frame rate (volunteer to compare) on the p-value maps. Top:
original frame rate (atlas ≈ 60 fps, volunteer to compare ≈ 60 fps). Bottom: lower volunteer frame rate (≈
30 fps). Right: Effect of a lower frame rate (atlas population) on the p-value maps. First column: original
frame rate (atlas ≈ 60 fps, CRT candidates ≈ 30 fps). Second column: lower atlas frame rate (atlas and
CRT candidates ≈ 30 fps). Vertical line indicates the end of the IVC period.
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Figure 3.10, page 33: Influence of the reference choice on the p-value maps. VOL #15 is the reference
used in the rest of the paper, VOL #6 and #1 are the subjects with the two other best GWNMI scores, and
VOL #13 and #21 the subjects with the two worst ones.

Figure 3.12, page 35: Comparison
of two CRT candidates with SF with
respect to the atlas. Spatial local-
ization of abnormality along the sep-
tum, at inward and outward events.
In contrast, the LV of healthy subjects
would mainly contract in the longitu-
dinal direction. For each block: ve-
locity field in the anatomy of patient
k, and corresponding p-value map, de-
fined in the reference anatomy. Ar-
rows have been scaled by a global fac-
tor for optimal visibility. Warmer col-
ors on the p-value maps indicate re-
gions of higher abnormality.
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Figure 4.2, page 45: Variety of the patterns observed on the motion abnormality maps.
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Figure 3.14, page 37: Motion abnormality maps and radial velocity profiles at the level of the septum
with highest abnormality, during systole, for the whole set of CRT candidates. Black arrows point out the
inward and outward motion during SF events, when present.
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Figure 3.15, page 38: Motion abnormality maps during systole, for the set of volunteers.
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Figure 4.3, page 45: Radial velocity and motion abnormality map for one patient and one healthy
volunteer without and with the atlas spatiotemporal synchronization.
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Figure 4.4, page 46: Average abnormality map for the set of volume responders and non-responders, at
baseline and follow-up.
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Figure 5.3, page 56: Map of
septal motion abnormalities dur-
ing systole, for one CRT candi-
date with SF. The color-scale en-
codes abnormality (p-value) in a
logarithmic scale, multiplied by
the sign of the radial velocity vρ
to highlight the inward and out-
ward events of SF.

Figure 5.4, page 56: Abnormality maps for four
different subjects: two with SF (top row, arrows indi-
cate the inward and outward events of SF), one with
left-right interaction (bottom left), a type of inter-
ventricular dyssynchrony [8] where the septum moves
passively inward, as indicated by the black arrow, and
one healthy volunteer (bottom right).
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Figure 5.7, page 63: 3D
swiss roll and 2D random dis-
tribution of points used as 2D
parametrization for its construc-
tion.

5 10 15
0

5

10

15

20

−10

0

10

−20

−10

0

10

0

20

2D parametrization3D swiss roll

5 10 15
0

5

10

15

20

5 10 15
0

5

10

15

20

5 10 15
0

5

10

15

20

5 10 15
0

5

10

15

20
K = 5 K = 8

K = 13 K = 14

4 6 8 10 12 14
k-NN number K

0

0.05

0.15

0.1

0.2

Is
om

ap
 e

rr
or

 ε I

Figure 5.8, page 64: Influence of the number of k-NN on the isomap output, for the 3D swiss roll data.
Top: isomap output for K = {5, 8, 13, 14}. Bottom: evolution of the isomap error εI (Eq. 5.25) with the
number of k-NN. Mean error over all the pairs (xi,xj) ∈ X 2. A jump is present on this curve for K = 14,
reflecting the apparition of a short-circuit in the k-NN graph.
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Figure 5.9, page 65: Influence of the graph number of k-NN and the spatial arrangement of the graph
nodes on the the node flow distribution. Synthetic dataset of 1000 points within a given spatial domain. (a)
Initial spatial domain with K = 20. (b) Same spatial domain with K = 5. Large local variations of the node
flow are locally observed, reflecting a too low connectivity within the graph. (c) Modified spatial domain
with K = 20. Node flow is higher where the spatial domain is narrow, reflecting that a large number of
shortest paths along the graph pass within this region.
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Figure 5.10, page 65: Influence of the number of k-NN on the node flow, for the 3D swiss roll data. Top:
isomap output for K = {5, 8, 13, 14}, where each node is colored according to its flow (Eq. 5.26). For all
points, the variability of the flow distribution is low when K ≤ 13, while the apparition of a short-circuit for
K = 14 makes one specific point having almost the highest flow possible (black arrow). Bottom: evolution
of the node flow distribution with the number of k-NN. Black arrow indicates the value of the node flow for
the point where the short-circuit appears.
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Figure 5.14, page 68: (a) Evolution
of the isomap error εI with the dimen-
sionality M and the number of k-NN,
for the training set of CRT candidates
with SF. White crosses indicate the
minimum value of εI for each value of
k-NN. (b) Evolution of the isomap er-
ror εI with the number of k-NN, for
M = 4.

Figure 5.15, page 69: 2D embedding of
the manifold of SF p-value maps (output
of isomap) according to its two first dimen-
sions. The black arrow indicates the origin
image used to constrain the manifold, rep-
resenting a normal motion pattern.
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Figure 5.18, page 71: Reconstruction of five patients from the training set of CRT candidates with SF
(using leave-one-out), for the optimal values of γf and γg .
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Figure 5.22, page 74: Progressive deviations from the map used as origin for normality I0, along the two
first principal directions of the manifold dataset I, obtained using either PCA or manifold learning (ML).
Arrows indicate the characteristic inward and outward motion events of SF. Total abnormality is defined as
SA(I, I0) (Sec. 5.2.6).



Figure 5.23, page 75: Nor-
malized evolution of the dis-
tances dM and dP for each sub-
ject of each tested population,
versus the size of the training
population (number of SF pa-
tients). Error bars represent the
standard deviation over 100 ran-
dom combinations of Ns < N
subjects.
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Figure 5.24, page 76: (a) Subject ordering according to dM and dP (Sec. 5.2.6), used as horizontal and
vertical axis, respectively. (b) Subject ordering according to d?M and d?P (Eq. 5.29), used as horizontal and
vertical axis, respectively. The black arrow indicates the image used to constrain the manifold, representing
a normal motion pattern, and used as origin. Asterisk-marked miniatures refer to two subjects with the
same amount of total abnormality, but belonging to different populations (cf. App. C).
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Figure 5.27, page 82: Example of two pa-
tients having the same amount of total abnor-
mality SA(I, I0), but different patterns (presence
and absence of SF, respectively). These subjects
are clearly discriminated by the use of the pro-
posed distances dM and dP (cf. asterisks-marked
miniatures on Fig. 5.24).
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