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ABSTRACT / RESUM

The focus of this thesis is on facial biometrics; specifically in the problems of face detec-
tion and face recognition. Despite intensive research over the last 20 years, the technology
is not foolproof, which is why we do not see use of face recognition systems in critical
sectors such as banking. In this thesis, we focus on three sub-problems in these two areas
of research. Firstly, we propose methods to improve the speed-accuracy trade-off of the
state-of-the-art face detector. Secondly, we consider a problem that is often ignored in the
literature: to decrease the training time of the detectors. We propose two techniques to
this end. Thirdly, we present a detailed large-scale study on self-updating face recognition
systems in an attempt to answer if continuously changing facial appearance can be learnt
automatically.

L’objectiu d’aquesta tesi és sobre biometria facial, específicament en els problemes de
detecció de rostres i reconeixement facial. Malgrat la intensa recerca durant els últims 20
anys, la tecnologia no és infalible, de manera que no veiem l’ús dels sistemes de reconeix-
ement de rostres en sectors crítics com la banca. En aquesta tesi, ens centrem en tres
sub-problemes en aquestes dues àrees de recerca. En primer lloc, es proposa mètodes per
millorar l’ equilibri entre la precisió i la velocitat del detector de cares d’última generació.
En segon lloc, considerem un problema que sovint s’ignora en la literatura: disminuir el
temps de formació dels detectors. Es proposen dues tècniques per a aquest fi. En tercer
lloc, es presenta un estudi detallat a gran escala sobre l’auto-actualització dels sistemes
de reconeixement facial en un intent de respondre si el canvi constant de l’aparença facial
es pot aprendre de forma automàtica.
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Racist Camera! No, I did not blink... I’m just
Asian!

Joz Wang

Privacy advocates may complain, but in the post 9/11 world, it is hardly possible to
commute to work without being captured by a CCTV1 camera in most major cities. They
have been quite effective as a crime-deterrent and to prosecute criminals. A Google search
on "CCTV footage" lists the success stories. Their effectiveness in stopping an ongoing
crime is, however, limited by one factor: the human operator monitoring the video. Al-
though humans are well adept in identifying intruders, their ability is limited by their at-
tentiveness. Here is where computer-based techniques can help an operator in answering
Who is the individual? or even the watered-down question Is there anyone?

Nature has made each one of us unique in one way or the other. Biometric algorithms
try to exploit the uniqueness in order to make a computer identify an individual under ob-
servation. An individual can be observed in different forms - through the now-ubiquitous
cameras, through his writings or through voice recorders. The challenge is to make the
computer reliably and repeatedly make correct decisions.

Depending on the characteristic observed, biometrics can be categorized into several
modalities: face, palm, iris, handwriting, speech, voice, gait, fingerprint or ear. Facial
biometrics, the focus of this thesis, is an intuitive identification modality, as humans are
well adept in recognizing people using their faces. A major advantage in using faces is that
a facial image can be captured from far away, and therefore, it does not need the coopera-
tion of the individuals under observation. This makes facial biometrics, in principle, ideal
for surveillance applications.

Apart from applications in surveillance, facial biometric techniques have been in wid-
ely adopted in consumer electronics over the past 2-3 years. Even the low-end digital cam-
eras come pre-installed with perfectly working face detectors. They click automatically
when people smile. Japanese advertising boards, having taken a cue from the movie Mi-
nority Report, have started serving gender/age-specific ads by making an educated guess
about who is currently looking at the advertisement board (www.telegraph.co.uk, March
10, 2010). Cigarette vending machines, by deciding the approximate age of the buyer,
autonomously decide if the cigarette should be sold or not (www.japanprobe.com, August
07, 2008). Not to be left out, the multi-billion dollar gaming industry is set to cash in
on facial biometrics based controllers. The first games are already in the market (www.
engadget.com, July 18, 2009).

If success in the market is an indicator of the maturity of the technology, has the
research in biometrics reached a steady-state? The answer is a clear no. Parts of the
technology are far from being marketable. For example, face recognition is not yet used
in critical applications, such as in banks, where valuable data might be stored. The reason
being the technology is not in foolproof yet. The face recognition technology in the pop-
ular Picasa albums is known to make occasional mistakes (www.brighthub.com, March

1Closed-circuit television

3

www.telegraph.co.uk
www.japanprobe.com
www.engadget.com
www.engadget.com
www.brighthub.com


Figure 1.1: If perception of a face can change drastically to a well trained human eye
with a simple rotation of an image, can we make a computer interpret the image
correctly?

25, 2010). Facial biometry based computer login programs from popular vendors such as
Lenovo®, Asus®and Toshiba®- each set to its highest security level - were hacked easily
with phony photos of the legitimate user and gain access to the laptops (BlackHat DC
Security Conference, 2009).

So, why is it that computers are still bad in identifying faces. . . ? Humans seem to
have incredibly powerful "facial transformation-invariant filters" that make us recognize
known people under variety of conditions. It does not matter if a good part of a friend’s
face is occluded by a sunglass and a bandana, his/her name pops up immediately. Sim-
ilarly, it does not matter if he/she is in a discotheque with variety of colors reflected on
the face, or in the middle of the night in dark lighting conditions. Add to that the fact that
we can recognize quite effectively negating the effects of in-plane/out-of-plane rotations,
effects of expression changes, ageing or the size of the face. Obviously, if the computers
are to convince a human with their recognition capabilities, they need effective filters that
basically mimic the performance of the human brain. Mimicking the brain turns out to be
a big ask, if only we knew how they work! Generally, in computer based approaches, the
process of recognizing a face is split into two sub-tasks:

• Firstly, we need to determine if there is a face in the image or not. This seemingly
easy problem has been a hot topic of research for well over 20 years [15] - with-
out being able to generate a commercially usable detector. The difficulty was in
achieving an accurate detector which would work in real time. Methods based on
skin color detection were fast, however, their accuracy was poor [4][2]. Appearance
based methods that used Neural networks [11] and Support vector machines [8]
were accurate, but slow. The first commercially usable detector was invented by Vi-
ola and Jones in 2001 [12]. Their detector worked in real-time while achieving good
accuracy rates of up to 92% correct detection rates in the challenging MIT+CMU
database [11]. After Viola and Jones’s work, many modifications were proposed,
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Figure 1.2: How dissimilar are these
two faces?

Figure 1.3: How similar are these two
faces?

mainly to improve the speed-accuracy trade-off of their detector. Till this day, nu-
merous patents on techniques based on Viola and Jones’s proposal are being filed
by leading camera companies, which is a strong indicator of the popularity of their
approach. Despite the popularity, there is avenue of further research in this area.
Challenges include improving accuracy and making the detector work in low power
consuming processors. A recent viral hit in YouTube (December 11, 2009) "HP com-
puters are racist", shows clearly where the face detectors could be improved: In its
ability to correctly detect people from different ethnicities.

• Secondly, if there are face(s) in the image, the computer should be able to answer
the question who is the person in the image? Currently, this problem seems far
from being solved. Although, research has been going on for more than 30 years
[16], the progress achieved is hardly applicable in real-life scenarios. Mostly, the
proposed algorithms are tested in image databases captured in controlled condi-
tions. This is achieved by controlling person’s facial expression, his/her distance
from the camera, the camera angle, and the scene’s lighting. Now, even under these
simplified conditions, recognition performance of computers is not perfect. In-
dependent studies performed using FRVT2 2006 database have shown that even
the best recognition algorithms make recognition errors on high-resolution image
acquired in controlled conditions [9]. The disconcerting fact is that these tests were
performed on a small database with as low as 366 users. It can only be assumed
that with more number of users, the recognition performance will worsen. Progress
has made performed in normalizing illumination [14][1], in normalizing pose [3],
removing occlusions [13][5] or to determine liveliness of a face [6][7]; however, the
challenge still lies in successfully integrating all the blocks together. There are two
principal schools of thought to improve the identification performance. Firstly, re-
searchers are working on improving the invariance filters such as reducing the ef-
fects on illumination, pose, size of the face, and the recognition algorithm itself.

2Face Recognition Vendor Test, www.frvt.org/FRVT2006/
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Secondly, multi-modal recognition techniques [10] are being implemented, where
inputs from two or more modalities, say face and hand, are input to the computer
and then a decision is made using both the inputs, thus reducing probability of
making error.

In this thesis, we propose improvements to the state-of-the-art that address some of
the open issues in face detection and in recognition. The proposals made this thesis have
been grouped into three chapters.

1. The first chapter focuses on optimizing three important performance indicators of
the face detection system: the testing speed, the true-positive rate and the false-
positive rate. In general, one can say that the speed is inversely proportional to
the accuracy, i.e., obtaining high true-positive rate (TPR) and low false-positive rate
(FPR). For a given technique, the trick is to operate the detector at the point where
one gets the optimal speed-accuracy trade-off. In this chapter, we propose two
modifications to the Viola and Jones’s object detection system, that makes it pos-
sible to choose a better trade-off between speed and accuracy. The first proposal
we make is detailed in Section 2.1, where we propose assigning optimal weights
to Haar-like features in order to obtain more powerful features. In Section 2.2, we
propose an optimal way of fusing Joint Haar-like features to achieve more power-
ful weak classifiers. Our results, were tested on the standard MIT+CMU face test
database, showed that, in comparison to Viola and Jones’s technique, better speed-
accuracy tradeoff could be obtained.

2. In the second chapter, we propose two techniques that, along with speed, TPR and
FPR, optimizes the training speed of the Viola and Jones’s type detectors. This is
a fairly ignored problem in the literature. Though Viola and Jones’s technique has
been very popular and widely used, training the detector is a very time-consuming
task. One may need to wait for days, if not weeks, to get the "face" model. Of
course, once it is generated, the benefits of the system are many. There are some
applications when such long training times are prohibitive. For example, in an
emergency, if the security guard needs to retrieve image frames with a particular
object of interest, the guard cannot wait two or three days to get the "object" model,
and then use the detector. He/she would do better is manual search is done through
the video frames. The proposed techniques (Section 3.1 and Section 3.2), reduces
the training time from the order of days and weeks to a matter of minutes, thus
provides an almost instant search capability.

3. In the third chapter, we study self-updating face recognition systems - a topic which
has attracted much interest in the research community. The need for making a
face recognition system "self-updating" arises because people’s facial appearance
changes with time due to factors such as ageing, hair-growth (Fig. 1.3), sun-tan,
health factors etc. When a face starts looking differently, the recognition system may
wrongly label the face as some other user, or it may deny access by labeling a gen-
uine user as an impostor - both of which are undesirable. One can manually enroll
the user again, but: can computers learn the appearance changes gradually? If so,
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under what conditions? Can we guarantee autonomous learning without human
supervision? These are the questions that are answered in this chapter. Conclusions
are reached by making a large scale study using two large and challenging databases,
and using three popular face recognition algorithms.

Each chapter is made self-contained, therefore, some of the basic concepts might be
repeated in this manuscript. Happy reading!
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If it is not fast, we lose interest, after all if we can
not become a millionaire in 365 days, we may
lose interest in becoming one at all . . .

NOT!

Christopher Jansen

Viola and Jones’s (VJ’s) object detection system was not the most accurate detection
procedure available when it was proposed. Detectors proposed by Rowley-Baluja-Kanade
[29], Roth-Yang-Ahuja [28] and Schneiderman-Kanade [32] were more accurate. Yet, VJ’s
technique quickly gained popularity because it provided the best speed-accuracy trade-
off. VJ’s technique works at real time, while, techniques proposed in [29][28][32] were
at least 15 times slower. In this chapter, we investigate two methods that improve the
speed-accuracy trade-off of the Viola and Jones’s object detection systems. Firstly, we
propose assigning optimal weights to Haar-like features to maximize their ability to dis-
criminate objects from clutter (non-objects). Secondly, we propose feature-level fusion of
co-occurring, or multiple, Haar-like features to construct potentially more discriminative
weak classifiers.

Adapted from:

S-K. Pavani, D. Delgado-Gomez and A.F. Frangi, Haar-like Features with Optimally Wei-
ghted Rectangles for Rapid Object Detection, Pattern Recognition, 43(1): 160-172,
2010

S-K. Pavani, D. Delgado-Gomez and A.F. Frangi, Gaussian Weak Classifiers based on Co-
occurring Haar-like Features for Face Detection. Submitted, 2010.

S-K. Pavani, D. Delgado-Gomez and A.F. Frangi, Gaussian Weak Classifiers Based on Haar-
Like Features with Four Rectangles for Real-time Face Detection. In Proc. Computer
Analysis of Images and Patterns. Lecture Notes in Computer Science vol. 5702,
pages 91-98, 2009.
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2.1 Haar-like Features with Optimally Weighted Rectangles for Rapid
Object Detection

Object detectors aim at finding sub-regions of an image that contain instances of an object
of interest. Many applications of object detection are challenging because high accuracy is
required while images are evaluated at real-time speeds. Such applications include vehicle
detection [34], where one needs to alert automobile drivers about possible accidents as
soon as possible, and, surveillance tasks where every video frame needs to be checked in
real-time for the presence of intruders [37].

Classifiers based on Haar-like features [25] have demonstrated to be considerably suc-
cessful for use in object detection tasks. This is mainly due to the fact that they provide
an attractive trade-off between accuracy and evaluation speed. Viola and Jones [36] pro-
posed a popular object detection system based on these features. After Viola and Jones’s
contribution, many successful systems based on Haar-like features have been proposed
[18, 22, 38, 40].

In this chapter, we propose modified Haar-like features whose rectangles are assigned
optimal weights. These weights are optimal in the sense that they maximize their ability to
discriminate object from clutter. Similar to the traditional Haar-like features, the proposed
features can be used to form weak classifiers, which in turn can be boosted [30, 31] and
arranged in a rejection cascade architecture [4] to form an object detection system. In
our experiments, three different techniques, Brute-force search (BFS), Genetic algorithms
(GA) [6, 8, 9], and Fisher’s linear discriminant analysis (FLDA) [7] were used to determine
optimal weights.

The proposed features were trained for two object detection problems: detection of
human frontal faces in digital photographs, and detection of cardiac structures from Mag-
netic Resonance Imaging (MRI). The obtained results show that the object detectors based
on the proposed features are more accurate and faster than the object detectors built with
traditional Haar-like features.

The remainder of the chapter is organized as follows. In Section 2.1.1, weak classifiers
based on Haar-like features are introduced. In Section 2.1.2, algorithms to find optimal
rectangle weights using BFS, GA and FLDA are presented. Later, in Section 2.1.3, the
boosting procedure to combine weak classifiers to form strong classifiers is described.
Section 2.1.4 describes the framework and the training procedure of the proposed object
detector. A human frontal face and a heart detector were built based on the proposed
object detection system. The results of their evaluation on real-life datasets are presented
in Section 2.1.6. The chapter is concluded in Section 2.1.7.

2.1.1 Haar-like features

Haar-like features are an over complete set of two-dimensional Haar functions, which
can be used to encode local appearance of objects [25]. They consist of two or more
rectangular regions enclosed in a template. The feature value f of a Haar-like feature
which has k rectangles is obtained as in (2.1).
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f =
k∑

i=1
w (i ) ·µ(i ) (2.1)

where µ(i ) is the mean intensity of the pixels in image x enclosed by the i th rectangle.
Henceforth we will refer to the quantity µ as the rectangle mean. In (2.1), w (i ) is the weight
assigned to the i th rectangle. Traditionally, the weights assigned to the rectangles of a
Haar-like feature are set to default integer numbers such that (2.2) is satisfied.

k∑
i=1

w (i ) = 0 (2.2)

For example, the rectangles of a Haar-like feature as in Fig. 2.1(a) are assigned default
weights 1 and −1. Similarly, the rectangles of a Haar-like feature as in Fig. 2.1(c) are
assigned default weights 1, −2 and 1.

One of the main reasons for the popularity of the Haar-like features is that they provide
a very attractive trade-off between speed of evaluation and accuracy. With a simple weak
classifier based on Haar-like features costing just 60 microprocessor instructions, Viola
and Jones [36] achieved 1% false negatives and 40% false positives for the face detection
problem. The high speed of evaluation is mainly due to the use of integral images [36],
which once computed, can be used to rapidly evaluate any Haar-like feature at any scale
in constant time.

Since the introduction of horizontally and vertically aligned Haar-like features by Pa-
pageogiou et al. [25], many different Haar-like features have appeared in the literature
[16, 18, 36]. Some of the features are shown in Fig. 2.1. They mainly differ in the number
of rectangles and the orientation of the rectangles with respect to the template. Jones and
Viola [12] introduced diagonal features to capture diagonal structures in object’s appear-
ance. Lienhart [18] enriched the features of Viola and Jones [36] with efficiently com-
putable rotated features. With the enriched set, they achieve a 10% lower false alarm
rate for a given true positive rate. Li et al. [16] proposed Haar-like features with disjoint
rectangles which were meant to characterize non-symmetrical features of an object’s ap-
pearance.

2.1.1.1 Haar-like Features with Optimally Weighted Rectangles

In this chapter, we argue that a Haar-like feature can be optimized for a given object
detection problem by assigning optimal weights to its rectangles. The feature value of
the proposed features is computed exactly as in (2.1), except that the default weights of its
rectangles, w (i ), are substituted with optimal values, ŵ (i ). The proposed features maintain
the simplicity of the traditional ones as in (2.1), while being more discriminative.

2.1.1.2 Weak classifiers

Weak classifiers label a sub-region of an image, x, as belonging to either the object or
clutter class by comparing f to a threshold θ as in (2.3). They are called weak because
they are expected to perform only slightly better than a random guesser.
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Figure 2.1: Haar-like features are shown with the default weights assigned to its
rectangles. (a) and (b) show Haar-like features proposed by Papageogiou et al. (c)
shows a Haar-like feature with three rectangles introduced by Viola and Jones. (d-
f) show Leinhardt’s rotated features. (g) and (h) show Li et al.’s disjoint Haar-like
features. (i) shows Jones and Viola’s diagonal feature designed to capture diagonal
structures in the object’s appearance.

h(x) =
{

1, object, f ·p ≥ θ ·p

-1, clutter, otherwise
(2.3)

Here, p ∈ {1,−1} is a polarity term, which can be used to invert the inequality relation-
ship between f and θ.

2.1.1.3 Single-rectangle feature space

When an image is evaluated with a Haar-like feature with k rectangles, a vector of length k
containing rectangle mean measurements can be generated. Using these measurements,
the image can be represented as a point in a k-dimensional feature space - which we call
Single-rectangle Feature Space (SRFS). Let the representation of an image belonging to
the object class be called an object point, and similarly, the representation of an image
belonging to the clutter class be called a clutter point. In the following, a discussion on the

14



C
H

A
P

T
E

R
2

—
IM

P
R

O
V

IN
G

T
H

E
S

P
E

E
D

-A
C

C
U

R
A

C
Y

T
R

A
D

E-O
F

F
O

F
O

B
JE

C
T

D
E

T
E

C
T

O
R

S

distribution of object and clutter points in a SRFS is presented. Based on this discussion,
a comparison of the performance of weak-classifiers constructed with traditional and the
proposed Haar-like features is made.

For the purpose of this study, a set of images belonging to the object and clutter class
were evaluated on Haar-like feature with two rectangles, thus generating a cloud of object
and clutter points in a two dimensional (2D) SRFS. The number of rectangles in the Haar-
like feature was restricted to two for clarity of visualization.

Two different object databases were chosen for this study. One contained human
frontal face images from the AR [20] database and the other contained short-axis magnetic
resonance images of the heart. The clutter points were generated from a clutter database
containing images that neither belonged to the face class nor the heart class. Some of the
typical images in the object and clutter databases are shown in Fig. 2.2.

Each image was intensity normalized by dividing every pixel value by 2n −1, where n
is the number of bits used to represent each pixel value. This makes pixel values from any
two images comparable as all of them vary from 0 to 1.

The distribution of object and clutter points in the 2D SRFS is shown in Fig. 2.3 and Fig.
2.4 respectively. As it can be observed, the object points form a more compact distribution
than the clutter points irrespective of the size and the relative distance of the rectangles
constituting the Haar-like feature. Compact distribution of object points results from
making similar rectangle mean measurements. This can be understood from the fact that
the images within the object class are strongly correlated to each other. The clutter points,
however, are spread-out as the clutter images are very different from each other.

Figure 2.2: The first row shows images from the heart and human frontal face image
databases. The second row contains typical images from the clutter database.

2.1.1.4 Performance of weak classifiers in SRFS

Consider a hypothetical 2D SRFS as shown in Fig. 2.5(a). It shows a compact distribution
of object points in the midst of clutter points. As discussed earlier, each point in the SRFS
is a representation of an image through its rectangle mean measurements (µ). The feature
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Figure 2.3: Distribution of object points for different Haar-like features. The first
and the second row show object point distributions in SRFS from human frontal face
images and the heart images respectively. The third row shows the Haar-like features
that were used for the evaluation.

value of a Haar-like feature when evaluated on an image is the scalar product of the vector
w that contains weights assigned to its rectangles, and µ. This has been mathematically
expressed in (2.1). Geometrically, the computation of feature value can be understood
as a product of magnitude of projection of µ onto w and the magnitude of w, which is a
constant.

Traditionally, the rectangles of a Haar-like feature with two rectangles are assigned
default weights of 1 and −1. This yields a projection line that is parallel to the vector
µ1 −µ2. To train a weak classifier as in (2.3), a scalar value θ is found such that object
and clutter points are best separated. As shown in the Fig. 2.5(b), θ divides the SRFS into
two regions; the object region, coded white, and the clutter region, coded black.

Fig. 2.5(c,d) show classification using the optimal projection line. It is intuitive that by
projecting object and clutter points to an optimal line, better classification performance
can be achieved. Note that the proposed features have the capability to capitalize on
the absolute difference in the brightness between the object class and the majority of
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Figure 2.4: Distribution of clutter points for different Haar-like features.

clutter class images. For example, when the object points lie on the top-right or bottom-
left corners of the 2D SRFS, better classification can be obtained by setting optimal line
parallel to the vector µ1 = µ2. Traditional features, however, can produce good classifiers
only when the majority of the object points would lie in left-top or the right-bottom of the
2D SRFS.

2.1.2 Training weak classifiers

Training a weak classifier involves determining the following three parameters that give
the least error on the training set of object and clutter class images.
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Figure 2.5: A geometrical view of a weak classifier performance. (a) weak classifiers
built with traditional Haar-like features. (c) weak classifier constructed with modified
Haar-like features whose rectangles are assigned optimal weights. (b) and (d) show
their respective partitioned SRFS.

1. the threshold value θ,

2. the polarity term p, and

3. the weight to be assigned to each rectangle of a Haar-like feature ŵ .

The two terms, θ and p, are optimized using a brute-force search as performed by Viola
and Jones [36]. Three different techniques were used to find optimal weights of the rect-
angles of the Haar-like features. The description of these techniques and the motivation
for their use is described in the following sections.
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Algorithm 1: Training of a single weak classifier using BFS

Input: Training images: x(i ), i ∈ {1, . . . ,n}
Input: Training labels: y (i ) ∈ {−1,1}, i ∈ {1, . . . ,n}
Input: Weights for each training image: z(i ) ∈ℜ, i ∈ {1, . . . ,n}
Input: Weak classifier with k-rectangle Haar-like feature: h
Input: Possible weight values: d
Set εmin to ∞.1

for t = 1 to dPd−k
2 do2

Set weights (ŵ) to be assigned to the rectangles of h.3

Find θ̂ and p̂ that minimize the training error ε.4

[θ̂, p̂] = argminε

where,

ε= 1

2

n∑
i=1

z(i )|h(x(i ))− y (i )|

if ε< εmin then5

w∗ = ŵ, θ∗ = θ̂, p∗ = p̂, εmin = ε6

Output: Trained weak classifier: h → w = w∗, h → θ = θ∗, h → p = p∗
Output: Error of the weak classifier: εmin

2.1.2.1 Brute-force search

One obvious way to guarantee an optimal solution to the problem of finding optimal
weights would be a Brute-Force Search (BFS) through the possible weights. The search
space could be restricted to a finite number of possible values by quantizing the weight
values and limiting them to a predefined range. If the weights assigned to rectangles
are restricted to d discrete values, then the number of distinct weight combinations is
dPd−k

2 , where k is the number of rectangles and assuming d > k. For each of these weight
combinations, optimal values of θ and p need to be determined, which makes brute-
force search extremely time consuming. The search space can be reduced by increasing
the quantization step and restricting the range. Such steps that reduce the resolution of
the search space, however, may lead to assigning sub-optimal weights to the rectangles.
Finding optimal weights using BFS is outlined in Algorithm 1.

2.1.2.2 Genetic Algorithms

Given a specific problem to solve, the input to the GA is a set of solutions to that problem,
called genomes, and a metric called a fitness function that returns a quantitative measure
of the quality of a genome. GA, through a series of iterations, called generations, tries to
improve the genomes through genetic operations such as crossover and mutation. The
main advantages of GA are that it does not require gradient information and therefore
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it is capable of solving nonlinear problems with multiple local optima. Further, GA has
been demonstrated to produce substantial improvement over random and local search
methods [13]. Since GA evolves its solutions over many iterations, it tends to be compu-
tationally expensive. Yet, in comparison with brute-force search, it is faster. In practice, it
was found that evolving 30 genomes over 100 generations yielded stable solutions.

In our problem of finding optimal weights to rectangles, the genome is an array, rep-
resenting the weights to be assigned to the rectangles. A valid genome for a Haar-like
feature with k rectangles would be an array of length k, whose elements can take real
values. For a given genome and a Haar-like feature, our fitness function builds a weak
classifier and returns the error ε made by the weak classifier on training examples. The
lower the error returned by the fitness function, the better the genome represents the
desired solution. The genetic optimization, as explained in Algorithm 2, is done over a
series of N generations. In each generation, the population of genomes are improved
through the application of crossover and mutation operators. The genome, along with
the threshold and polarity values, that produce the least training error are chosen as the
parameters to be assigned to the weak classifier h.

2.1.2.3 Fisher’s linear discriminant analysis

FLDA provides a closed-form solution to find a linear classifier that best separates two or
more classes. Although it provides an optimal solution only when the classes are Gaussian
with equal covariances [5], it is reasonably quick and provides good approximations to the
optimal solution in the general case. Our motivation for choosing FLDA is as follows. Since
object detection is basically a two class problem, FLDA might provide quick answer as it
comes with a closed-form solution. This procedure directly outputs the optimal weights
and, therefore, the optimal values of θ and p need to be computed only once. This makes
FLDA much faster when compared to GA or brute force methods.

The Algorithm 3 describes a solution to find optimal weights using FLDA. The algo-
rithm is presented with a database of object and clutter class training images with their
corresponding labels. FLDA outputs a linear projection vector whose slope corresponds to
the optimal weights assigned to the rectangles of the Haar-like feature. Once the optimal
weights are found, the optimal values for threshold (θ̂) and polarity terms (p̂) are found by
searching exhaustively [36] over all possible solutions.

2.1.3 Boosting weak classifiers

Boosting is a meta algorithm that refers to a method of producing a “strong" classifier by
additively combining a set of weak classifiers. The predictions from many weak classifiers
are combined through weighted majority voting to produce the prediction of the strong
classifier. For binary classification problems, the strong classifier has the form:

H(x) =

1,object,
k∑

i=1
α(i )h(i )(x) ≥Θ

0,clutter, otherwise

(2.4)
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Algorithm 2: Training of a single weak classifier using GA

Input: Training images: x(i ), i ∈ {1, . . . ,n}
Input: Training labels: y (i ) ∈ {−1,1}, i ∈ {1, . . . ,n}
Input: Weights for each training image: z(i ) ∈ℜ, i ∈ {1, . . . ,n}
Input: Weak classifier to be trained: h
Input: Number of generations: N
Input: Size of each generation: m
begin1

Select initial population of genomes g(l )
1 , l ∈ {1, . . . ,m}.2

Set εmin to ∞.3

for t = 1 to N do4

forall g(l )
t do5

Set current genome as the weights to be assigned to the rectangles of h6

h → w = g(l )
t

Find θ̂ and p̂ that minimize the training error ε.7

[θ̂, p̂] = argminε

where,

ε= 1

2

n∑
i=1

z(i )|h(x(i ))− y (i )|

if ε< εmin then8

w∗ = g(l )
t , θ∗ = θ̂, p∗ = p̂, εmin = ε9

Reproduce genomes with the lowest training error in the population to form10

new ones through crossover and mutation.
Replace the worst genomes in the population with the best new genomes.11

end12

Output: Trained weak classifier: h → w = w∗, h → θ = θ∗, h → p = p∗
Output: Error of the weak classifier: εmin

In (2.4), h(i ), i = 1, . . . ,k are the k weak classifiers selected by boosting and α(i ), i =
1, . . . ,k are their corresponding weights. The AdaBoost [30] [31], one of the popular boost-
ing procedures, has been used in our implementation. The pseudocode of AdaBoost ad-
apted to the object detection problem is shown in Algorithm 4.

The algorithm takes as input the object class training images x(i ), i = 1, . . . ,n, their
labels y (i ), i = 1, . . . ,n and a set of weak classifiers h( j ), j = 1, . . . ,m. The algorithm goes
through a series of N iterations, and in each iteration a weak classifier is selected. In the
first iteration, all the weak classifiers are trained according to Algorithm 2 or 3 and the
weak classifier that produces the lowest error is selected. In each subsequent iteration,

21



Algorithm 3: Training of a single weak classifier using FLDA

Input: Training images: x(i ), i ∈ {1, . . . ,n}
Input: Training labels: y (i ) ∈ {1,−1}, i ∈ {1, . . . ,n}
Input: Weights for each training image: z(i ) ∈ℜ, i ∈ {1, . . . ,n}
Input: Weak classifier to be trained: h
begin1

Evaluate the Haar-like feature in h over all object and clutter training images.2

Each evaluation gives a k-dimensional vector µ(i ).
Compute between-class scatter [7]: m1 −m2 where m1 and m2 are the3

k-dimensional means of measurements made from no object class and nc

clutter class training images respectively.

m1 =
∑

∀i ,y(i )=1

µ(i )

no
,m2 =

∑
∀i ,y(i )=−1

µ(i )

nc

Compute within-class scatter [7]: S = S1 +S24

S1 =
∑

∀i ,y(i )=1

(µ(i ) −m1)(µ(i ) −m1)t

S2 =
∑

∀i ,y(i )=−1

(µ(i ) −m2)(µ(i ) −m2)t

Compute optimal weights5

ŵ = S−1(m1 −m2)

Find θ̂ and p̂ that minimize the training error ε.6

[θ̂, p̂] = argminε

where,

ε= 1

2

n∑
i=1

z(i )|h(x(i ))− y (i )|

end7

Output: Trained weak classifier: h → w = ŵ, h → θ = θ̂, h → p = p̂
Output: Error of the weak classifier: ε

a weak classifier is selected such that the combined error of all the previously selected
weak classifiers is minimized. This is performed by maintaining weights z(i ), i = 1, . . . ,n
on the training images. The higher the magnitude of z(i ), the greater is the need for x(i )

to be classified correctly. Initially, all the training images belonging to a class are assigned
equal weights z(i ). In each iteration, the value of z(i ) is increased if x(i ) was misclassified
by the selected weak classifier and decreased if x(i ) was classified correctly. This compels
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the algorithm to select a weak classifier that classifies the training samples with higher
weights correctly in the subsequent iteration.

Once the weak classifiers and their corresponding weights determined through the
boosting procedure, the threshold value of the strong classifier (Θ) is set such that the
strong classifier has a maximum false rejection rate, β, on a validation set of object class
images. The threshold value Θ is found such that the sum of weighted decisions of the
selected weak classifiers is greater than Θ for at least (1−β)q images in the validation set.
Here, q is the total number of images in the validation set.

2.1.4 Training the object detector

This section describes how object detection systems can be built using boosted set of weak
classifiers.

2.1.4.1 Framework of the object detection system

The framework of the proposed object detector is based on Baker et al. ’s rejection cascade
architecture [4] [3]. A rejection cascade, as shown in Fig. 2.6, consists of serially connected
nodes which label a test image as object or clutter. Each node contains a boosted set of
weak classifiers. In Fig. 2.6, the Node 3 of the rejection cascade has been expanded to show
the k weak classifiers present in it.

The object detection proceeds as follows: a given test image is scanned at all positions
and scales by the rejection cascade. When an image sub-region x is input to a node, it is
classified by all the weak classifiers present in the node, and the weighted average of their
decisions is output as the final decision of that node. Thus, each node labels an image
sub-region as object or clutter. An image sub-region is labeled object only if it is labeled
object by all the nodes of the cascade. On the other hand, if a sub-region is labeled clutter
by a node, it is not further processed by any successive node. Thus, the rejection cascade
tries to reject clutter as early as possible. Since a majority of image sub-regions belong to
clutter [24] [39], an object detection system based on rejection cascade architecture will
be fast in scanning the entire test image.

The rejection cascade H (x) can be expressed as:

H (x) =

1, object,
M∏

i=1
H (i )(x) = 1

0, clutter, otherwise

where H (i )(x) is a boosted set of weak classifiers as in (2.4), and M is the number of nodes.

2.1.5 Building the rejection cascade

The rejection cascade is built according to Algorithm 5. The algorithm takes in a database
of object and clutter class images x(i ), i = 1, . . . ,n, their labels y (i ), i = 1, . . . ,n and a set of
weak classifiers h( j ), j = 1, . . . ,m. Given the training data, the algorithm iterates M times
to construct the rejection cascade, where M is the desired number of nodes. In each
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Algorithm 4: Boosting weak classifiers

Input: Training images: x(i ), i ∈ {1, . . . ,n}
Input: Training labels: y (i ) ∈ {−1,1}, i ∈ {1, . . . ,n}
Input: Validation object class images: v(i ), i ∈ {1, . . . , q}
Input: Maximum false rejection rate: β
Input: Set of weak classifiers: h = {h( j )}, j ∈ {1, . . . ,m}
Input: Number of weak classifiers per node: N
begin1

Set weights to each training image:2

z(i )
1 =


0.5

no
, x(i ) ∈ object

0.5

nc
, x(i ) ∈ clutter

where, no and nc are the number of object and clutter images, respectively.
for t = 1 to N do3

Apply Algorithm 1, 2, or 3 to train each weak classifier in h and find the4

weak classifier, ht , with minimum error, εt .
Compute the new weight for ht :5

αt = 1

2
ln

1−εt

εt

Update the weights for each training image:6

z(i )
t+1 =

z(i )
t e−αt ht (x(i ))

Z

where Z is a normalization factor such that z(i )
t+1 will be a distribution.

Evaluate the selected weak classifiers on the validation set and findΘ such that7

N∑
t=1

αt ht (v(i )) ≥Θ is true for (1−β)q validation set images.

end8

Output: Strong classifier, H(p), where p is a test image:

H(p) =

1, object,
N∑

t=1
αt ht (p) ≥Θ

0, clutter, otherwise
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Clutter

Objectx
Node 1 Node 2 Node 3 Node 4 Node M

h(1) (x)

h(2) (x)

h(3) (x)

h( k ) (x)

α(1 )

α(2 )

α(3 )

α( k )

k

i=1

h( i )(x)α ( i ) ≥ Θ

k

i=1

h( i )(x)α ( i ) < Θ

Figure 2.6: A cascaded classifier structure consists of multiple nodes arranged in a
degenerated decision tree fashion. The output of the node is the weighted majority
of decisions of the individual classifiers present at that node. If an image is classified
as clutter by a node, then that image is not processed in the successive nodes.

iteration, a node H (u)(x) is built according to Algorithm 4. The clutter training images
that were correctly classified by the current node are not considered to build the next
node. This ensures that the next node to be built concentrates on rejecting the clutter
images that were misclassified by the previously built nodes.

2.1.6 Experimental setup and results

The proposed features were trained for two object detection problems: detection of hu-
man frontal faces from digital photographs and detection of heart regions in short-axis
cardiac magnetic resonance images. Detecting human frontal faces and heart regions is
challenging as they exhibit high degree of intra-class appearance changes. Further, these
objects are ideal for our study because applications involving detection of frontal faces
and hearts benefit from real-time localization. Face detection is the first step in many
computer vision systems and its output in real-time is indispensable for security systems
or for Human-Computer Interaction systems. Heart detection can be used as a precursor
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Algorithm 5: Building a rejection cascade of strong classifiers

Input: Desired number of nodes in the cascade: M
Input: Training images: x(i ), i ∈ {1, . . . ,n}
Input: Training labels: y (i ) ∈ {−1,1}, i ∈ {1, . . . ,n}
Input: Set of weak classifiers: h = {h( j )}, j ∈ {1, . . . ,m}
begin1

for u = 1 to M do2

Build node H (u) according to Algorithm 4.3

Remove x(i ) if H (u)(x(i )) = 0 and y (i ) =−1.4

Test the cascade with u nodes on a test set of clutter images, and add the5

sub-windows that were misclassified to the training set.

end6

Output: Rejection cascade, H (t), of strong classifiers where t is a test image:

H (t) =

1,object,
M∏

i=1
H (i )(t) = 1

0,clutter, otherwise

to complex heart segmentation techniques which in turn may help detecting any abnor-
mality in the cardiac function. Since an MRI scan of heart produces a sequence of 3D
images, and each image typically contains dozens of slices, heart regions in lots of images
need to be detected and segmented before the pathology could be understood. Therefore,
quick detection and segmentation algorithms would help in reducing the diagnosis time.

In the following experiments, we compare the speed and the accuracy of the object
detectors constructed with the proposed features (optimal weights) over the traditional
ones (default weights). Before the results are presented, the databases on which the object
detectors were trained and tested are described.

2.1.6.1 The training datasets

To train the frontal face and heart detectors, two object databases (face and heart), and a
clutter database were used. The frontal face database was composed of 5000 images. The
images in this database were collected from publicly available facial image databases such
as MIT-CBCL face database No. 1 [2], XM2VTS [21], Equinox [33], AR [20], and BioID [11].
The facial regions were cropped manually and resized to images of size 20×20 pixels.

The heart database consisted of 493 short-axis MR heart images. Similar to the face
dataset, the heart regions were manually cropped and resized to images of size 20× 20
pixels. To train the heart detector, 300 of the 493 images were used.

For the clutter image database, a total of 27,000 images were downloaded from the
internet. These images did not contain either frontal face nor heart regions. For our
experiments we generated approximately 4×109 sub-regions from these images.
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2.1.6.2 The test datasets

The face detectors were tested on the MIT+CMU frontal face database (test sets A, B, and
C) [29]. This database consists of 130 images with 511 frontal faces. Two of the faces in this
test set had to be flipped as they were initially upside-down. The remaining images were
left untouched. Ground truth face location is available for every face in the database.

The heart detectors were tested on a set of 193 images. In all these images the heart
regions were manually landmarked to obtain ground truth size and location.

In our experiments, we assumed that a face or a heart has been detected correctly if a
positively detected sub-region satisfies the following two conditions:

1. The size of the detected region is within±10% of the size of the annotated face/heart.

2. The distance between the center of the detected region and the annotated face/heart
is not more than 10% of the size of the annotated face/heart.

These two conditions ensure that a positively detected sub-region of a test image con-
tains a face/heart.

2.1.6.3 Limiting the number of Haar-like features

The number of ways in which rectangles can be arranged in a template to form Haar-like
features is (almost) infinite [18]. Therefore, for practical reasons, all implementations of
object detection systems that use Haar-like features need to limit the number of features
that are used for training . In order to limit the number of Haar-like features, the following
measures were taken:

1. Only Haar-like features with two, three and four rectangles were considered.

2. The template size of the Haar-like features was set 20×20 pixels.

3. Lienhart and Maydt’s [18] rotated rectangle features (see Fig. 2.1 (d,e,f)) were not
considered.

4. The inter-rectangle distances d x and d y for Li et al. ’s [16] disjoint features as shown
in Fig. 2.1 (g) were discretized so that they were integer multiples of 100% of the
rectangle size in corresponding directions.

5. All the rectangles contributing to a single Haar-like feature had the same size.

6. Rectangles with size less than 3×3 pixels were not allowed to form Haar-like features.

A total of 207,807 Haar-like features remained after removing the features that did not
satisfy the above-mentioned conditions. Despite this reduction, we train more number of
features than Viola and Jones [36], who used a total of 160,000 features.
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2.1.6.4 Training object detectors

For every object detection problem (face and heart), four detectors were constructed.
These four detectors basically differed on the type of features used to construct them. The
features used were:

• Default weights: Traditional Haar-like features whose rectangles are assigned de-
fault weights.

• Optimal weights (BFS): Proposed features with optimal rectangle weights computed
using BFS.

• Optimal weights (FLDA): Proposed features with optimal rectangle weights com-
puted using FLDA.

• Optimal weights (GA): Proposed features with optimal weights computed using GA.

Each face detector had 36 nodes with a total of 1,832 weak-classifiers distributed among
them. The heart detectors had 16 nodes with 172 weak-classifiers. Corresponding nodes
in every object detector had the same number of weak classifiers. The first ten nodes of
the face detector and the heart detector were assigned only one weak classifier in order to
reject as many clutter regions as possible with minimum computational effort. Every node
of the rejection cascade was trained so that their false rejection rate on a database of object
class validation set is 0.01 or lower. The Haar-like features that were picked in the first
iteration of the AdaBoost procedure for different object detectors are illustrated in Fig. 2.7.
The weight values that produced the minimum training error, which are superimposed on
the rectangles, seem to be different from the default weights.

To compute optimal weights using BFS, the weight values were restricted to the range
[−1, 1] and quantized with a step size of 0.1. The GA parameters were set to the following
values: population size = 30, number of generations = 100, crossover probability = 0.8,
and mutation probability = 0.1. In our implementation, single point crossover was used,
and mutation was effected by changing a randomly selected element of the genome with
a random value selected in the interval [-10 10].

The time required to training the face and heart detectors on a 2.33 GHz Intel Xeon
Dual Core “Woodcrest" processor with 8 GB RAM is shown in Table 2.1. Viola and Jones
[36] report that the time required to train a 38-node detector was in the order of weeks in
a 466 MHz AlphaStation XP900.

2.1.6.5 Comparison of accuracies of object detectors

The face detectors were tested on the MIT+CMU frontal face dataset, and Fig. 2.8 shows
the obtained Receiver Operating Characteristics (ROC) curves. The ROC curves were gen-
erated as described in [36] by adjusting the threshold (Θ) of the last two nodes of the object
detector from −∞ to +∞. Note that in Fig. 2.8, the true positive rate is plotted against the
number of false detections. The false positive rate can be obtained by dividing the number
of false detections by 12,378,518, which is the total number of searched sub-windows in
the MIT+CMU database.
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Table 2.1: Comparison of training time on a 2.33 GHz Intel Xeon Dual Core processor with
8 GB RAM

Feature Type Face Heart

Default weights ∼ 2 days ∼ 5 hours
Optimal weights (BFS) ∼ 22 days ∼ 2 days
Optimal weights (GA) ∼ 20 days ∼ 2 days
Optimal weights (FLDA) ∼ 10 days ∼ 8 hours

Figure 2.7: Illustration of the Haar-like features, superimposed on a typical training im-
ages, that were selected in the first iteration of the AdaBoost procedure for different object
detectors. The columns, from left to right, show features selected using different rectangle
weighting strategies: Default weights, Optimal weights (BFS), Optimal weights (GA) and
Optimal weights (FLDA), respectively.

Face detection results on MIT+CMU database from five other popular face detection
systems are superimposed in Fig. 2.8. Rowley-Baluja-Kanade [29] used an ensemble of
neural-networks to learn face and clutter patterns. Their results are based on evaluating
their detector on 130 images from MIT+CMU database. Roth-Yang-Ahuja [28] evaluated
their SNoW based detector on all the images in MIT+CMU dataset except those containing
line-drawn faces. Schneiderman-Kanade [32] proposed a probabilistic method to detect
faces based on local appearance and principal component analysis. They report their
results based on evaluating their detector on 125 images from MIT+CMU database.

Viola and Jones [36] report their results on evaluating their detector on 130 images
from MIT+CMU database. Their detector had a cascade structure with 38 nodes, which in
turn was built using Haar-like features with default weights. They also reported a modest
improvement in detection results by using a simple majority voting scheme when each
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test image was evaluated using three differently built detectors. Note that the results
reported under default weights refer to results from our own implementation of the Viola
and Jones’s object detection procedure. We believe that the ROC curves obtained for
default weights and those reported in [36] differ because of different image databases and
different feature pool used in the training process. The image databases used in [36] are
not publicly available or accessible in any way. Also, parameters such as how small or how
big the rectangles forming the Haar-like features should be are not specified, which makes
it difficult to recreate the feature pool exactly.

Fig. 2.8 shows the ROC curves obtained for the heart detector. The false positive
rates for the heart detector can be obtained by dividing the number of false detections by
9,842,870, which is the number of searched sub-windows. As observed in the results from
the face detector and the heart detectors constructed with optimal weights (BFS, GA and
FLDA) were more accurate than that constructed with default weights. The only difference
among the detectors was the strategy used to allocate the weights to the rectangles of
Haar-like feature. All the other training parameters remained the same. Therefore, it can
be concluded that the increase in accuracy was obtained by using the optimal weights
alone.

For face and heart detection problems, it can be observed that the FLDA performs
poorer than GA. We believe that there are two factors that contribute to this sub-optimal
performance:

1. The non Gaussian nature of the object and clutter cluster of points in the SRFS (See
Section 2.1.2.3).

2. When FLDA is used, optimization of the three parameters ŵ , θ and p occur sequen-
tially. That is, ŵ is optimized first, then optimal values of θ and p are found for this
particular combination of weights. This is sub-optimal in comparison to GA, where
all three parameters are optimized simultaneously.

The accuracy of object detectors built with BFS are worse than those built with GA.
However, it is expected that the performance of BFS would tend towards that of GA if the
search range is increased and the quantization step is decreased. The values for the range
([−1, 1]) and quantization step (0.1) were chosen such that the time required for training
object detectors using BFS and GA are similar.

The output of the face detector over various test images in MIT+CMU database are
shown in Fig. 2.9. The face detector tolerates approximately 15◦ in-plane and out-of-plane
rotations of face, and it is also tolerant to the race of the person. Fig. 2.10 shows the heart
detection output on various test images. False positives occur when the underlying image
is similar to that of the object of interest. For example, for the image on the top-left in Fig.
2.9, some of the collar regions have been labeled positive as they resemble a face. False
negatives might have occurred due to extreme lighting conditions, poor image quality or
due to insufficient resolution during search.
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Figure 2.8: Comparison of ROC curves for various face (left) and heart (right) detec-
tors

2.1.6.6 Comparison of speed of object detectors

As discussed in Sec. 2.1.4.1, the speed of an object detector is proportional to its efficiency
in rejecting clutter images. The efficiency in rejecting clutter can be expressed as average
number of nodes (n̄) and the average number of weak classifiers (c̄) required to reject a
clutter image. The quantities n̄ and c̄ are computed as shown in (2.5) and (2.6) respec-
tively.

n̄ =
n∑

i=1
p(i ) nodes (2.5)

c̄ =
n∑

i=1
c(i ) ·p(i ) weak classifiers (2.6)

Here, p(i ) is the probability that a clutter image is evaluated by the i th node of rejec-
tion cascade. In (2.6), c(i ) represents the number of weak classifiers in the i th node. An
estimate of p(i ) can be obtained as in (2.7) by testing the rejection cascade with N number
of clutter images, and recording the number of clutter images evaluated (e(i )) by the i th

node.

p(i ) = e(i )

N
(2.7)

Note that p(1) = 1 because all the clutter images will be evaluated by the first node.
Fig. 2.11 shows the estimated value of p(i ) at each node of the rejection cascade for the
face and heart detectors. They were obtained by testing the rejection cascades with 10000
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Figure 2.9: Face detector output on various test images.
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Figure 2.10: Heart detector output on various test images.

randomly selected clutter images. It can be noticed that the probability that a clutter
image is evaluated in a node is consistently lower for the object detectors built with the
proposed features than the traditional ones. This means that the object detectors built
with the proposed features will better in rejecting clutter images and therefore, they will
be faster in scanning through a test image. Table 2.2 tabulates n̄ and c̄ values for different
rejection cascades. It can be observed that the rejection cascades built with the proposed
features require less number of nodes and weak classifiers to reject an average clutter
image than those built with traditional features.

The more number of weak classifiers (c̄) required by the face detector to reject a clutter
image on the average suggests that weak-classifiers selected for face detectors are less
powerful than those selected for the heart detector. This, in turn, suggests that faces are
more difficult class to model using Haar-like features than hearts.

The average speed, in frames per second (fps), of object detectors (when tested on
images that have one instance of object) is tabulated in Table 2.2. The face detectors were
tested on images (of resolution 320×240 images) proceeding from a camera installed in a
office scenario. On each frame, 8858 regions were searched for the presence of a face. The
heart detectors were tested on 640×480 images, and on each image, 42145 regions were
searched. The reason why approximate times are reported in Table 2.2 is that the speed
of the object detectors is not constant and it is dependent on the number of sub-regions
that resemble an object. Sub-regions that resemble an object have high chances of being
processed by most of the nodes of the detector and, therefore, they require more time to
be processed. The speed of the object detectors increased approximately 1.5 times when
the test images were uniformly white and contained no instances of object.

From (2.1), it can be noticed that the proposed features require additional floating
point multiplications which make them slower to evaluate. However, since they reject
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Table 2.2: Comparison of n̄, c̄ and speed for different object detectors

Weak classifier type n̄ c̄ fps
Face Heart Face Heart Face Heart

Default weights 2.14 1.22 5.06 1.74 ∼ 12 ∼ 15
Optimal weights (BFS) 1.55 1.09 3.01 1.37 ∼ 15 ∼ 20
Optimal weights (FLDA) 1.47 1.07 2.74 1.37 ∼ 17 ∼ 20
Optimal weights (GA) 1.38 1.05 2.35 1.23 ∼ 19 ∼ 20

more clutter than the traditional features, object detectors built with the proposed fea-
tures are faster.

On a 700 Mhz Pentium III processor, Viola and Jones [36] report that their implementa-
tion of the face detector (using Haar-like features with default weights) processes 384×288
image at the rate of 15 fps. Rowley-Baluja-Kanade [29] and Roth-Yang-Ahuja [28] do not
specify the speed of their detector, however, Viola and Jones [36] independently tested
Rowley-Baluja-Kanade detector and concluded that it is about 15 times slower than theirs.
Schneiderman and Kanade [32] report that their detector can evaluate a 240×256 image
in about 90 seconds on average using a Pentium II 450 MHz processor.
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Figure 2.11: False positive rate at a given node of the face (left) and the heart (right)
detectors

2.1.7 Conclusions

In this chapter, we propose assigning optimal weights to the rectangles of the Haar-like
features so that the weak classifiers constructed based on them give best possible classi-
fication performance. The optimal weights were computed in a supervised manner using
three different techniques. 1) Brute-force search, 2) Genetic Algorithms and 3) Fisher’s
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linear discriminant analysis. This chapter presents detailed experiments on two difficult
object detection problems (frontal faces and human hearts), and our results indicate that
by using the proposed features, better object detectors, both in terms of accuracy and
speed of detection, can be constructed.
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2.2 Gaussian weak classifiers based on co-occurring Haar-like features
for face detection

Haar-like features (HFs) have successfully been used in modeling complex objects such as
human faces and pedestrian images [15] [25]. HFs are used to construct weak classifiers
that provide an attractive trade-off between speed and accuracy. In the domain of face
detection, Viola & Jones [36] achieved 1% false negatives and 40% false positives using a
weak classifier which can be evaluated in approximately 60 microprocessor instructions.
Their weak classifiers (VWCs), decide if an image belongs to face or clutter (non-face) class
by comparing the feature value of a HF to a threshold. Using boosted ensembles [30] of
weak classifiers arranged in a cascade architecture [4], Viola & Jones built the first reliable
real-time face detector.

In a recent work, Mita et al. [23] proposed a new paradigm in constructing weak clas-
sifiers, wherein they build a weak classifier (MWC) based on observing outputs of two or
more HFs (called co-occurring HFs). The decision of a MWC is obtained as follows. For
each HF associated with a MWC, a VWC is trained. The weighted average decision of all
the VWCs is the decision of a MWC. In other words, MWCs are obtained by fusing infor-
mation obtained from a co-occurring HF at the decision level. Mita et al. experimentally
demonstrated that boosted ensembles of MWCs give better speed-accuracy trade-off than
boosted ensembles of VWCs.

In this chapter, we propose an alternative to Mita et al. ’s method of forming weak
classifiers based on co-occurring HFs. The proposed weak classifiers, called Gaussian
weak classifiers (GWCs), fuse information obtained from co-occurring HFs at the feature
level, and are potentially more discriminative than MWCs, which fuse information at the
decision level. Preliminary results on GWCs [26], showed that face detectors based on
GWCs simultaneously achieve both higher accuracy and higher speed than those con-
structed with MWCs. In this work, we formulate GWCs on a general framework, based
on co-occurring HFs built by automatically selecting HFs with different configurations.
Unlike Mita et al. , we train and test entire face detectors built as a cascade with boosted
ensembles of weak classifiers. Our experiments on face detectors built with VWCs, MWCs
and GWCs are designed to 1) quantify the speed and the accuracy of the detectors and 2)
to determine the optimal number of HFs in a co-occurring HF to obtain the best speed-
accuracy trade-off.

2.2.1 Weak classifiers based on HFs

Haar-like features [25], shown in Fig. 2.1, consist of two or more rectangular regions
enclosed in a template. Such features, when evaluated on an image, produce a feature
value as in (2.8).

f =F (x) =
q∑

i=1
w (i ) ·µ(i ) (2.8)

where i iterates through all the q rectangles of the HF. The quantity µ(i ) represents the
mean intensity of the pixels in image x enclosed within the i th rectangle. Every rectangle
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in the HF is assigned a weight that is represented by w (i ). The weights are set such that∑q
i=1 w (i ) = 0 is satisfied.

VWCs compare the feature value f to a threshold θ according to (2.9).

hv j (x) =
{

1, face, f ·p ≤ θ ·p

−1, clutter, otherwise
(2.9)

Here, p ∈ {1,−1} is a polarity term, which can be used to invert the inequality relationship
between f and θ.

MWCs are constructed using k HFs as shown in (2.10). For each HF, a VWC is con-
structed, and the weighted decision of the VWCs is the decision of the MWC. The weight
assigned to each VWC is given by 2k−i , where i ∈ {1 . . .k}.

hm(x) =

1, face,
k∑

i=1
2k−i h(i )

v j (x) ≥ θ
−1, clutter, otherwise

(2.10)

The k VWCs are selected iteratively using Sequential Forward Selection (SFS) algo-
rithm [10].

2.2.1.1 Gaussian weak classifiers

GWCs, like MWCs, make their decision based on feature values from k HFs f = [ f1, . . . , fk ].
Firstly, as shown in (2.11), f is computed from a test image, and its Mahalanobis distance
(d) to the mean of measurements obtained from face class training images ( f̄ ) is com-
puted. Then, the distance (d) is compared to a threshold (dt ) to decide on whether the
test image belongs to face or clutter as in (2.12). The quantity Σ in (2.11) is the covari-
ance matrix obtained from f s computed on a database of face class training images. The
computation of these quantities are shown in Algorithm 6. Conceptually, the distance d
measures how different a test image is from a mean instance of the images from the face
class.

d =
√(

f − f̄
)T
Σ−1

(
f − f̄

)
(2.11)

h(x) =
{

1, face, d ·p ≤ dt ·p

−1, clutter, otherwise
(2.12)

The HFs F1, . . . , Fk used in Algorithm 6, are selected using sequential forward selec-
tion (SFS) algorithm, which will be addressed later in Algorithm 7.

Comparing (2.10) to (2.11) and (2.12), it can be noted that GWCs are computationally
more expensive owing to additional subtraction and matrix multiplication operations.
The question of whether its accuracy is adequate to provide a better accuracy-speed trade-
off still remains, and it is answered in Sec 2.2.4. It is to be noted that, to improve testing
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Algorithm 6: Steps involved in the training of the weak classifier

Input: Training images (m face class and n clutter class): x(i ), i ∈ {1, . . . ,m, . . . ,m +n}
Input: Training labels: y (i ) ∈ {1,−1}, i ∈ {1, . . . ,m, . . . ,m +n}

Input: Weights assigned to images: z(i ), i ∈ {1, . . . ,m, . . . ,m+n}, such that
m+n∑
i=1

z(i ) = 1

Input: Haar-like features: F1, . . . , Fk

begin
Compute normalized weights for object class images: β(i ), i ∈ {1, . . . ,m} such

that β(i ) = z(i )

m∑
i=1

z(i )

Evaluate the HFs on all images to get f (i ) = [ f (i )
1 , . . . , f (i )

k ], i ∈ {1, . . . ,m, . . . ,m+n}.
Compute the weighted mean of feature values from face class:

f̄ = [ f̄1, . . . , f̄k ] =
m∑

i=1
β(i ) f (i )

Compute the weighted covariance matrix of feature values from face class:

Σ(a,b) =
m∑

i=1
β(i )

(
f (i )

a − f̄a

)(
f (i )

b − f̄b

)
where a,b ∈ {1,2, . . . ,k}

Compute distance d (i ), i ∈ {1, . . . ,m, . . . ,m +n} =
√(

f (i ) − f̄
)T
Σ−1

(
f (i ) − f̄

)
Find dt and p that minimize the training error: [dt , p] = argmin

[dt∈R,p∈{−1,1}]
ε

where, ε=
m∑

i=1
z(i )|h(x(i ))− y (i )|

end
Output: f̄ , Σ, dt , p, ε

speed, the square root symbol included in (2.11) can be omitted, and the distance d ob-
tained can be compared to d 2

t in (2.12).

2.2.2 Motivation for using GWCs

In Fig. 2.12, the joint distribution of feature values from three co-occurring HFs are shown.
For simplicity of visualization, each co-occurring HF illustrated in Fig. 2.12, has two HFs
in them. To obtain the joint distribution of feature values from the HFs, the features were
evaluated on a database of object and clutter class images. The co-occurring HFs used
for this study have been superimposed on a typical training image. It can be observed
that the distributions from the face class images are more compact than those from the
clutter class. This is mainly because images within the face class are more correlated
with each other than those within the clutter class, which can be any random pattern.
Consider a hypothetical feature space as in Fig. 2.13a where the typical distribution of
measurements from face and clutter class images are illustrated. The decision spaces of
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Figure 2.12: Joint distribution of feature values from co-occurring HFs when evalu-
ated on face (top row) and clutter images (bottom row). For ease of visualization, 2D
feature spaces were generated. The two HFs used to form a co-occurring HF have
been super-imposed on typical images used for this study.

GWC and MWC are shown in Figs. 2.13b and 2.13d, respectively. It can be observed that,
GWCs are potentially better adapted to the probability distribution function of the object
class than MWCs.

2.2.3 Building the face detector

The cascade classifier architecture [4] is commonly used to build face detectors as it is
conducive to fast scanning of a test image. As shown in Fig. 2.14, the cascade classifier
consists of series of nodes that are arranged as a degenerate decision tree. Each node
classifies an incoming image sub-region either as object or clutter. If an image sub-region
is classified as clutter by a node, then it is not processed in the subsequent nodes. Thus,
the setup intends to minimize the computational effort required to classify clutter images.
Since clutter images form the majority of sub-regions that are searched for in a test image
[24] [39], the cascade classifier architecture is suitable for scanning a test image quickly.
Each node consists of multiple weak classifiers that are selected by using AdaBoost [30]
procedure. The output of each node is a weighted sum of decisions of all of its constituent
weak classifiers. The HFs used in each weak classifier are selected according to Algorithm
7.

2.2.4 Results

In the following, the speed-accuracy trade-off of face detectors built with VWCs, MWCs,
and GWCs is compared.

To train the face detectors, two databases, face and clutter, were collected. The frontal
face database was composed of 5,000 images. The facial regions were cropped manually

39



F F F

CC C C

F
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Figure 2.13: A geometrical view of the performance of GWCs and MWCs. (a) shows a
hypothetical two dimensional joint feature space formed by the feature values, where
F and C stand for Face and Clutter class respectively. The corresponding decision
space formed by the GWC is shown in (b). MWC based on feature values from two
HFs is illustrated in (c) and (d). The feature values f1 and f2 are used to construct
independent VWC-type weak classifiers whose results are fused to generate the de-
cision space shown in (d). The different shades of gray in (d) denote the weighted
decision space. The whiter the region, the higher the probability that it belongs to
face class. A threshold θ is used in (2.10) to obtain a binary classification space.

and resized to images of size 20×20 pixels. For the clutter image database, a total of 27,000
images were downloaded from the internet. These images did not contain faces.

A total of eleven face detectors were built for the following experiments. They differed
only in the weak classifier used to build them. The weak classifiers used were: 1) VWCs, 2)
MWCs, and 3) GWCs.

To choose the number of HFs in a weak classifier, we use two strategies. Firstly, the
number of HFs were set to constants. In our experiments, combinations of 2, 3, 6 and
9 HFs were fused. The corresponding GWC-type weak classifiers are denominated GWC
2, GWC 3, GWC 6, and GWC 9, respectively. Similarly, the MWC-type weak classifiers are
denominated MWC 2, MWC 3, MWC 6, and MWC 9, respectively.

In the second scheme, the number of HFs were determined automatically as per-
formed by Mita et al. . In this scheme, features were added to the selected feature pool
as in Algorithm 7 until the true positive rate of the fused features starts to decrease on
a validation set of images. The corresponding GWC and MWC-type weak classifiers are
denominated GWC A and MWC A, respectively. The average number of HFs fused to form
a weak classifier for GWC A and MWC A based detectors were 3.2 and 2.7, respectively.
The first five nodes of the detector had on an average 6.2 and 3.4 HFs per weak classifier.
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Figure 2.14: Architecture of the object detector. A cascaded classifier structure con-
sists of multiple nodes arranged in series. The output of the node is the weighted
majority of decisions of the individual classifiers present at that node. If an image
sub-region is classified as clutter by a node, then it is not processed in the successive
nodes.

The first five nodes are critical for computational speed of the detector during the testing
phase, as a vast majority of clutter images are filtered in them. The first 9 HFs selected by
the SFS algorithm are shown in Fig. 2.15.

The face detectors were constructed based on a feature pool containing 207,807 HFs.
From this feature pool, 1,405 weak-classifiers were selected and arranged into 12 nodes.
Readers are referred to VJ’s paper [36] for details on how to select weak classifiers using
AdaBoost and how they are arranged as nodes of the cascade classifier. The first five nodes
of the face detectors were assigned one weak classifier each, and the rest were assigned
(nn−5)∗50 weak classifiers. Here, nn stands for node number. Every node of the rejection
cascade was trained so that their false rejection rate on a database of face class validation
set is at most 0.01.

The accuracy and speed of the face detectors were compared on the MIT+CMU face
database [29]. This database contains 130 images with 511 faces acquired in real-life
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Algorithm 7: Selection of co-occurring HFs with Sequential Forward Selection pro-
cedure

Input: Feature pool that has all possible HFs:
F= [F1, . . . ,Fq ]

Input: Initialize the selected feature pool to null set:
F̄= {}

Input: Stopping condition:
Maximum number of features to be fused has been reached
or
Until the true positive rate on validation set does not
decrease.

begin
while Stopping condition is not satisfied do

Select a feature from F that along with the features in F̄, produces the least
possible error when a weak classifier is trained according to Algorithm 6:
Ft = argmin

F

ε

Add Ft to F̄.
end

end
Output: F̄

Figure 2.15: Visualization of the first nine features selected by SFS (in the first round of
AdaBoost) for MWC-type (top row) and GWC-type (bottom row) face detectors. The
first nodes of MWC 9- and GWC 9-based detectors contain the illustrated features.
The first nodes of MWC 3- and GWC 3-based detectors contain the first three features
illustrated from left to right.

conditions. Some images in this database and the output of GWC- and MWC-based face
detectors are shown in Fig. 2.16.
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2.2.4.1 Comparison of accuracy

After each node was constructed, the object detector was tested on the MIT+CMU database.
Fig. 2.17 shows the true positive rate (tpr) and the false positive rate (fpr) of the detectors
after constructing each node. Three observations can be made from the plots.

1. The fpr measurements in the initial nodes of the GWC-based detectors are lower
than those of the MWC-based detectors.

2. The tpr measurements of the GWC- and the MWC-based detectors are very similar
for each node. This was expected because, each node of GWC- and the MWC-
based detectors was trained so that its false rejection rate on a validation set of facial
images is at most 0.01.

3. The fpr measurements in the last nodes of MWC-based detectors converge to that
of GWC-based detectors. For MWC 6 and MWC 9, their fpr measurement at Node
12 becomes lower than the corresponding values for GWC 6 and GWC 9. Clearly,
boosted ensembles of GWC-based detector seem to produce weaker ensembles than
the boosted ensembles of MWCs. The reason for this could be that GWCs are less
mutually complementary than MWCs. It is well known that complementary clas-
sifiers produce better ensembles [14] [19]. The reason why GWCs are less comple-
mentary than MWC could be due to the fact that the mean of the Gaussian is forced
to lie among the object class measurements (Line 6 of Algorithm 6). The parameters
of MWC, on the other hand, do not suffer from such a restriction. The thresholds
of the VWC-type classifiers, constituting a MWC, are determined in a brute-force
manner, which permits construction of diverse classifiers. A brute-force search of
the centers of the GWC is very time-consuming, and therefore, was avoided.

2.2.4.2 Comparison of speed

During the testing phase, the face detectors perform two tasks: 1) computation of integral
image and integral image square (See [36]). In our implementation, the computation of
integral images was done using IntelrIntegrated Performance Primitives 6.0 [1]; 2) scan
through all possible sub-regions of a test image. The time taken to compute the two inte-
gral images constituted less than 1% of the total time required to process a 352×288 image
at 10 resolutions. The rest of the time, ∼ 99%, was spent in scanning the image. The time
taken to compute integral images is a common overhead for all the detectors. The scan-
ning time, on the other hand, is dependent on the computational efficiency with which a
detector can classify clutter images [36], which in turn is dependent on the type of weak
classifier used. Assuming that the integral images have been pre-computed, we measured
the average time required to label an image sub-region of the MIT+CMU database. The
average times are shown in Table 2.3.

The GWC-based face detector outperformed the MWC-based detector in evaluation
time. Although GWCs are computationally more expensive to evaluate (See Sec. 2.2.1.1),
a GWC-based face detector is able to scan through test images faster than those built with
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Table 2.3: The average time taken by GWC and MWC-type face detectors to classify an
image sub-region of the MIT+CMU database. The evaluation times were measured on a
2.4 GHz processor. The standard error in measuring the average time, in all the cases, was
less than 0.01 µs.

Number of fused HFs
Time in µs

VWC GWC MWC

1 0.72 - -
2 - 0.78 1.35
3 - 0.86 1.39
6 - 1.26 2.13
9 - 1.76 3.01
A - 1.39 1.41

MWCs. This is because the GWC-based detector, on an average, requires fewer classifiers
to label a clutter image. One exception is in the comparison of GWC A- and MWC A-
based detectors. Although from Fig 2.17, one could conclude that GWC A-based detector
requires fewer nodes to classify a clutter image, its speed seems very similar to that to
MWC A-based detector. This is because, the first five nodes of the MWC A- and GWC A-
based detectors had on an average of 3.4 and 6.2 HFs per node, respectively. The greater
computational cost in each of its nodes contributes to reduction in its speed. It was found
that the time required by VWC-based detector is very similar to that of GWC 2-based
detector, even though GWC 2-based detector has twice the number of HFs in each of its
nodes. This, again, is because the initial nodes of GWC 2-based detector classify much
more clutter, and therefore, time is saved by not having to process clutter regions in the
subsequent nodes.

Fig. 2.18 shows the tpr/fpr-speed plots measured at node 12 for different configura-
tions of the detector. Three observations can be made.

1. As discussed earlier, the tpr of various detectors were preset to a constant value
during training. Therefore, we see that all the detectors produce similar tpr mea-
surements.

2. It can be noted that the higher the number of co-occurring HFs combined to form
a weak classifier, the lower the false positive rate of the detector. However, on the
downside, the speed of evaluation of the detector decreases.

3. GWC-based detectors seem to be be better both speed-wise and accuracy-wise when
the number of co-occurring HFs are small. For example, GWC 2-based detector
is 38% more accurate in fpr terms and simultaneously 42% faster when 12-node
detectors are compared. Although with more HFs, the fpr measurements of MWC-

44



C
H

A
P

T
E

R
2

—
IM

P
R

O
V

IN
G

T
H

E
S

P
E

E
D

-A
C

C
U

R
A

C
Y

T
R

A
D

E-O
F

F
O

F
O

B
JE

C
T

D
E

T
E

C
T

O
R

S

based detectors become better, the GWC-based detectors maintain a considerable
advantage in speed.

2.2.5 Conclusions and discussions

We compared the trade-off between speed and generalization ability of the object detec-
tors built with co-occurring Haar-like features (HFs). A key contribution of this paper is an
alternative way to fuse information obtained from co-occurring HFs and form Gaussian
weak classifiers. In our approach, the information from the co-occurring HF is fused at the
feature-level, which permits using Gaussian weak classifiers (GWCs) to make decisions.
GWCs compare the feature values of the co-occurring HFs to a k-dimensional non-linear
decision boundary, which is learnt in a supervised manner during the training process.

The following conclusions can be drawn from our experiments. Firstly, face detectors
built using fused co-occurring features are a viable alternative to the Viola & Jones’s ap-
proach. The proposed approach gives 67% better false positive rate for the same execution
time and the same true positive rate. Secondly, feature-level fusion of information from
co-occurring Haar-like features produces more accurate detectors. When compared to
detectors based on Mita et al. ’s approach, the proposed detector is 38% more accurate
in false positives and simultaneously 42% faster given similar true positive rates. Thirdly,
using two or three Haar-like features in a co-occurring feature seems to provide the best
speed-accuracy trade-off for the face detection problem.
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Figure 2.16: Results of the evaluation of detectors based on GWC 3 (left) and MWC
3(right) weak classifiers on images from the MIT+CMU database. In general, it was
observed that face detector based on GWC 3 detected fewer faces correctly when
compared to MWC 3-based detector. However, GWC 3-based detector was faster by
38% and produced fewer false positives.
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Figure 2.17: A plot of false positive rate (left) and true positive rate (right) at each node
for different configurations of face detectors. Tests were performed on the MIT+CMU
database.
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Figure 2.18: A plot of false positive (left) / true positive (right) rate and the average
time required for classification for different configurations of face detectors. The
numbers besides each measurement point in the plot above indicates the number
of co-occurring HFs fused to form a weak classifier. The letter ‘A’ indicates that the
number of HFs in a weak classifier was chosen in an automatic way as detailed in
Algorithm 7.
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2.3 Gaussian weak classifiers based on Haar-like features with four
rectangles for real-time face detection

Although, in theory, any number of rectangular regions can be used to form a Haar-like
feature (HF), for practical reasons, the number of rectangles used are restricted to two
(HF2), three (HF3) or four (HF4). If n is the number of distinct rectangles that can be fit in
a template of given size, then the number of HF2s, HF3s, and HF4s that can be constructed
is of the order O(n2), O(n3), and O(n4), respectively. As HF4s form the majority of Haar-
like features used for training, it is of interest to improve discrimination power of weak
classifiers constructed with them. In this section, we investigate GWCs based on HF4s
(See Fig. 2.1b).

GWCs classify an image as face or clutter in two steps. Firstly, the response of a HF4
is split into two components, each belonging to a HF2. As discussed in Section 2.3.3,
the motivation behind the split is to take advantage of the compact and Gaussian-like
distribution of feature values from the face class images. Secondly, the responses of HF2s
are used to compute a Mahalanobis distance which is compared to a threshold to make
decisions. In our experiments, we compare the speed and the accuracy of the GWC-based
face detector with equivalent detectors that use weak classifiers proposed by Viola and
Jones [36], Rasolzadeh et al. [27] and Mita et al. [23]. Our results, presented in Section
2.3.4, show that GWC-based face detectors provide the best trade-off between speed and
accuracy.

2.3.1 Related work

The seminal paper by Viola and Jones [36] spurred a lot of interest in object detection.
Thereafter, several papers were published, mainly focussing on the following three parallel
lines of improvements.

1. The geometrical diversity of the HFs was increased to obtain better performance
both in terms of accuracy and speed [12][16][18].

2. The AdaBoost [30] procedure used to select weak classifiers in [36] was improved in
[16][17][35].

3. The linear weak classifiers used by Viola and Jones were replaced by weak classi-
fiers that provided a better accuracy-speed trade-off. Rasolzadeh et al. [27] demon-
strated that more accurate pedestrian detectors can be achieved by increasing the
discriminating strength of the individual weak classifiers. Their weak classifiers
were obtained through response binning [27], which can be thought of as assigning
multiple thresholds to the response of HFs. Viola and Jones, in comparison, use a
single threshold on the feature value of the HFs to make decisions. Mita et al. [23]
fuse outputs of multiple linear weak classifiers to form more powerful ones. Their
weak classifiers produce lower error rates than the Viola and Jones’s linear weak
classifiers. The GWCs, that are proposed in this section, fall into the third category
of improvements.
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2.3.2 Weak classifiers based on HFs

Haar-like features [25], shown in Fig. 2.1, consist of two or more rectangular regions
enclosed in a template. Such features, when evaluated on an image, produce a feature
value as in (2.13).

ft =
q∑

i=1
w (i ) ·µ(i ) (2.13)

where i is an iterator that iterates through all the q rectangles of the HF. The quantity µ(i )

represents the mean intensity of the pixels in image x enclosed within the i th rectangle.
Every rectangle in the HF is assigned a weight that is represented by w (i ). The weights
are set to default integer numbers such that

∑q
i=1 w (i ) = 0 is satisfied. For example, the

rectangles of a HF2 as in Fig. 2.1a are assigned default weights 1 and −1. The rectangles of
a HF3 as in Fig. 2.1c are assigned default weights 1, −2 and 1.

Viola and Jones’s weak classifiers (hv j (x)) compare the feature value ft to a threshold
θ according to (2.14).

hv j (x) =
{

1, face, ft ·p ≤ θ ·p

−1, clutter, otherwise
(2.14)

Here, p ∈ {1,−1} is a polarity term, which can be used to invert the inequality relationship
between ft and θ.

Rasolzadeh et al. ’s weak classifier [27] (hr (x)) compares ft to two threshold values (θ1

and θ2) as shown in (2.15).

hr (x) =
{

1, face, θ1 ≤ ft ≤ θ2

−1, clutter, otherwise
(2.15)

Mita et al. ’s weak classifier [23] (hm(x)) fuses k Viola and Jones’s weak classifiers to
make decisions as shown in (2.16).

hm(x) =

1, face,
k∑

i=1
2k−i h(i )

v j (x) ≥ θ
−1, clutter, otherwise

(2.16)

2.3.2.1 Gaussian weak classifiers

As stated earlier, we define GWCs using HF4s. A HF4 (Fig. 2.1b) can be considered to be
a combination of two HF2s (Fig. 2.1a). Therefore, the feature value ft of a HF4 can be
split into two components, f1 = ∑2

i=1 w (i ) ·µ(i ) and f2 = ∑4
i=3 w (i ) ·µ(i ), each belonging to

a HF2. Classification by GWC is performed in two steps. Firstly, a Mahalanobis distance
d is computed using f = [ f1 f2] as shown in (2.17). Secondly, the computed distance is
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Algorithm 8: Steps involved in training a weak classifier

Input: Face class training images:
x(i ), i ∈ {1, . . . ,m}

Input: Weights assigned to images of
the face class: z(i ), i ∈ {1, . . . ,m},

such that
m∑

i=1
z(i ) = 1

Input: Weak classifier: h
begin

Evaluate the HF associated with
h on all face class images to get
f (i ) = [ f (i )

1 f (i )
2 ], i ∈ {1, . . . ,m}.

Compute the weighted mean of

feature values: f̄ =
m∑

i=1
z(i ) · f (i )

Compute the weighted
covariance matrix (Σ): Σ(a,b) =
m∑

i=i
z(i )( f (i )

a − f̄a)( f (i )
b − f̄b)

where a,b ∈ {1,2}.
end
Output: f̄ , Σ

Input: Training images (both face and
clutter): x(i ), i ∈ {1, . . . ,m}

Input: Training labels: y (i ) ∈ {1,−1}, i ∈
{1, . . . ,m}

Input: Weights for each training im-
age: z(i ) ∈ℜ, i ∈ {1, . . . ,m}

Input: Weak classifier to be trained: h
Input: f̄ and Σ
begin

Evaluate the HF associated with
h on all face class images to get
f (i ) = [ f (i )

1 f (i )
2 ], i ∈ {1, . . . ,m}.

Compute distance d (i ) ∈ d: d (i ) =
2
√(

f (i ) − f̄
)T
Σ−1

(
f (i ) − f̄

)
Find dt and p that minimize
the training error: [dt , p] =

argmin
[dt∈d,p∈{−1,1}]

ε

where, ε=
m∑

i=1
z(i )|h(x(i ))− y (i )|

end
Output: dt , p

compared to a threshold to make decision on whether the test image belongs to face or
clutter as in (2.18).

The quantities f̄ and Σ in (2.17) are the mean and the covariance matrix obtained
from f computed on a database of face class training images. The computation of these
quantities are shown in Algorithm 8 (left). Conceptually, the distance d measures how
different a test image is from a mean instance of the images from the face class. In (2.18),
d is compared to a threshold value dt to decide whether the image belongs to the face or to
the clutter class. The quantities dt and p are determined as shown in Algorithm 8 (right).

d = 2
√(

f − f̄
)T
Σ−1

(
f − f̄

)
(2.17)

h(x) =
{

1, face, d ·p ≤ dt ·p

−1, clutter, otherwise
(2.18)

Comparing (2.14), (2.15), (2.16) to (2.17) and (2.18), it can be noted that GWCs are
computationally more expensive owing to additional subtraction, matrix multiplication
and the square root operation. The question of whether its accuracy is adequate to provide
a better accuracy-speed trade-off still remains to be seen.
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Figure 2.19: Joint distribution of feature values, f1 and f2, obtained from two HF2s
when evaluated on face (top row) and clutter images (bottom row). The HF2s used
to generate the plot have been super-imposed on the face and clutter class images.
As face class images are correlated with each other, we observe that the distribution
of feature values from the face class are more compact than those obtained from the
clutter class.

2.3.3 Motivation for using Gaussian weak classifiers

Rasolzadeh et al. [27] experimentally observed that the distribution of the feature values of
HFs when evaluated on a object and clutter class images resemble a Gaussian distribution.
Two-dimensional joint feature spaces spanned by the feature values, f1 and f2, from three
arbitrarily chosen pairs of HF2s are shown in Fig. 2.19.

Consider a hypothetical feature space as in Fig. 2.20a where the measurements from
face and clutter class images are overlapped. Geometrically, the computation of feature
value ft of a HF4, can be understood as a projection of the 2D feature space on to a 1D
space as shown in Fig. 2.20c. To train a Viola and Jones’s type weak classifier, a scalar value
θ is found such that face and clutter distributions are best separated. As shown in the
Fig. 2.20(d), θ partitions the feature space into two regions; the face region, coded white,
and the clutter region, coded black. The decision space of the GWC and weak classifiers
proposed by Rasolzadeh et al. and Mita et al. are shown in Figs. 2.20b, 2.20f and 2.20h,
respectively. Among the existing weak classifiers, GWC has the potential to extract the
maximum discrimination ability from a HF4. As HF4s form the majority of HFs in the
feature pool that is used to train the face detector, the classification power of a majority of
the weak classifiers can be potentially increased by using GWCs.

2.3.4 Results

In the following experiments, we compare the speed and the accuracy of the face detec-
tors constructed with GWCs and the weak classifiers proposed by Viola and Jones [36],
Rasolzadeh et al. [27] and Mita et al. [23].
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Figure 2.20: A geometrical view of the performance of GWC and the weak classifiers
used by Viola and Jones [36], Rasolzadeh et al. [27] and Mita et al. [23]. (a) shows a
hypothetical joint feature space formed by the feature values f1 and f2. (b) shows the
partitioned feature space using GWC. (c) shows the projection of 2D space formed by
f1 and f2 onto a 1D space, which represents the feature value of a HF4 computed in
the traditional way. To train a weak classifier used by Viola and Jones, a threshold
θ is found to separate face from clutter. (d) shows the corresponding partitioned
feature space. (e) shows a geometrical view of the Rasolzadeh et al. ’s weak classifiers
which use two thresholds to separate face from clutter; the corresponding partitioned
feature space is shown in (f). Mita et al. ’s weak classifier that fuses two HF2s is
illustrated in (g) and (h). The feature values f1 and f2 from the two HF2s are used
to construct independent weak classifiers whose results are fused to generate the
decision space shown in (h).

To train the face detector, two databases, face and clutter, were collected. The frontal
face database was composed of 5,000 images. The facial regions were cropped manually
and resized to images of size 20×20 pixels. For the clutter image database, a total of 27,000
images were downloaded from the internet. These images did not contain faces.

Four face detectors were built. They differed only in the type of weak classifier used to
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construct them. The weak classifiers used were:

1. GWC: Proposed weak classifiers as in (2.18).

2. VJ: Viola and Jones’s [36] weak classifiers as in (2.14).

3. RPP: Rasolzadeh et al. ’s [27] weak classifiers as in (2.15).

4. MKSH: Mita et al. ’s [23] weak classifiers as in (2.16).

The face detectors were constructed based on a feature pool containing 175,429 HF4s.
From this feature pool, 2,255 weak-classifiers were selected and arranged into 14 nodes.
The GWC and MKSH-type weak classifiers split the response of a HF4 into two HF2s, and
perform classification as defined by (2.18) and (2.16). Readers are referred to Viola and
Jones’s paper [36] for details on how the features are selected and arranged into nodes.
The first five nodes of the face detectors were assigned one weak classifier each, and the
rest were assigned (nn −5)∗50 weak classifiers. Here, nn stands for node number. Every
node of the rejection cascade was trained so that their false rejection rate on a database of
face class validation set is at most 0.01.

The accuracy and speed of the face detectors were compared on the MIT+CMU face
database [29]. Fig. 2.21 shows the Receiver Operating Characteristics (ROC) curves ob-
tained by testing the face detectors on this database. Each point on the ROC curve was
generated by varying the number of nodes in the face detector. As the false rejection rate
of each node was pre-set to a constant value during training, we observe that the face
detectors, at each operating point, have similar true positive rates. A rectangular bounding
box has been used to group ROC points generated using face detectors working at similar
operating points, i.e., , with the same number of nodes and weak classifiers.

During the testing phase, the face detectors perform two tasks: 1) computation of
integral image and integral image square (See [36]). In our implementation, the computa-
tion of integral images was done using Intel®Integrated Performance Primitives 6.0 [1]. 2)
scan through all possible sub-regions of a test image. The time taken to compute the two
integral images constituted less than 1% of the total time required to process a 352×288
image at 10 resolutions. The rest of the time, ∼ 99%, was spent in scanning the image.
The time taken to compute integral images is a common overhead for all four detectors.
The scanning time, on the other hand, is dependent on the computational efficiency with
which a detector can process clutter images [36], which is dependent on the type of weak
classifier used. Assuming that the integral images have been pre-computed, we measured
the average time required to label an image sub-region of the MIT+CMU database. The
average times are shown along with the legend in Fig. 2.21.

The GWC-based face detector outperformed the rest significantly both in accuracy
and evaluation time. Although GWCs are computationally more expensive to evaluate
(See Sec. 2.3.2.1), a GWC-based face detector is able to scan through test images faster
than those built with the traditional weak classifiers. This is because GWCs, on an average,
require fewer classifiers to label a clutter image.
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Figure 2.21: Comparison of ROC curves of face detectors constructed with GWC,
VJ, RPP, and MKSH-type weak classifiers. The detectors were tested at different
operating points which were defined by the number of nodes in them. The ROC
points generated at equivalent operating points, i.e., , with same number of nodes and
weak classifiers, have been bounded by a rectangular box. The numbers (separated by
a semicolon) beside the bounding box indicate the number of nodes and the number
of weak classifiers used to build them. The inset shows a zoomed version of the ROC
curves for the operating points defined by 12, 13 and 14 nodes. The average time, in
microseconds, required to process an image sub-region of the MIT+CMU database
(excluding the time required to compute integral images) is listed along with the
legend.

2.3.5 Conclusions

This section proposes Gaussian weak classifiers (GWCs) as an alternative to the traditional
ones proposed by Viola and Jones, Rasolzadeh et al. and Mita et al. GWCs are formulated
based on Haar-like features with four rectangles (HF4s). To make a decision using GWC,
the feature values of the two HF2s in a HF4 are compared to a 2D non-linear decision
boundary, which is learnt in a supervised manner using images from face and clutter class.
Our results on the MIT+CMU face database show that GWC-based face detectors produce
at least 40% lesser false positives and require 32% lesser time for the scanning process
when compared to Viola and Jones’s face detector. In comparison to face detectors based
on Rasolzadeh et al. ’s and Mita et al. ’s weak classifiers, the decrease in false positives was
at least 11% and 10% respectively. Simultaneously, the GWC-based detector was faster by
37% and 42% to make decisions.
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Be a politician; no training necessary.

Will Rogers

The Viola and Jones’s (VJ’s) object detection system, popular for its high accuracy
at real-time testing speeds, has a drawback that it is slow to train. A face detector, for
example, can take days to train. In applications such as Content-Based Image Retrieval
(CBIR), such a long training is not affordable. In this chapter, we propose two training
procedures to achieve fast training speed.

In the first approach, we reduce the training time to the order of minutes through the fol-
lowing three modifications to the VJ’s approach. Firstly, clutter (non-object) models
are used instead of using images. Thus, time is saved in not having to read and
evaluate them on thousands of Haar-like features. Secondly, we use a smaller non-
redundant set of Haar-like feature than the feature pool used by Viola and Jones.
Thirdly, weak classifiers, with fewer parameters to be optimized, are used for train-
ing.

In the second approach, we reduce the training time to the order of seconds by intro-
ducing further changes. Firstly, Laplacian clutter models that better fit the clut-
ter distributions are used. These models serve to better predict the error of the
weak classifier. Secondly, we simplify the training procedure by removing the time-
consuming AdaBoost-based feature selection procedure.

Our results show that the accuracy of the detector, built with the proposed approaches,
is inferior to that of VJ’s for difficult object class such as frontal faces. However, for objects
with lesser degree of intra-class variations such as hearts, state-of-the-art accuracy can be
obtained. Importantly, for CBIR applications, the fast testing speed of the VJ-type object
detector is maintained.

Adapted from:

S-K. Pavani, D. Delgado-Gomez and A.F. Frangi, A Rapidly Trainable and Global Illumina-
tion Invariant Object Detection System. In Proc. Iberoamerican Congress on Pattern
Recognition, Guadalajara, Jalisco, México. Lecture Notes in Computer Science vol.
5856, Pages 877-884, 2009.

S-K. Pavani, D. Delgado-Gomez and A.F. Frangi, Fast training of Viola-Jones type Object
Detectors using Laplacian Clutter Models. Submitted, 2010.
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3.1 A Rapidly Trainable and Global Illumination Invariant Object
Detection System

Although object detectors based on Haar-like features (HFs)[11] achieve high accuracy
rates in real-time [20], training them is a time-consuming task. This is because thousands
of weak classifiers based on HFs need to be trained using a database of object and clutter
(non-object) images. VJ reported training time in the order of weeks using 180,000 fea-
tures on a 466 MHz AlphaStation XP900 [20]. Reduced training time of about 2 days using
approximately 20,000 features can be achieved using the implementation in the OpenCV
library [1] on a 3 GHz processor. Though at first glance, it may seem that two days of
training time is affordable, the total algorithmic development time generally exceeds this
time frame. Many trials may be required to optimize the performance of the detector,
which could prolong the effective development time to months. As McCane and Novins
[9] point out, long training times make testing new algorithms or verifying past results
extremely difficult.

Several possible approaches have been proposed to reduce the high training time. For
instance, Wu et al. [21] who achieved a reduction in training time of approximately two
orders of magnitude by pre-training weak classifiers before the iterative classifier selection
procedure. Stojmenovic [19] proposed to reduce the training time by pre-eliminating HFs
from the original training set. They eliminate HFs which produce error greater than a pre-
determined threshold value. On a database of images containing back-view of Honda Ac-
cord cars, they could eliminate 97% of the original features, thereby achieving a potential
speed increase of up to two orders of magnitude. However, it is not clear what percentage
of HFs can be removed on more challenging images like those of human frontal faces.
Pham et al. [14] proposed decreasing the training time by pre-computing the global statis-
tics of face and non-face images. They reported a training time of 5 hours and 30 minutes
while achieving high accuracy.

In this work, we propose a novel algorithm that reduces the training time to the order
of seconds in a conventional desktop computer with a 3 GHz processor. The high training
speed is due to the following three reasons. Firstly, a clutter model is used instead of
using clutter class images. This results in a substantial reduction of training time because
approximately 107 clutter image regions are used for training by traditional training meth-
ods. The weak classifiers used in the prosed approach, as will be seen in Section 3.1.1.1,
implicitly incorporate the clutter model and therefore, the model need not be trained.
Secondly, we heuristically pre-eliminate HFs in the feature pool to obtain a set of features
that make independent measurements on clutter. Using lesser HFs during training also
contributes to the faster training speed. Further, the weak classifiers used in our procedure
have fewer parameters to be optimized and therefore, are faster to train.

3.1.1 Haar-like features and weak classifiers

Haar-like features (HFs), shown in Fig. 2.1, are an over-complete set of two-dimensional
Haar functions, which can be used to encode local appearance of objects [11]. The feature
value f of a Haar-like feature which has k rectangles is obtained as in (3.1). The quantity
µ(i ) is the mean intensity of the pixels in image x enclosed by the i th rectangle and w (i ) is
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Figure 3.1: Three histograms of feature values obtained by evaluating face and clutter
class images on HFs are shown. To the left of the histograms, the HFs that were used for
evaluation have been super-imposed on a typical training image. As Huang and Mumford
[6] observed, the distribution of feature values from clutter images tends to a Laplacian
distribution centered at zero.

the weight assigned to the i th rectangle. The weights assigned to the rectangles of a HF
are set to default numbers satisfying (3.2). Weak classifiers that label an image x as object
(+1) or clutter (-1) can be expressed as in (3.3). The quantity θ ∈ ℜ is a threshold value,
and p ∈ {1,−1} can be used to invert the inequality relationship. Training such a weak
classifier involves setting appropriate values to its threshold and polarity coefficients (θ∗,

p∗) such that the overall error is minimized. Formally, [θ∗, p∗] = argmin
[θ,p]

no+nc∑
i=0

ε(i ). If a

training image is correctly classified, then its error is z(i ), else it is 0. The term z(i ) is the
weight assigned to the training image x(i ). The quantities no and nc are the number of
object and clutter class training images, respectively. Training the weak classifiers as in
(3.3) can be intuitively understood from Fig. 3.1. For each HF shown in Fig. 3.1, histograms
of the feature value, f , have been obtained from object (human frontal face) and clutter
training images. During training, θ is set to the value of f that best separates object and
clutter examples.

f =
k∑

i=1
w (i ) ·µ(i ) (3.1)

k∑
i=1

w (i ) = 0 (3.2)

h(x) =
{
+1, f(θ,p) > 0

−1,otherwise
(3.3)

f(θ,p) = ( f −θ) ·p (3.4)

3.1.1.1 A clutter model

When a HF is evaluated on a clutter image, the expectation value of the output can be
expressed as in (3.5).
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E( f ) = E

(
k∑

i=1
w (i )µ(i )

)
=

k∑
i=1

w (i )E
(
µ(i )

)
(3.5)

The clutter class, being generic, may contain any image with any appearance pattern.
Effectively, every pixel of a generic clutter image is a random variable which can take
any value between the minimum and the maximum permitted pixel values in an image
representation (Nmi n and Nmax ) with equal probability. For example, in gray-level images,
Nmi n = 0 and Nmax = 255. Therefore, the expected value of mean of pixel values within
any rectangular region, E(µ) = 0.5(Nmax +Nmi n). Rewriting (3.5) using (3.2), we get (3.6).

E( f ) = 0.5(Nmax +Nmi n)
k∑

i=1
w (i ) = 0 (3.6)

Therefore, the probability that the feature value of a HF on a clutter image to be greater
than (or lesser than) 0 is 0.5. Mathematically, P( f ·p > 0|x(i ) ∈ Clutter) = 0.5. Using the
terminology introduced in (3.4),

P( f(0,p) > 0|x(i ) ∈ Clutter) = 0.5 (3.7)

The clutter model in (3.7) can be observed from the clutter histograms shown in Fig.
3.1. Note that the clutter histograms are all symmetric and centered at f = 0.

3.1.1.2 Proposed weak classifier

The proposed weak classifier utilizes the clutter model in (3.7) by setting its threshold θ = 0
so that it labels 50% of the clutter correctly. Since θ is already set, training the proposed
weak classifier only involves setting an appropriate value to the polarity term (p∗) such
that the training error is minimized as shown in (3.9). As θ need not be optimized, the
training speed of the weak classifiers is much higher than the traditional ones as in (3.3).

h(x) =
{
+1, f(0,p) > 0

−1, otherwise
(3.8) p∗ = arg min

p∈{1,−1}

no∑
i=0

ε(i ) (3.9)

The object detectors are built by arranging weak classifiers as in (3.8) according to the
rejection cascade architecture [3]. This architecture has been preferred for building object
detectors as it is conducive for fast scanning of an image [20]. A rejection cascade, as
illustrated in Fig. 3.2, consists of multiple nodes connected in series. Each node is a binary
classifier that classifies an input sub-region as object or clutter. Each node consists of
multiple weak classifiers which are selected iteratively using the AdaBoost procedure [17].
The weighted decision of all the weak classifiers in a node is output as the decision of the
node.
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Figure 3.2: A cascaded classifier consists of multiple nodes arranged in a degenerated
decision tree fashion. An input image is scanned at different scales and positions for
the presence of a face. If an image sub-region is classified as a face by all the sub-
regions of the face, then it is labeled a face.

3.1.1.3 Pre-eliminating redundant HFs

As mentioned before, HFs are an over-complete set of features, therefore, they are re-
dundant. Conventional object detectors avoid selecting redundant features in different
nodes by training each node with bootstrapped set of clutter images [20]. In other words,
features selected for different nodes are suitable for classifying different subsets of clutter
images. In our case, since clutter images are not used, the over-complete set of HFs need
to be pruned heuristically after each node is built so that neither the previously selected
features nor similar ones are selected again. Similarity between two HFs is measured by
the amount of overlap between its rectangles. For example, the HFs illustrated in Fig.
3.1(left) and Fig. 3.1(middle) do not overlap at all, therefore, they are considered to make
independent measurements on a clutter image. On the contrary, the HFs illustrated in
Fig. 3.1(middle) and Fig. 3.1(right) have more than 50% overlap, and therefore they are
considered to make redundant measurements. To build the proposed object detector, we
generated a feature pool with 7,200 HFs in which no HF in the feature pool has more than
50% overlap with the rest of the features.

3.1.2 Experimental setup and results

The proposed weak classifiers described above were trained for two very different object
detection problems: detection of human frontal faces in photographs and detection of the
human heart in short-axis cardiac Magnetic Resonance Images (MRI). For this purpose,
two object databases (face and heart) were used. The face database was composed of
5000 images. The faces in this database exhibit an out-of-plane rotation of up to ±10◦ and
various expressions. The heart database consisted of 493 short-axis MR heart images. In
comparison to the images in the face database, the images in the heart database exhibit
less intra-class appearance variation. The face detectors were tested on MIT+CMU frontal
face database [16]. The heart detectors were tested on a set of 293 images. The speed of
training of the face and heart detectors, in comparison to other methods, is tabulated in

65



Table 3.1.
We tested the accuracy of the object detectors by transforming the test images artifi-

cially to simulate global illumination changes. On each of the transformed database, the
accuracy of the VJ-type detector and the proposed method were measured and the results
are tabulated in Table 3.2. We observed that, in contrast to VJ detector, the proposed de-
tector performed consistently to all the monotonic image transformations applied to the
test images. This is because, the detector uses weak classifiers that make decision based
on the sign of the feature value of a HF, and not based on the magnitude of the feature
value of the HF. In theory, the accuracy of the proposed detector should not change if
any monotonic transformations are applied to images. However, we see that the accuracy
decreases in DS3 and DS8. This is because, two image patches (with different original
intensities) might end up have the same average intensities after image transformation,
and therefore, not satisfy (3.3) because of saturation of intensity values (as in the case of
DS8) or because of rounding errors in the division process (as in the case of DS3). The
results of the VJ-type detector with and without variance normalization are also tabulated
in Table 3.2. The proposed detector does not require variance normalization procedure
as the sign of the feature value of any HF is not affected by the variance normalization
process. Thus, the computation of the integral image square and the computation of
standard deviation of each image sub-region can be avoided during the detection process,
which adds to the speed of detection. The time required to process all the images in the
test set by the face and the heart detectors were 41s and 12s. This includes the time
to read the image, computation of integral image(s), the scanning, and the clustering
process to merge multiple detections. Our implementation of VJ procedure (with variance
normalization) took 62s and 14s, respectively. The testing times were measured on a 3 GHz
CPU.

The number of false detection by the the face and the heart detectors, along with the
state-of-the-art methods, is listed in Table 3.3. The face detector achieved a false positive
rate of 9.2×10−5 (912 false detections), which is approximately 10 times worse than the
state-of-the-art detectors. However, the number of false detections by the heart detector
was only 2, which represented a false positive rate of 3.3×10−6.

3.1.3 Conclusions

In this chapter, we have presented a novel training procedure for object detection systems
and compared its performance, both during training and testing phases, with the state-of-
the-art techniques. The advantages of adopting proposed technique include fast training
in the order of seconds, global illumination invariance and real-time detection speed. The
disadvantage of this method is that it produces more false positives with respect to the
state-of-the-art.

The quick training and testing speed of the proposed technique makes it ideal for
content based image retrieval systems - where a user makes a query (an image patch), and
asks the system to automatically find similar patches in a huge database of images. The
existing methods, by the virtue of being slow to train, cannot be used in such scenarios.
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Table 3.1: Comparison of training times of different object detectors

Method Number of
features in
the feature
pool

Number of
classifiers
trained

Number of
object
images used

CPU
speed
(GHz)

Training
time

Proposed (Face)* 7,800 3,200 5,000 3.0 96s
VJ [20] 40,000 4,297 9,500 0.4 weeks
LZZBZS [7] n/a 6,000 2,546 0.7 weeks
WBMR [21] 40,000 3,870 5,000 2.8 13h20m
PC [14] 295,920 3,502 5,000 2.8 5h30m

Proposed (Heart)* 7,800 1,000 493 3.0 30s
VJ (Heart)* 180,000 300 493 3.0 22h

* Results from our implementation.

Table 3.2: True positive rate in simulated test datasets

Method DS1a DS2b DS3c DS4d DS5e DS6f DS7g DS8h

Proposed (Face)* † 88.0 87.4 86.5 88.0 88.0 88.0 88.0 84.7
VJ (Face)* 90.3 90.3 90.3 87.4 86.2 87.0 83.9 80.2
VJ (Face)* † 90.3 85.1 72.5 87.4 78.7 84.0 81.2 60.5

Proposed (Heart)* † 97.3 97.3 94.6 97.3 97.3 97.3 96.7 93.8
VJ (Heart)* 98.7 98.7 98.7 90.3 85.2 96.8 93.0 76.3
VJ (Heart)* † 98.7 81.2 63.2 90.3 20.3 69.6 35.2 0.0
* Results from our implementation. † Results without variance normalization.
a DS1: Original test images. b DS2: Intensity values are globally divided by 2.
c DS3: Intensity values are globally divided by 3. d DS4: Histogram equalized images.
e DS5: Gamma corrected image (γ= 0.8). f DS6: Gamma corrected image (γ= 0.9).
g DS7: Gamma corrected image (γ= 1.1). h DS8: Gamma corrected image (γ= 1.2).
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Table 3.3: Comparison of accuracy of the face and heart detectors

Method
Face Heart

FD a TPR b FD a TPR b

Proposed 912* 88.0* 2* 97.3*

VJ [20] 95 90.8 2* 98.7*

LZZBZS [7] 90 92.5 n/a n/a

WBMR [21] 85 92.5 n/a n/a

PC [14] 100 90.0 n/a n/a

RBK [16]z 95 89.2 n/a n/a

SK [18]z 65 94.5 n/a n/a

RYA [15]z 78 94.8 n/a n/a

a FD: Number of false detections. b TPR: True positive rate.
* Results from our implementation. z Methods not based on HFs.
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3.2 Fast training of Viola-Jones type object detectors using Laplacian
clutter models

Research in the field of appearance based object detection, over the last few years, has
been on finding better trade-off between accuracy and testing speed of the object detec-
tors. Viola and Jones’s (VJ) detector [20], though it was less accurate than the previously
available detectors [16][18][15], gained popularity because it runs in real-time. Following
their seminal paper, several approaches [12] [7] [8] [10] were proposed to improve the
trade-off between speed and the accuracy of detection.

Although the previously mentioned approaches work accurately in real-time, a major
problem in adopting them is that they are computationally very expensive to train. VJ
report training times in the order of weeks using a 466 MHz computer. Using modern
computers with 3 Ghz processor and 6 GB of memory, the same process can be completed
in approximately 2 days. Nevertheless, such long training times make their detector un-
suitable for Content Based Image Retrieval (CBIR) applications, where training is expected
to occur in real-time. Many techniques have been proposed to reduce the training time
of VJ type detectors [21][19][14][13]. The fastest of these techniques, proposed by Pavani
et al. [13] (PDF), trains object detectors in the order of minutes. In this chapter, we pro-
pose two modifications to PDF’s approach, which makes the detector to be trained even
faster. Firstly, more accurate clutter (non-object) models are used, which are estimated by
fitting Laplacian distributions to histograms of feature values on clutter images. Secondly,
the time-consuming AdaBoost-based classifier selection process [20] is replaced with a
simpler procedure.

We evaluate object detectors in terms of four factors: training speed, testing speed,
accuracy and sensitivity to illumination changes. Our results show that the proposed
approach is the fastest available; the training time is reduced up to 10-times compared to
the PDF’s approach. The training time for an object detector with 500 object class training
images is approximately 2 seconds, which makes it very attractive real-time searches. A
drawback of the proposed approach is that its accuracy is approximately 10 times lower
than that of VJ’s training approach in terms of false positive rate for complex set of objects
such as human frontal faces. For easier objects such as human heart, the accuracy is
comparable to that of the state-of-the-art. This makes the proposed approach ideal for
use in localization of industrial objects, traffic signs etc. , which exhibit low intra-class
variations.

3.2.1 Viola-Jones object detector

Viola and Jones’s object detector [20] uses weak classifiers to classify if an image region
belongs to object or to clutter class. The weak classifiers are arranged in a series of nodes
according to the cascade classifier architecture [2]. Each node may contain more than one
weak classifier, in which case, the output of a node is the weighted average of the decisions
of all the weak classifiers in the node. Each weak classifier is based on a Haar-like feature
(HF) [11] (See Fig. 2.1), whose feature value is compared to a threshold to make a decision.

Training complexity: Training an object detector involves setting appropriate thresh-
olds to weak classifiers such that the cascade classifier has high true positive rate and
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simultaneously low false positive rate. This is done in a supervised fashion using three
large databases: The object and clutter image databases, and a third database, called
bootstrapping clutter database. To train a weak classifier, the HF involved is evaluated
on the object and clutter class images, and a threshold is selected such that the weigh-
ted misclassification error on the training images is minimum. See [20] for details. The
bootstrapping database consists of ∼ 106 images which is used to replenish clutter image
database after building a node. Bootstrapping process ensures that each node is trained
to focus on a different “sub”class of clutter images.

If M (=∼ 180,000) is the total number of available HFs, then the complexity of training
a VJ-type object detector is O(K N log N MT ). Here T stands for the number of iterations
of the AdaBoost procedure [4], which is used repeatedly to select the best possible weak
classifiers and arrange them in nodes. The quantities N and K are the number of training
images (object + clutter) and the total number of nodes in the cascade architecture, re-
spectively. The values of K and T are set according to the precision needed in the detector;
they generally vary between 20−40 and 1−200, respectively. Further, after constructing
each node, bootstrapping procedure needs to be performed to replenish the clutter image
database used to build the previous node. This process has the complexity O(PQ), where
P is the total number of images in the bootstrapping clutter image database, and Q is the
sum of all the weak classifiers selected in the previous nodes.

3.2.2 Related approaches

The following approaches have been proposed to reduce the training time of VJ-type
object detectors. Wu et al. [21] achieved a reduction in training time of approximately two
orders of magnitude by decoupling the training process of the weak classifiers (by pre-
computing them) from the classifier selection process. Thus, they avoid training weak
classifiers at each round of the feature selection process, which is time-consuming. The
accuracy of their detector is even better than that of VJ’s, however, the training time is still
in the order of hours, which makes it unsuitable for real-time searches. Stojmenovic [19]
proposed to reduce the training time by pre-eliminating HFs from the original training
set. They eliminate HFs which produce error greater than a pre-determined threshold
value. On a database of images containing back-view of Honda Accord cars, they could
eliminate 97% of the original features, thereby achieving a potential speed increase of
up to two orders of magnitude. However, it is not clear what percentage of HFs can be
removed on more challenging images like those of human frontal faces. Pham et al. [14]
proposed decreasing the training time by pre-computing the global statistics of face and
non-face images. They reported a training time of 5 hours and 30 minutes while achieving
high accuracy. Although, the above-mentioned approaches reduce the training time, the
required time still is in the order of hours, and therefore, these methods are prohibitively
expensive for use in near real-time searches.

PDF [13] proposed three modifications to the VJ’s training procedure which trades-off
accuracy of the detector to achieve fast training speed. Firstly, they used clutter models
instead of using clutter images to train the object detectors. Thus, time is saved in not
having to read and evaluate thousands of clutter images during training. Secondly, they
used a non-redundant set of HFs to train the object detectors. The non-redundant set
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Figure 3.3: Histogram of feature values, represented by dotted lines, obtained when
five randomly picked Haar-like features were evaluated on a database of clutter im-
ages. The solid lines illustrate the best fit with a Laplacian distribution.

of HFs is much smaller than the redundant set of features which VJ use. Thirdly, sim-
pler weak classifiers, which are faster to train, are used. The complexity of their training
approach is O(N M)+O(K T ). Note that, since clutter images are not used, N is smaller.
Similarly, as a smaller set of non-redundant HFs are used, the value of M is smaller as well
(∼ 7,200).

3.2.3 Methodology

In the following, we propose Laplacian clutter model as an alternative to the simple clut-
ter models1 used by PDF [13]. Following this, we describe a simplified cascade building
procedure, which also contributes to accelerating the training process.

3.2.3.1 Clutter model

As proposed by Huang and Mumford [6], we model feature values obtained on clutter im-
ages using a Laplacian distribution. The Laplacian distribution has two parameters. The
location parameter, µ, and the scale parameter, b. Given n feature values f = [ f1, f2, ..., fn]
obtained by evaluating a HF on a database of clutter images, the maximum likelihood
estimators ofµ and b are given by (3.10) and (3.11), respectively. Fig. 3.3 shows histograms
of feature values (dotted lines) obtained by evaluating five HFs on a database of clutter im-
ages. The solid lines represent the best fit to the histograms using a Laplacian distribution.

µ= median
(

f
)

(3.10)

b = 1

n

n∑
i=1

| fi −µ| (3.11)

As pointed out in [13], the clutter distributions are symmetrical with their median
at f = 0. As the median of feature values is known a priori for all HFs, the Laplacian
distribution can specified only with the scale parameter, b. Further, note that the clutter

1PDF [13] used a simple clutter model, which assumes that the probability of a feature value of a HF, on a
clutter image, to be greater/lesser than 0 is 0.5.
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Figure 3.4: The dotted lines represent histograms of feature values of Haar-like Fea-
tures when evaluated on a database of object images. The solid lines show the Lapla-
cian clutter model estimated for that feature. The thresholds, θ1 and θ2, are set to
minimum and maximum feature value recorded for object class images, respectively.

models are not specific to any object detection problem. Once computed, they can be
used for various object detection problems, and therefore, their computation does not
add to the training time.

3.2.3.2 Training procedure

This section describes how Laplacian clutter models are used to train the object detector.
Training a weak classifier:
Weak classifiers that label an image x as object or clutter can be expressed as in (3.13).

Training such a weak classifier involves setting appropriate values to its thresholds (θ1,
θ2). The quantity f refers to feature value of a HF which is obtained as in (3.12). In (3.12),
k refers to the number of rectangles in a HF. The quantity µ(i ) is the mean intensity of the
pixels in image x enclosed by the i th rectangle and w (i ) is the weight assigned to the i th

rectangle.

f =
k∑

i=1
w (i ) ·µ(i ) (3.12)

h(x) =
{

Object,θ2 > f > θ1

Clutter,otherwise
(3.13)

Training the weak classifiers as in (3.13) can be intuitively understood from Fig. 3.4.
Histograms of the feature value, f , from five different HFs, when evaluated on object class
images are shown with dotted lines. As illustrated in Fig. 3.4, θ1 and θ2 are set minimum
and maximum feature value recorded for object class images, respectively. This ensures
that all the object class training images are classified correctly.

The error of each weak classifier, ε, is intuitively the proportion of clutter images that
produce a feature value between θ1 and θ2. The Laplacian clutter model can be used to
estimate the error a weak classifier will make on clutter images. The error, as shown in
(3.14), is the difference of cumulative sum of the distribution at θ2 and θ1.
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> >Image
sub-region
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Figure 3.5: A cascaded classifier consists of multiple nodes arranged in a degenerated
decision tree fashion. An input image is scanned at different scales and positions for
the presence of a face. If an image sub-region is classified as a face by all the nodes of
the cascade, then it is labeled a face.

ε= 0.5

sign(θ2)

1−e

−|θ2|
b

− sign(θ1)

1−e

−|θ1|
b


 (3.14)

As ε can be estimated without having to evaluate clutter images on thousands of HFs,
savings in training speed is achieved.

Training the cascade:
Fig. 3.5 illustrates the cascade classifier architecture. The cascade consists of a series

of nodes, each of which is a binary classifier that labels an image sub-region as belonging
either to object class or to clutter class.

Generally, each node is built by selecting complementary weak classifiers using ma-
chine learning algorithms such as AdaBoost [20][13][7][8]. This procedure makes sure that
that each node has a very high true positive rate (TPR). In the current set up, as each weak
classifier is trained to have a high TPR, the time-consuming AdaBoost procedure can be
avoided.

A cascaded classifier, as shown in Fig. 3.5, is trained in two steps.

1. All the available weak classifiers are trained as described in Section 3.2.3.2. This
procedure has a complexity of O(N M).

2. The weak classifiers are sorted according to their estimated error, as computed us-
ing (3.14). The weak classifier with the least error is assigned to the first node, the
one with the second least error to the second node, and so on. This process can be
completed in O(Mlog M) time.

The complexity of the procedure is O(N M)+O(Mlog M). This turns out to be signif-
icantly lower than O(N M)+O(K T ), which is required to train PDF’s detector [12]. This is
because, the proposed approach does not depend on the parameter T , which accounts
for the time-consuming AdaBoost procedure.

73



3.2.4 Results

In this section, object detectors built according to the proposed training approach, are
compared with the state-of-the-art approaches in terms of training speed, testing speed,
accuracy and sensitivity to ambient illumination. Two object classes are considered for
this purpose: human frontal faces and human heart images from magnetic resonance
images. Human frontal faces are an ideal object class for study as many researchers have
already published their results on this class, and thus, the object detectors can be com-
pared in a fair manner. We chose human heart image regions as an object class mainly
because for two reasons. Firstly, PDF’s [13] approach, on which the proposed training
approach is based on, publishes results on human hearts as well, and therefore, provides a
reference to compare the two algorithms. Secondly, the human heart class presents lesser
degree of intra-class appearance variations than the human frontal faces (which can vary
due to race, sex, genetics and ambient lighting among other factors), and therefore, one
can assess how much intra-class variation a training strategy can handle.

Training speed: Table 3.4 lists the parameters used for training face and heart detec-
tors. The time required for training the detectors is shown in the sixth column. Note that,
as different computers with different CPU speeds, were used to train the detectors, the
training times are not directly comparable. In column seven of Table 3.4, we attempt
to “normalize” the training time by dividing the total required time by the training pa-
rameters. The proposed training approach was the fastest; the face detector took 30 sec-
onds while the heart detector took 2 seconds. As previously mentioned, Laplacian clutter
models are common for all object classes, and therefore they can be pre-computed. The
training time reported for the proposed approach does not include the time to compute
Laplacian clutter models, which normally takes 90 seconds for 7,800 HFs using a database
of clutter images with 10,000 images.

Accuracy: The accuracy of the object detectors built using the proposed approach
is compared with other VJ type [13][20][7][21][14] and non-VJ type [16][18][15] object
detectors in Table 3.5. The accuracy of the object detectors are measured in terms of
TPR and Number of false detections (FD). Face detectors were tested on the standard
MIT+CMU face database [16]. The heart detectors were published on a set of 293 MR
images of the heart. The accuracy of the object detectors built with the proposed approach
can be compared with the state-of-the-art results in Table 3.5. The face detector produced
979 false detections, which is approximately 10 times worse than the VJ face detector.
However, the number of false detections by the heart detector was only 2, which is similar
to that of VJ heart detector.

Sensitivity to illumination: As the perceived appearance of any object depends on
the illumination conditions, all appearance-based object detectors, like the proposed one,
are sensitive to ambient lighting conditions. To test the sensitivity of the object detector
to illumination conditions, we generated 7 synthetic test databases (DS2, DS3 . . . DS8) by
applying image transformations to the original test database (DS1). The image transfor-
mations, detailed in the footnote of Table 3.6, simulate changes in illumination. The test
images obtained after the transformations are shown in Table 3.6.

As pointed out in [13], PDF’s detector is mostly invariant to image transformations.
This is because, their weak classifiers are based on the sign of the feature values, and not
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Table 3.5: Comparison of accuracy of the face and heart detectors

Method
Face Heart

FD a TPR b FD a TPR b

Proposed 979* 86.5* 2* 95.4*

PDF [13] 912* 88.0* 2* 97.3*

VJ [20] 95 90.8 2* 98.7*

LZZBZS [7] 90 92.5 n/a n/a

WBMR [21] 85 92.5 n/a n/a

PC [14] 100 90.0 n/a n/a

RBK [16]z 95 89.2 n/a n/a

SK [18]z 65 94.5 n/a n/a

RYA [15]z 78 94.8 n/a n/a

a FD: Number of false detections. b TPR: True positive rate.
* Results from our implementation. z Methods not based on HFs.

on their magnitude. Monotonic images transformations do not change the sign of the
feature value, however, its magnitude is affected, and therefore, the accuracy of the VJ’s
and the proposed detector varies if the test images are obtained through strong image
transformations. Nevertheless, note that the detectors built using VJ’s and the proposed
approaches were invariant to image transformations DS2 and DS3. This is because of
the variance normalization procedure [20] performed during testing. Variance normal-
ization nullifies linear transformations used to obtain DS2 and DS3. However, variance
normalization is not robust against non-linear transformations used to obtain DS4, DS5,
DS6, DS7 and DS8. Variance normalization, nevertheless, is important to maintain the
generalization power of object detector built using VJ’s approach [13].

Testing speed: The time required to process all the images in the test set by the face
and the heart detectors using the proposed approach was 68 and 15 seconds. VJ takes 62
and 14 seconds, meanwhile, PDF’s object detector takes 41 and 12 seconds. This includes
the time to read the image, computation of integral image(s), the scanning the image at
multiple scales on a 3 GHz CPU. The speed of the proposed approach is comparable to
the VJ approach, while PDF’s detectors were the fastest as their approach does not need
variance normalization.

3.2.5 Conclusions and discussions

In this chapter, one of the main difficulties in adopting Viola and Jones type object detec-
tors is addressed: their training time. One may need to wait for hours, if not days, to train
a Viola and Jones type object detector, which makes the approach difficult for use in real-
time searches for applications such as content-based image retrieval (CBIR). Given that
a user’s satisfaction of a web-based application reduces drastically after approximately 9
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Table 3.6: True positive rate measurements in simulated test datasets

Method DS1a DS2b DS3c DS4d DS5e DS6f DS7g DS8h

Proposed (Face)* 86.5 86.5 86.5 84.3 82.7 82.4 79.2 76.7
PDF [13] (Face)* 88.0 87.4 86.5 88.0 88.0 88.0 88.0 84.7
VJ [20] (Face)* 90.3 90.3 90.3 87.4 86.2 87.0 83.9 80.2

Proposed (Heart)* 95.4 95.4 95.4 97.3 83.2 93.3 89.7 61.9
PDF [13] (Heart)* 97.3 97.3 94.6 97.3 97.3 97.3 96.7 93.8
VJ [20] (Heart)* 98.7 98.7 98.7 90.3 85.2 96.8 93.0 76.3
* Results from our implementation.
a DS1: Original test images. b DS2: Intensity values are globally divided by 2.
c DS3: Intensity values are globally divided by 3. d DS4: Histogram equalized images.
e DS5: Gamma corrected image (γ= 0.8). f DS6: Gamma corrected image (γ= 0.9).
g DS7: Gamma corrected image (γ= 1.1). h DS8: Gamma corrected image (γ= 1.2).

seconds [5], it is important to reduce the training time to the order of seconds, to be of use
in real-time image searches.

3.2.5.1 How is fast training achieved?

The reduction in training time, with respect to Viola and Jones procedure, is primarily
because of three reasons. Firstly, Laplacian clutter models are used instead of clutter
images. Thus, lots of time is saved in reading, and evaluating thousands of clutter images
on Haar-like features (HFs). The Laplacian clutter models, do not depend on the object
class images, and therefore, can be pre-computed. Secondly, like Pavani et al. [13], we
prune the highly redundant (or over-complete) set of HFs [20] to obtain a smaller set of
HFs which are less redundant. This also accounts for savings in training time, as lesser
number of features need to be evaluated during training. Thirdly, the time-consuming
AdaBoost-based classifier selection procedure is omitted. A simplified cascade building
procedure is used, where only one classifier is assigned to a node, thus eliminating the
need to use AdaBoost.

3.2.5.2 Pros and cons:

The proposed training strategy was used to learn two object classes, human frontal faces
and human heart regions in magnetic resonance images. Apart from training time, the
results were compared to the state-of-the-art detectors in terms of three other factors:
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accuracy, sensitivity to illumination, and testing speed. The accuracy of the face detectors
were approximately 10 time worse than the Viola and Jones’s face detector. However, the
accuracy of the heart detector was comparable to that of Viola and Jones’s detector. The
face detector built using the proposed approach was unable to learn all the intra-class
variations present in the training set. The training set for human hearts contained lesser
intra-class variations, which was learnt accurately by the proposed training approach. The
testing speed and the tolerance to illumination changes of the proposed detector is similar
to that of Viola and Jones’s detector. The main advantage in using the proposed architec-
ture is its training speed. The fastest training time reported has been approximately 30
seconds with a training database of 500 images [13]. The proposed architecture reduces
the training time to approximately 2 seconds for a training database of 500 images, which
is a 93% decrease in training time with respect to the fastest available method.

3.2.5.3 Which objects can be learnt?

The proposed training approach was tested on objects such as stop-sign, bicycle wheel
etc. as shown in Fig. 3.6. Note that the detector works poorly on bicycle wheels. This
is because the HFs encode the background rather than the object itself. The wheel on
the first column of Fig. 3.6 was detected because it was used as the training image. This
problem was not observed on other opaque objects shown in Fig. 3.6. The stop-sign, IEEE-
logo, chess board and do-not-enter-sign detectors worked without many false positives,
which showed that the proposed training scheme is ideal for detecting objects with small
intra-class variations.
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Figure 3.6: The outputs of face, heart, stop-sign, IEEE-logo, bicycle wheel, chess board
and do-not-enter-sign detectors are shown in each row. The face detector produced
lots of false negatives, which says that the proposed method is not good detecting
human faces. However, for objects with lesser intra-class variations such as stop-
sign, IEEE-logo, human hearts, do-not-enter-sign and chess board the number of
false detections reduced drastically. The detector performs poorly on transparent
objects or objects with holes such as bicycle wheels. In this case, the background
is learnt instead of the object itself.
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Unhappily, I can scarcely choose what not to
learn unless I learn enough about it to be sure I
do not need to learn it all

Samuel Sandmel

The changes in facial appearance, which are certain to occur, can be gradual or abrupt
due to factors such as ageing, hair-growth, surgery, weight changes, sun-exposure, ances-
try, sex, health, disease, drug use, diet and sleep deprivation. When changes occur, the
accuracy of the face recognition systems decrease as a consequence.

To maintain the accuracy of the face recognition systems, the images belonging to the
training set need to be updated periodically. A simple way to update the training set is
through manual supervision. Manual supervision is time consuming and costly, which
underlines the need to have automatic methods of learning facial appearance changes.
A popular method used in the literature is called the Self-update procedure, where the
system learns the biometric characteristics of the user every time he/she interacts with
it. Typically, the most confident test images are added to the training set according to the
predicted label. Then, the system is re-trained with the newly added data.

A commonly acknowledged problem with the self-update methods is the corruption of
biometric traits due to misclassification. In this chapter, we propose the use of four confi-
dence measures that can reduce the number of misclassifications. Further, we investigate
the optimal design of the Self-updating face recognition systems (SUFRS), by performing
an extensive study using two challenging databases. our results show novel insights into
the relationship between the complexity of the face recognition algorithm, its learning
capacity of the FRSs and their tolerance to the corruption of training data.

Adapted from:

S-K. Pavani, F.M. Sukno, C. Butakoff, X. Planes and A.F. Frangi, A Confidence-Based Up-
date Rule for Self-updating Human Face Recognition Systems. In Proc. International
Conference on biometrics, Alghero, Italy. Lecture Notes in Computer Science vol.
5558, pages 91-98, 2009.

S-K. Pavani, F.M. Sukno, D. Delgado-Gomez, C. Butakoff, X. Planes and A.F. Frangi, Self-
Updating Frontal Face Recognition Systems: Design and Experimental Evaluation.
Submitted, 2010.
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Figure 4.1: An example of facial appearance changes occurring in a person because
of beard growth.

4.1 Design and Experimental Evaluation of Self-Updating Frontal Face
Recognition Systems

The accuracy of Face Recognition Systems (FRSs) on a user has been shown to decrease
with time [32] [12] [53] [21]. The decrease in the accuracy is the result of changes in
facial appearance because of factors such as ageing, hair-growth, surgery, weight changes,
sun-exposure, ancestry, sex, health, disease, drug use, diet, sleep deprivation, and bio-
mechanical factors [35] [25] [48]. Fig. 4.1 illustrates the appearance changes in a person
with an example.

Evidently, to maintain the accuracy of the FRS over time, the FRS needs to be re-trained
periodically with new images of users. One way to maintain a FRS up-to-date is through
the self-update procedure [56][36]. In this procedure, the system is re-trained with the
unlabeled data, which is acquired every time a user interacts with the system. Typically,
the most confident unlabeled facial images are added to the training set according to the
predicted label. In this way, the FRS can utilize the unlabeled data, which are available
free-of-cost [6], to train itself. The main advantage is that the self-update procedure avoids
the costs of supervised enrollment every time there is a performance degradation on a
user due to appearance changes.

However, as noted in [7][36][22], a major risk in automatically incorporating new train-
ing data is the potential for a gradual corruption of the training images. Since images are
added in a non-supervised manner, images on which one of the system components (e.g.,
face detection, segmentation or classification) failed could also be added. This leads to the
corruption of the biometric data belonging to the users. For example, the image shown in
Fig. 4.2a, should not be added to the training set because the face was not accurately
separated from the background and the facial features were not identified correctly. In
this particular example, the information learnt from this image will be incorrect, which in
turn, might corrupt the biometric data of the user even if the face was classified correctly.

In this chapter, we study how the choice of the face recognition algorithm used affects
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the long-term accuracy of the self-updating FRSs. Such a study is important because the
classification strategy used influences the degree of corruption that occurs and also, how
the classifier is affected by the corrupted training data. To this end, we built FRSs with
three different face recognition algorithms: Eigenfaces [49] (EF), Fisherfaces [4] (FF), and
Similarity-Based Fisherfaces [10] (SFF). These three algorithms were chosen because of
the differing levels of inductive reasoning1 in their training process. Our implementation
of EF uses purely transductive reasoning2 [51] (i.e., it does not use inductive reasoning).
FF was mildly inductive, as the global statistics of the user data was used to find the best
discriminating sub-space. SFF, in comparison to FF, is more inductive as user-specific
models are built, which are later used for recognition.

The experiments reported in this study were performed on two large image databases
where users were monitored for a long periods of time on a day-to-day basis. The first
database, GEFA [30], was collected automatically using a FRS. This database has 14,279
images of 129 individuals acquired during five months. Secondly, we used images com-
plied from YouTube [2] videos, which document facial appearance changes over multiple
years. Videos, in which people were artificially aged, were also used. In total, we extracted
31,951 images from 25 videos documenting extreme facial appearance changes. Both
these databases are available to the scientific community free-of-cost (See Appendix). The
images in both the databases contain mainly frontal face images, and few with small in-
plane and out-of-plane rotations.

The rest of the chapter is organized into the following sections. In Section 4.1.1, we
overview some of the current work performed to tackle the problem of gradually changing
appearance of faces. In Section 4.1.2, we overview basic building blocks of the face recog-
nition system that is used in our experiments. Section 4.1.3 describes four confidence
measures that can be used to determine the reliability of extracting information automat-
ically from an unlabeled image. Sections 4.1.4 and 4.1.5 present the experimental setup
and the results, respectively. This chapter is concluded in Section 4.1.6.

4.1.1 Comparison to previous work

Over the years, two main approaches were developed to handle the ever-changing appear-
ance of human faces. In [42], [47], [43], and [19], the FRS is made invariant to ageing by
simulating the effect of ageing on the appearance of a face. Such approaches are generally
failure-prone, as the future appearance of a face is not only dependent on ageing, but
also on other unpredictable factors such as skin tanning, health and beard growth. These
approaches are primarily intended for applications where recent images of a person are
not available. For example, they are used in predicting the current appearance of a person
who has been missing for a long time.

There are applications where simulation of ageing becomes unnecessary. For example,
a FRS installed at home interacts with the users almost on a daily basis. In such scenarios,

1Induction uses training data to find approximations of functions that describe the data [51]. Inference on
the test data are obtained by evaluating the test data on the derived functions, a process commonly referred to
as deduction.

2Transductive inference is based on direct generalization from the training set to the test set, thus avoiding
the intermediate problem of estimating a function.
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Figure 4.2: Examples of bad (left) and good (right) facial segmentation. Including
inaccurately segmented images corrupts the training set.

the appearance of the users can be learnt every time the system sees a user, and therefore,
the system can remain up-to-date.

Aryananda [3] and Mou et al. [26] presented FRSs that automatically collect training
images as users interact with it. Their experiments were preformed on relatively small
databases, which explains why they report the learning occurred without any corruption
of data. Further, all the images belonging to a user were acquired in a short span of time
and therefore, none of the users exhibit changes in appearance with time.

In [37], Elastic Bunch Graph Matching (EBGM) [54] along with graph mincut-based
approach [5] is used to automatically collect training data from a database of unlabeled
facial images. The tests were made on Equinox database which had 56 users with 129
facial images each. Although, an independent impostor dataset was not used to update
the system, the authors acknowledge the presence of misclassified users. The question
of whether the biometric system will breakdown if the EBGM verification algorithm is re-
trained with newly acquired facial images still remains to be explored.

Recently, Franco et al. [13] presented a study of self-updating face recognition systems
on large datasets. The main drawback of their testing methodology was the absence of im-
postors who could potentially corrupt the training data. They conclude that the percent-
age of corrupted data after the update, was negligible, and that a noticeable degradation
of accuracy was not observed.

Our work differs from the previous works in the following ways. Unlike the approaches
presented in [17] [37] [38] [22] where verification problem is considered, we consider the
more generalized problem of identification, where one-to-many matching is performed.
As proposed in [30], we use confidence values generated from other components of the
FRS such as face detection and segmentation blocks, which provide complementary in-
formation to the classifier confidence. In all of the previous approaches, only the classifier
confidence is used for the update process. In contrast to update strategy used by Franco
et al. [13], we perform worst-case analysis of the FRSs, wherein the system is updated with
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Figure 4.3: Flow chart of the FRS. The input image is checked for the presence of
face(s). If any, the face(s) are segmented and identified. The selection process
determines whether the information extracted from each face is reliable enough so
that it can be used to re-train the classifier.

an independent impostor data first, thereby, increasing the probability of corrupting the
training set [40]. Further, this is the first study on the self-updating capacity of the FRS,
based on different recognition algorithms that use varying levels of inductive reasoning,
performed on large and meaningful databases.

4.1.2 Components of the face recognition system

The system used in this chapter, whose flowchart is shown in Fig. 4.3, has five main
building blocks: face detection, segmentation, normalization, classification and selection
block for automatic learning. In the following, the algorithms used in each block are
described.

4.1.2.1 Face detection

The face detection block determines whether there are face(s) in an image or not. If there
are face(s), the detector outputs their position and size. The main requirements of the face
detection block are that it works at real-time speed while being highly accurate. The real-
time speed is necessary in order to reduce the waiting time of the user to be identified.
High accuracy is needed to reduce the inconvenience caused to a user if his/her face is
not located by the system. Research in face detection is vast [16], there are many detectors
that provide high degree of accuracy and real-time speed. In our system, we used the
detector proposed in [29], which uses weak classifiers based on Haar-like features [28]
with optimally weighted rectangles. This detector, when tested on the MIT+CMU dataset
[39], produced a false acceptance rate of 5× 10−6 while correctly classifying 93% of the
faces in the database at real-time speeds.
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4.1.2.2 Face segmentation

Separation of a face from the background and accurate localization of facial features is
important for four reasons. Firstly, it is possible to extract facial features based on either
shape (directly using the resulting parametrization in model space) or image intensities,
taking into account region correspondences. It is worth pointing out that one of the better
performing algorithms in FRVT 2006 [33], FaceIt® from L-1 Identity Solutions [1], uses
both shape and texture for classification. Secondly, as will be detailed in the following
section, segmenting a face enables to determine the pose and the expression of a face. Us-
ing the result of segmentation, the face can be warped to an expression/pose-normalized
representation which facilitates identification by reducing intra-class variations. Thirdly,
segmentation of a face removes the background regions, which have been shown to have
an adverse effect on the identification process [4]. Finally, it has been shown [24] that if
the eye position is accurately determined, the total error rate scores of all users decrease
substantially. The segmentation process aims to precisely delineate facial components,
and therefore, including it in the framework will potentially lead to more accurate classi-
fication.

For the segmentation of the prominent facial features, our system employs Active Shape
Models with Invariant Optimal Features (IOF-ASM) [46]. This algorithm combines local
image search with global shape constraints based on a Point Distribution Model (PDM)
[9]. IOF-ASM has demonstrated a significant improvement in segmentation accuracy as
compared to the linear ASM [9] and Optimal Features ASM [50] (a nonlinear extension
of the linear ASM) in the tests performed on AR [23], XM2VTS [24] and EQUINOX [41]
databases. The segmentation process is quite fast; running it on a 100 × 100 face ap-
proximately takes one third of a second on a 3 GHz processor with an average error of
approximately 2% of the inter-eye distance.

4.1.2.3 Face normalization

It has been pointed out by Poh et al. [34] that intra-class variations of a user’s face can be as
diverse as inter-class variations between different users. The aim of the face normalization
block is to facilitate identification by reducing the intra-class appearance variations due
to pose, expression and illumination.

To reduce the effect of changes in pose and expression in the appearance of a face,
the texture obtained from the test image is represented in a shape independent form. In
other words, all facial images are warped onto some common shape. After the face is
segmented, its texture is warped by a piece-wise affine transform (as in Active Appearance
Models [8, 44]) onto the mean shape x̄ of the Point Distribution Model (PDM). Specifically,
given source shape (segmentation result) and target shape (mean shape of the PDM), a
Delaunay triangulation is applied to the landmarks to obtain a triangular mesh for both of
them. Afterwards, knowing the correspondence between triangles in the source and target
shapes, each pixel in every triangle of the source shape is mapped into the corresponding
triangle of the target shape using barycentric coordinates. See Fig. 4.4 for an illustration.
Further, histogram equalization on the extracted texture to normalize the effect of ambi-
ent lighting on the appearance of a face.
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Figure 4.4: Illustration of texture warping. Images with known shapes on the top row
are warped onto the mean shape of the PDM in the middle. The resulting images are
on the bottom row.

4.1.2.4 Classification

To remove redundancy and to obtain compact texture and shape representation, the shape
and the warped texture data are projected to the PCA subspace, spanned by an inde-
pendent dataset of frontal face images which does not include user information, and its
coordinates in this subspace are the parameters used for our experiments. Formally:

bg =ΦT
g (g − ḡ ) (4.1)

where bg are the parametric representation of a face g , ḡ is the average facial appearance
or shape across the training set andΦg are the axes of the PCA subspace. The PCA param-
eters are whitened [27] to normalize their magnitude.

In this study, we experimented with three recognition algorithms: Eigenface (EF) [49],
Fisherface (FF) [4], and Similarity-based Fisherfaces (SFF) [10] which uses personalized
face models for each user.

As illustrated in Fig. 4.5, the shape and the texture parameters extracted from a test
image are classified independently and the decisions of the classifiers are fused. The
fusion of decisions is covered in Sec. 4.1.3.5. In the following, the three classification
strategies (EF, FF and SFF) are described.
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1. In our implementation of the EF strategy, the shape and texture data are projected
to a low dimensional subspace, generated by Principal Component Analysis (PCA)
[15]. The PCA subspace was computed from an independent face dataset that does
not contain user data, and therefore, the axes of the subspace remain the same even
if the training data change during the update process. During testing, the shape
and texture PCA parameters are input to an Open set Transductive Confidence Ma-
chine k-Nearest Neighbor classifier (OSTCM-kNN) [20]. The OSTCM-kNN classifier
is suitable for open set multiclass classification problems. It provides confidence
measures that intuitively provide a rejection option, and thereby, it permits impos-
tor identification. Note that this implementation of EF strategy does not use any
inductive reasoning during its training.

2. The FF strategy uses Fisher’s Linear Discriminant (FLD) analysis [15] to determine
a low dimensional space, which maximizes the ratio of between-class scatter and
within-class scatter of the PCA parameters, computed from the training data. The
transformed texture and shape parameters are input to a OSTCM-kNN classifier.
Note that, to make a decision on a test face, the FF strategy uses a low dimensional
subspace that depends on the current training set. Thus, inductive inference is used
during its training.

3. In the SFF strategy, the PCA vectors obtained from shape and texture data are trans-
formed to Similarity-Based face Representation (SBR) proposed by Delgado-Gomez
et al. [10]. Similarity-based face representation is obtained by linearly projecting a
user’s data (shape or texture) to several linear sub-spaces. Each of these sub-spaces
is associated to a different user and the value of projection (or score) on a test image
on a sub-space measures the similarity of a test person to the user. The shape and
texture scores are input to a OSTCM-kNN classifier. The SFF strategy uses stronger
induction rules than FF as personalized models are created using the training data.

4.1.2.5 Selection block

Every time a face has been identified, it goes through an automatic selection process that
determines whether it is suitable to be added to the training set of the appropriate user.
The selection process deems two categories of images to be unsuitable for automatic
learning: 1) images with outdated facial appearance, 2) images, where the algorithms,
used in our system, produce unreliable results. The selection process is detailed in the
next section.

4.1.3 Selection process for automatic updates

The selection process is based on the following four confidence measures:

4.1.3.1 Temporal confidence (Ct )

The accuracy of FRSs has been shown to decrease linearly with the time elapsed between
enrollment and testing [32]. In our experiments, we assume that an image is valid to
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Figure 4.5: Flow chart of the steps involved in the classification process. For all three
face recognition algorithms tested, the shape and texture data extracted from a test
image are classified separately and the decision is fused to obtain a final decision.

represent a user if it is no more than 1,825 days (∼ 5 years) old, after which it is deemed
unsuitable to represent the user’s appearance. The value of Ct is computed as in (4.2).
The quantity te stands for the time elapsed (in days) between the time of acquisition of
the data and the current time.

Ct = max

(
0,1− te

1825

)
(4.2)

4.1.3.2 Confidence of the face detector (Cd )

When the frontal face detectors (as the one described in Section 4.1.2.1) are used to de-
tect faces, two main observations can be made. Firstly, multiple detections are generally
found over a face if it is frontal. Faces with in-plane and out-of-plane rotations get fewer
detections. Secondly, the likelihood p of a face (computed as the weighted ratio of the
number of weak classifiers that label it as face to the total sum of weights of all the weak
classifiers) is high for a frontal face and vice versa. We use both these criteria to compute
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Figure 4.6: Example images arranged according to their Cd and Cs value.

the confidence of face detection as in (4.3).

Cd = n
√

p̄ (4.3)

where p̄ is the mean of likelihood values, p, computed for all detection windows that are
fused to form a single detection region (p̄ is always between 0 and 1). The quantity n
denotes the number of detections around a face. It can be observed that as n increases,
Cd also increases. The difficult faces, for example, the non-frontal or insufficiently il-
luminated, generally have fewer detection windows, and, therefore, tend to have lower
confidence of detection. High values of p̄ and n were observed for uniformly illuminated
frontal faces.

4.1.3.3 Confidence of the segmentation algorithm (Cs )

One of the drawbacks of the segmentation algorithm described in Sec. 4.1.2.2 is its occa-
sional failure to converge to the real contours of the face. This situation is illustrated in
Fig. 4.2a. Although, visually, this fact is very clear, the segmentation algorithm itself does
not provide an automatic way to detect bad segmentation results. Sukno and Frangi [45]
propose a reliability score, which is computed using shape and the texture information,
extracted by the segmentation algorithm during the matching process. The reliability
score indicates if the fitting of the statistical face model to a test face is accurate or not. For
details on its implementation, readers are referred to [45]. Fig. 4.6 shows the confidence
of segmentation, Cs , computed on several test images.

4.1.3.4 Confidence of the classification algorithm (Cc )

The confidence of OSTCM-kNN classifier is computed using p-values [52]. The p-values
are computed in two steps:
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Firstly, the strangeness (α) of a test exemplar i with a label y is computed as shown in
(4.4).

αi =
(

k∑
j=1

d y
i j

)(
k∑

j=1
d−y

i j

)−1

(4.4)

The quantity,
∑k

j=1 d y
i j refers to the sum of all distances of the test exemplar i to the

k nearest exemplars in the training set that belong to a class with a label y . The quantity,∑k
j=1 d−y

i j refers to the sum of all distances of the test exemplar i to the k nearest exemplars

in the training set that do not belong to a class with a label y . The distance between two
vectors is defined as the smallest angle between them. The angle based distance metric
was shown to be a good choice for PCA-based algorithms [31]. All the experiments in this
chapter were performed using the five nearest neighbors (k = 5). Note that the lower the
strangeness index, the higher is the probability of an exemplar i to belong to class y .

Secondly, the p-values are computed according to (4.5).

py (e) = α1 +α2 + . . .+αl +αy
new

(l +1)αy
new

(4.5)

Here, [α1,α2, . . . ,αl ] are the strangeness values computed from the l training vectors, and
α

y
new is the strangeness value computed for the test exemplar with a putative label y . If

there are c classes of training data, then there are c p-values for each test exemplar. The
label that yields the largest p-value is chosen as the label of the test exemplar. The p-
values can be thought of as a vector of probabilities of a test face belonging to one of the
users enrolled in the FRS. The p-values are min-max normalized to restrict their values
between 0 and 1. Min-max normalization was chosen over the more frequently used z-
normalization [20] as it provides a bounded range of values.

4.1.3.5 Fusion of shape and texture p-values

As depicted in Fig. 4.5, the shape and the texture information obtained from a test face are
classified independently. The decisions of the shape and the texture classifiers are fused
in the following manner. If ps and pt represent the shape and the texture p-values, the
result of fusion, p f , is obtained according to (4.6).

p f = ws ·ps +wt ·pt (4.6)

where ws = {w1
s w2

s . . . wc
s } and wt = {w1

t w2
t . . . wc

t } represent person-specific weights for
fusing shape and texture p-values. Computing personalized weights is helpful because
some users may be better discriminated by shape than by texture and vice versa.

The weights vectors, ws and wt , are determined by examining the relative discriminat-
ing ability of the shape and texture data enrolled for a user. Every face in the training set,
belonging to a user, is used as test data. Following classification using shape and texture
data, ps and pt are obtained. The p-value noted for the genuine user label (illustrated
with ’x’ in Fig. 4.7), and the p-values recorded for other users (illustrated with ’.’ in Fig. 4.7)
are noted. The optimal line of projection, determined using Fisher’s linear discriminant
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Figure 4.7: Illustration of the optimal line of projection (represented as a dotted line),
whose slope specifies the weights for fusing shape and texture p-values. The markers
’x’ and ’.’ represent p-values obtained for genuine user labels and the rest of the users,
respectively. Note that, as a result of min-max normalization, the p-values recorded
for the genuine user labels are 1.

analysis [15], that best separates the genuine and impostor p-values specifies the weights
for optimal fusion for a particular user.

Note that the optimal weights for fusion changes every time the training set changes.
In our study, we allow only the SFF strategy to use personalized models. Therefore, we
update the optimal weights only for the SFF strategy. For the other two recognition algo-
rithms, the weights are determined once, during manual enrollment of training images,
and are unmodified during the update process.

4.1.3.6 Computation of confidence value

The confidence of the classifier is derived as the difference of the largest p f -value with the
second largest one [20]. Here, p f -value refers to the fused shape and texture p-values. The
confidence value indicates how improbable the classifications other than the predicted
labels are.

4.1.3.7 Image selection using confidence measures

The selection process proceeds as follows. A test face, with a label j , is added to the
training set of the j th user, only if the confidence values computed on it (Cd , Cs and
Cc ) are greater than preset thresholds. The minimum required Cd and Cs values were
determined using the interquartile distance in the distribution of Cd and Cs values of
faces in the training set. In the following experiments, it was assumed that when Cd

and Cs values are greater than Q1 −3× (Q3 −Q1), then the performance of detection and
segmentation algorithms are satisfactory. Here, Q1 and Q3 represent the first and the third
quartiles, respectively. Otherwise, the image is deemed unfit for learning. The threshold
for Cc was varied during the experiments and is detailed in Sec. 4.1.4.6.
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It is important to note that as images are continuously added to the training set during
the update process, it is possible to overwhelm the FRS simply by accumulating a huge
amount of training data. In order to limit the number of images per user, every time a new
image is added to an already full training set, the image with the lowest Ct , is eliminated
such that the total number of images per person is at most N .

4.1.4 Experimental setup

In the following, the image datasets used for testing the self-updating FRS is described.
Then, the update process is detailed followed by the procedure to set the impostor detec-
tion thresholds.

4.1.4.1 Image databases

Two image databases were collected to perform the experiments: Gradually Evolving Fa-
cial Appearance (GEFA) and YouTube (YT). Both these databases contain frontal face im-
ages of people acquired over long periods of time, almost on a daily basis, so that changes
in facial appearance is recorded.

4.1.4.2 GEFA

This database contains images of 129 individuals (belonging to 15 different nationalities)
acquired over a period of five months on a daily basis. A total of 14,192 images were
collected. These images were acquired in a typical access control scenario. The lighting
was more or less uniform and most of the faces in the database are frontal. There are
also lots of cases where the individuals try to impersonate others by changing the pose
of the face and the expression. Some of the typical images of this database are shown
in Fig. 4.8. Of 129 individuals, 35 were selected for the users group, and the remaining
74 were chosen for the impostors group. Whether an individual belonged to the user- or
impostor group was decided based on the frequency with the individual interacted with
the system. Individuals who were regular throughout the acquisition period were chosen
for the users group, and the rest for the impostors group. Among the images belonging
to users group, the first 12 images, with high face detector and segmentation confidence,
were selected manually for the initial training set. It was made sure that the initial training
set, belonging to each user, does not contain corrupted data due to possible errors in face
detection and segmentation. The rest of the images were used for the update procedure.
Fig. 4.10 (left) shows the distribution of images in the GEFA database according Cd and Cs

values. The presence of images with low Cd and Cs values in the update set can be noted,
which potentially can cause corruption of training data.

4.1.4.3 YT

This database contains 30,157 images of 25 individuals extracted from videos downloaded
from YouTube website [2]. Some of the typical images in this database are shown in Fig.
4.9. The faces in this database are frontal with neutral expression. They exhibit high degree
of appearance variation due to ageing and beard growth. As in GEFA database, the first
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Figure 4.8: Typical images in the GEFA database.

12 images with high face detection and segmentation confidence values were chosen for
the training set, and the rest were used for the update procedure. Fig. 4.10 (right) shows
the distribution of images in the YT database according to Cd and Cs values. As in GEFA
database, the presence of images that can potentially cause corruption can be noted.

4.1.4.4 Limitations

GEFA and YT do not contain images of users who exhibit abrupt appearance changes. All
the appearance changes occur gradually over time. We assume that it is in the interest
of higher security that individuals who exhibit abrupt appearance changes should be en-
rolled again after operator-assisted verification.

4.1.4.5 Update procedure

As self-learning approaches incrementally change the training data, the next identifica-
tion result relies on the previously updated users. Even if the previously updated data are
the same but the order in which the images are fed into the system are different, then the
matching score of the next matching may be different. Ryu et al. [40] test three different
update procedures on fingerprint update problem: 1) Impostor first, where impostor data
are first presented to the system followed by data from genuine users; 2) Genuine first,
where data from genuine users are passed through the update procedure followed by
impostor data; 3) Randomized, where data from genuine users and impostors are updated
randomly. Understandably, the Impostor first strategy produced the worst performing
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Figure 4.9: Typical images in the YT database.

ROC curves, as impostors have a higher probability of corrupting the training data. In our
experiments, we follow the Impostor first update strategy in order to test the worst-case
scenario.

Note the absence of a separate test database for GEFA and YT databases. We follow
the continuous update+test strategy proposed by Poh et al. [34] in order to maximize the
number of images available for the update process. In this strategy, the true labels of all
the update data are known a priori, which permits to monitor the correct classification
rates of a user’s data during the update process.

To reduce variability in the measurements, a 10-fold cross-validation is performed
during the update process. In each fold, the individuals in the training and the update
set were randomized. From the 35 individuals labeled user group in the GEFA database, 30
were randomly selected as users, and the remaining were added to the 74 individuals in
the impostor group to form impostors. For YT database, for each fold, 20 individuals were
selected randomly as users and the the remaining 5 as impostors.

4.1.4.6 Impostor detection

A face is labeled an impostor when the confidence of classification is low. The following
two different strategies were used to set the threshold on classifier confidence.

1. Global impostor thresholds (GIT): In this strategy, the acceptance threshold for a
genuine user was set globally, and was varied from 0 to 1.0 in increments of 0.1. Note
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Figure 4.10: Normalized histograms of Cd values (top row) and Cs values (bottom
row) for GEFA (left) and YT (right) databases. The shaded bars represent histogram
values from the training set, and the white bars represent histogram from the update
set.

that if the impostor threshold is set to 0, then, none of the faces will be labeled as
impostor. Similarly, if the impostor threshold is set to 1.0, then all the faces classified
by the system will be labeled as impostors.

2. User-specific impostor thresholds (UIT): As argued by Yager et al. [55] and Marcialis
et al. [22], different users of FRS might need different impostor thresholds. The
group of users who are vulnerable to impersonation (Lambs [11]), might need higher
impostor threshold than the rest of the users. In order to determine the impostor
threshold for each user, we followed the following strategy. The users enrolled in the
FRS are randomly split into non-overlapping sets of temporary users and temporary
impostors. The FRS is trained with the data belonging to temporary users, and the
data from temporary impostors is used to test the system. Each data sample in the
temporary impostors will be assigned a label belonging to temporary users and a
confidence value. This process is repeated 50 times by selecting random tempo-
rary users and temporary impostors. At the end of 50 rounds, almost every user
will have impostor confidence values assigned. Using these confidence values, the
user-specific thresholds are set following the outlier criterion described in Frigge et
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al. [14]. Using the first and the third quartiles, Q1 and Q3, the impostor threshold
(θ) is set in the following manner.

θ =Q3+k(Q3−Q1) (4.7)

In our experiments, the quantity k was varied from 0 to 6. The higher the value of k,
the higher will the impostor threshold. In case a user does not have any confidence
values assigned, then θ is set to a default value of 0.2.

4.1.5 Results

The update process was performed for GEFA and YT separately. It was repeated for each
impostor threshold on the FRSs based on EF, FF and SFF.

For every impostor detection threshold, the number of faces that were correctly- and
incorrectly learnt, during the update process was noted. Normalizing the values by the
total number of images learnt, at a threshold setting, the proportion of correctly- and
incorrectly learnt faces can be computed, which is visualized in Fig. 4.11. Once the update
process is completed, the extent of corruption in the training set was computed as the
ratio of wrongly assigned faces in the training set to the total number of faces. The amount
of corruption at the end of update process is also shown in in Fig. 4.11. The following
observations can be made from the figure.

1. The stricter the impostor thresholds, both for GEFA and YT, the lower the proportion
of incorrectly learnt faces. This correlates with the corruption of the training set
observed after the update process.

2. Unlike the incorrectly learnt faces curve, the proportion of correctly learnt images
need not always peak at the lowest impostor threshold settings. This is the result of
the Impostor first update strategy. By the time FRS is updated with the user data,
impostors corrupt the training set, which makes it impossible to learn the user data
correctly.

3. The FRS based on SFF, when updated with YT, learns very few faces that were cor-
rectly classified. However, when updated with GEFA, this trend was not observed.
This confirms that the learning capacity of an algorithm depends on the intrinsic
properties of the dataset, such as the number of wolves (users who are good in
impersonating others [11]) and lambs in it. As can be observed in Fig. 4.11, greater
proportions of the training data are corrupted when tested with YT than when tested
with GEFA.

4. In general, it was observed that using user-specific impostor detection thresholds
leads to lower corruption and an increase in the proportion of correctly learnt facial
data.

Figs. 4.12 and 4.13 show plots of Correct Classification Rate (CCR) and the Classifier
confidence (Cc ) as a function of time for different threshold settings. To generate the
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plots, we time-normalize the images in the dataset. That is, the first image in the update
set belonging to a user has a time of 0, and the last one has a time of 1. The following
observations can be made from this plot.

1. At high values of impostor thresholds, when very few correctly classified faces are
learnt, it can be noted that the Cc constantly decreases with time. Subtle decreases
in CCR can be noted as well. This can be explained from the fact that, as peo-
ple change with time, if the appearance and shape information is not updated, a
decrease in Cc and CCR will continue until the users are not recognized correctly
anymore. The decrease in the Cc measurements can be noted better in YT database
than in GEFA. This is due the fact that GEFA was acquired within a relatively short
time period of 5 months, and therefore, the changes in facial appearance was less in
comparison to those in YT database. YT, as shown in Fig. 4.9, documents relatively
higher degree of appearance changes, and therefore the original training data will
be very different from the test data if correct learning does not take place.

2. When tested with GEFA, SFF performs better than FF, which in turn performs better
that EF in terms of CCR for most threshold settings. This trend is reversed when FRS
is updated with YT. It is clear that the recognition algorithms that make decisions
based on inductive rules, SFF and FF, are affected more by corruption in the training
set than the purely transductive implementation of the EF algorithm.

3. EF, in general, performs better in YT than in GEFA. The possible reason for this could
be that the images in GEFA were acquired using the same camera and in similar
lighting conditions. This might make users appear similar to each other. People in
YT used different cameras in different ambient lighting conditions, which facilitates
discrimination between users.

4. When corruption is minimal and, simultaneously, when there is a high percentage
of correctly learnt faces (e.g., when FRS based on EF is tested with YT with a global
impostor threshold = 0.5), we notice that the Cc measurements actually increase
with time. However, the interval of impostor thresholds where this occurs is very
narrow. Lowering the threshold increases corruption, resulting in decline in CCR
over time. Increasing the threshold also has a similar effect, this, however, is because
no learning takes place as the impostor thresholds are very high.

5. If optimal impostor threshold can be defined as the threshold setting where at which
no corruption and simultaneously maximum learning occurs, then, one can ob-
serve that the optimal threshold varies with both database and the recognition al-
gorithm.

Fig. 4.14 shows an example of how rapidly a database gets corrupted when impostors
are added to the training set. The plot was obtained by updating FRSs with YT with GIT
= 0.2. We can observe that FRS based on EF starts accepting impostors first, followed by
the ones based on FF and then SFF. Once impostor data is introduced into the system,
FRS based on SFF corrupts itself at a faster rate than the ones based on FF and EF. This

102



C
H

A
P

T
E

R
4

—
T

O
W

A
R

D
S

S
E

L
F-U

P
D

A
T

IN
G

F
A

C
E

R
E

C
O

G
N

IT
IO

N
S

Y
S

T
E

M
S

GEFA YT

EF FF SFF EF FF SFF

in
co
rr
ec
tly

le
ar
nt

co
rr
ec
tly

le
ar
nt

in
co
rr
ec
tly

le
ar
nt

co
rr
ec
tly

le
ar
nt

0

0.6

0 6
0

0 1GIT

UIT

0.6

0

0.6

1

co
rr
up
-

tio
n

0

0.6

co
rr
up
-

tio
n

0

1
0

10

0

1

GIT

GIT

UIT

UIT

0 6

0 6

Figure 4.11: The effect of varying the impostor thresholds on the learning capacity of
the FRSs. The figure is arranged in two blocks: the first three rows plot the learning
capacity by varying GIT, and the second three rows by varying UIT. The first two rows
of each block show plots of correctly learnt- and incorrectly learnt images with during
the update process for different impostor threshold settings. The third row shows
the corruption in the training set after the update process is completed. Error bars
indicate the standard error of the mean. The dynamic range of the axes are the same
along each row, which is mentioned in the second column.

example clearly shows that the higher the level of induction in the recognition algorithm,
the earlier the FRS will fail.
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Figure 4.12: Plot of correct classification rate (CCR) and the confidence of classifica-
tion (Cc ) as a function of time. CCR and Cc are represented with a dashed line and
a solid line, respectively. Error bars indicate the standard error of the mean. The
dynamic range of the axes in this figure are the same, whose limits are 0 and 1, both
in horizontal and vertical directions.
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Figure 4.13: Plot of correct classification rate (CCR) and the confidence of classifica-
tion (Cc ) as a function of time. CCR and Cc are represented with a dashed line and
a solid line, respectively. Error bars indicate the standard error of the mean. The
dynamic range of the axes in this figure are the same, whose limits are 0 and 1, both
in horizontal and vertical directions.

4.1.6 Summary and discussion

This chapter studies the learning capacity and corruption in self-updating Face Recog-
nition Systems (FRSs) built with recognition algorithms that use three differing levels of
induction: Eigenfaces (EF), Fisherfaces (FF) and Similarity-based Fisherfaces (SFF). The
FRSs were updated using two large and meaningful facial image databases: GEFA and YT
databases with 14,279 and 31,951 images, respectively. Worst case analysis of different
FRSs over different databases shows two clear conclusions.

Firstly, the higher the level of induction in the classification algorithm, the faster the
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Figure 4.14: Plot of corruption in training set as the images from the first impostor are
fed to the system. Corruption was measured as the ratio of the number of wrongly
assigned faces in the training set to the total number of faces.

training set of the FRS will be corrupted. It is interesting to note that, over the years,
researchers have proposed using higher levels of induction in face recognition algorithms
(i.e., using personalized models) to obtain better classification rates. Our results show
that, the state-of-the-art algorithms need not necessarily be the best choice for use in a
self-updating FRS.

Secondly, our experiments confirm previous studies that the self-updating FRSs can
indeed be maintained error-free during the update process. However, the optimal impos-
tor threshold (global or user-specific), at which no corruption and simultaneously maxi-
mum learning occurs, for a given classification algorithm seems to be database-dependent.
As noted in [22], the existence of errors is a function of the number of Lambs and Wolves
[11] in a database. Currently, it appears that the only way to keep the self-updating bio-
metric system error-free is through periodic manual checking of the training images.

It should be noted that we perform a worst-case analysis of a self-updating FRS, where
the system is updated with the impostor data first. By the time genuine users are tested,
the training set might be corrupted entirely. A self-updating FRS installed in a real-life
scenario, will most likely corrupt at a slower speed, as one can assume that the probability
of a user interacting with the system is greater than that of an impostor. Nevertheless, if
the system is allowed to run for sufficient time, a decrease in performance will be noted
due to the corrupted data.

Two different measures can be implemented in the current setup to reduce the cor-
ruption of training data in self-updating FRSs. Firstly, robust methods [18] may be used
to estimate the axis of projection in FF and SFF classification techniques. A disadvantage
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of using robust methods is that the learning capacity of the FRS will reduce as well. This
is because, a change in appearance of a user will most probably be an outlier amongst
the previously acquired training data. Robust methods will tend to ignore the outlier, and
therefore, the newly included data will not be learnt. Secondly, increasing the amount of
training data stored per user should decrease the ill-effects of corruption. This is because
the addition of one corrupted data sample will corrupt the database relatively less if the
training set were bigger. Recently, we studied the effect of increasing the number of data
samples stored per user, and found that as the number of data samples per person in-
creases, the slower the FRS gets corrupted [30]. Note that the above-mentioned measures
may merely help to prolong the stability of the FRS. They cannot maintain the FRS without
corruption.

The study presented in this chapter opens up few areas for future research. We use four
metrics to prevent corruption of training data: time confidence, face detector confidence,
segmentation confidence, and classifier confidence. Are there better ways of estimating
these values? Better estimations of these confidence values can potentially lead to re-
duction in corruption. Perhaps, additional confidence measures can be derived from the
image data to better predict if a data sample belongs to the impostor class or not. An
interesting architecture to consider is the use of ensemble of face recognition algorithms
working in parallel, to predict the label of a test face. The probability of corruption should
intuitively reduce, and therefore, increase the stability of self-updating FRSs.

In closing, our recommendation for the design of a self-updating FRS is the following.
Firstly, minimize inductive reasoning in the classification strategy, especially if the num-
ber of training samples for a user is very small. Secondly, store as much training data as
possible. Perhaps, inductive rules can be derived for a user once the number of images
in his/her training database reaches a certain number. Finally, consider batch-updates
instead of instantaneous online updates under manual supervision. Perhaps, the operator
might be presented with a yes/no tool, where he/she could say whether the automatically
gathered images belongs to a particular user or not.

4.1.7 Databases download information

Information to obtain GEFA database can be found here: http://cilab2.upf.edu/gefa.
The YT database was composed of frames extracted from the following videos:

• http://www.youtube.com/watch?v=henv2naXuGo

• http://www.youtube.com/watch?v=xbKKsx2xC64

• http://www.youtube.com/watch?v=lRHPWZpRNX4

• http://www.youtube.com/watch?v=QY8gja0_CCA

• http://www.youtube.com/watch?v=LCI0F3JFTpc

• http://www.youtube.com/watch?v=8lGlC9e8MdM

• http://www.youtube.com/watch?v=QjAku6fnjEM

• http://www.youtube.com/watch?v=jHvBSWOiw3U
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• http://www.youtube.com/watch?v=h0fcMXKKMLA

• http://www.youtube.com/watch?v=y6YUjyPksyE

• http://www.youtube.com/watch?v=TVQkJZEfzkQ

• http://www.youtube.com/watch?v=KCbs__ew5wc

• http://www.youtube.com/watch?v=fvGCVdxu15Y

• http://www.youtube.com/watch?v=AlZTiEHeTvE

• http://www.youtube.com/watch?v=Vc_PU3D3QNE

• http://www.youtube.com/watch?v=1a7082PYcSk

• http://www.youtube.com/watch?v=6B26asyGKDo

• http://www.youtube.com/watch?v=55YYaJIrmzo

• http://www.youtube.com/watch?v=KvP0fEKCanI

• http://www.youtube.com/watch?v=sPxMbVMJDY4

• http://www.youtube.com/watch?v=lKzt8970r9I

• http://www.youtube.com/watch?v=fa5rzZroNyU
(4 videos)
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Positive match rates of the best performing
recognition algorithm after facial cosmetic
surgery:

Rhytidectomy 2.0%
Rhinoplasty 37.3%
Liposhaving 19.1%
Brow lift 37.0%
Mentoplasty 38.5%

IEEE Spectrum, Sept 2009

The general objective of the work performed in this thesis was to advance the state-of-the-
art in facial biometrics. Facial biometrics, as emphasized previously, is still not foolproof, and it
requires significant improvements. During the last four and a half years, we have focused on three
interesting sub-problems, and the main conclusions derived from our studies are detailed in the
following paragraphs.

There is an ever-present need to improve the testing speed and the accuracy of the face detec-
tors. The faster the detector, the more the number of images that can be processed which would
translate into higher level of vigilance in large premises like airports, universities, or big public open
spaces. The need for greater accuracy is obvious: to decrease false positives and to increase the
probability of correctly detecting a face. To this end, we proposed two modifications to the state-of-
the-art in face detection: the Viola and Jones-type detectors. Firstly, we propose assigning optimal
weights to the rectangles of the Haar-like features as an alternative to the default weights used tradi-
tionally. We prove experimentally and give intuitive insights into why assigning optimal weights to
the rectangles is beneficial. The resulting weak classifier is computationally more expensive than the
traditional formulation; however, the increase in accuracy it provides improves the overall speed-
accuracy trade-off of the detector. The increase in speed and accuracy for different training methods
can be noted in Fig. 2.8 and Table 2.2. Secondly, we propose Gaussian weak classifiers based on co-
occurring Haar-like features for improving the speed-accuracy trade-off. Our experiments showed
that the proposed approach gives 67% better false positive rate for the same execution time and the
same true positive rate when compared with Viola and Jones’s approach. With respect to detectors
based on Mita et al. ’s approach, the proposed detector is 38% more accurate in false positives and
simultaneously 42% faster given similar true positive rates.

As per the No free Lunch theorem1, the better speed-accuracy trade-off of the methods proposed
in Chapter 2 come with a price: their training time. The increase in the training time of the proposed
detectors with respect to the Viola and Jones’s training procedure was approximately 600%! It is true
that for applications such as face detection, where all the user is interested is in getting a good "face"
model, one would not mind if the training process takes months. However, there are applications
in CBIR where instant training is required. Imagine a situation where a security guard wants to
locate a suspicious luggage in all the images obtained in an airport as soon as possible. In such
a scenario, Viola and Jones’s detector cannot be used mainly because of its slow training process.
It is indeed a pity as its testing speed and its generalization power would have come in handy for
this search. To this end, we posed ourself a question, can we identify the bottle-necks of the training
process of the object detector and identify the means to make it faster? Our solution to this problem

1The No free lunch theorem broadly states that any elevated performance over one class of problems is
exactly paid for in performance over another class; Wolpert, D.H., and Macready, W.G., "No free lunch theorems
for optimization", IEEE Transactions on Evolutionary Computation, 1(1), 67–82, 1997
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mainly revolved around answering another question do the object detectors need to know what is not
an object to learn what is an object? We propose two techniques to improve the training speed in
Chapter 3. What is common in these two techniques is the absence of clutter images in the training
process. One needs millions of clutter images to train the detector, and by not using them, one could
save lots of time in reading and evaluating them. In Sec. 3.1, we reduce the training time to the order
of minutes by using a simple clutter model that basically says that the probability of feature value
of a Haar-like feature on a clutter image being greater/lesser than 0 is 0.5. Using this model also
enables the weak classifiers to be invariant to global illumination changes. Please check Sec. 3.1.2
for more details. In Sec. 3.2, we propose Laplacian distributions to model histograms of feature
values obtained from clutter images. These more powerful models help decrease the training time
to the order of few seconds, and thereby truly enabling real-time image search capability for Viola
and Jones-type object detectors. We finish this chapter by emphasizing the No free Lunch theorem
again: the decrease in training time comes with a reduction in accuracy. The face detectors from
the proposed methods produce 10 times more false positives than the Viola and Jones’s approach.
However, for simpler objects, such as human heart images, comparable accuracy is achieved. We are
aware that most computer vision scientists are generally averse to new methods that favor training
speed over accuracy. However, our work draws motivation from the Google search engine results
- where we, as users, quite easily tolerate errant search results, and we probably would stop using
Google if its response time would be in the order of hours.

Face detection systems are, in general, trained with huge databases with faces of people from
different ages / expressions / facial hair growth / scars, etc. To this effect, the face detector will not
have problems in detecting the face of a male user if he, say, decides to grow a beard. However,
facial appearance changes become a big issue in case of face recognition systems. This is because,
the systems are trained with relatively few images of a user - generally acquired over a short period
of time. The user may be asked to change his expression and pose during the acquisition process,
but, there is no way the system will know how the user will appear in the future. Of course, if the
user’s appearance changes, the system will not properly recognize the user anymore. One solu-
tion is to re-enroll the user with new images of the user and remove the old ones. But, can this
process be done automatically? Assuming that the user interacts with the face recognition system
frequently, can the system learn efficiently without mistakes? These are the questions we try to
answer in Chapter 4. This chapter studies the learning capacity and corruption in self-updating
Face Recognition Systems (FRSs) built with recognition algorithms that use three differing levels of
induction: Eigenfaces (EF), Fisherfaces (FF) and Similarity-based Fisherfaces (SFF). The FRSs were
updated using two large and meaningful facial image databases: GEFA and YT databases with 14,279
and 31,951 images, respectively. Worst case analysis of different FRSs over different databases shows
two clear conclusions. Firstly, the higher the level of induction in the classification algorithm, the
faster the training set of the FRS will be corrupted. It is interesting to note that, over the years,
researchers have proposed using higher levels of induction in face recognition algorithms (i.e., using
personalized models) to obtain better classification rates. Our results show that, the state-of-the-art
algorithms need not necessarily be the best choice for use in a self-updating FRS. Secondly, our
experiments confirm previous studies that the self-updating FRSs can indeed be maintained error-
free during the update process. However, the optimal impostor threshold (global or user-specific),
at which no corruption and simultaneously maximum learning occurs, for a given classification
algorithm seems to be database-dependent.

As it is evident, the research performed in this thesis covers a small area of facial biometrics -
which needs considerable amount of work to be able to be useful in critical scenarios. We hope that
our effort has sparked further interest in this area leading to more usable and robust systems.
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