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TESIS DOCTORAL UPF / 2012

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Departament de Tecnologies de la Informació i les Comunicacions
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Abstract / Resumen

Abstract. Cerebrovascular diseases can result in stroke, which is among the
leading causes of morbidity and mortality in the developed countries. There is a
growing interest in understanding the factors that influence the risk of stroke
and how blood is distributed throughout the brain. This motivated a search
for “geometric risk factors”, the configurations of vasculature that provoke high
hemodynamic stress on the vessel wall, which is assumed to be associated with
the development of vascular diseases.

The goal of this thesis was the development of methods that starting from an-
giographic image enable the geometric analysis of the major cerebral vasculature,
in particular the part known as the Circle of Willis (CoW), which exhibits a large
anatomical variability and is a common site of diseases. Special emphasis was put
on making methods automated to produce results that are objective (operator-
independent) and repeatable to minimize variability propagation to later analysis.
The path to the goal was divided into three subgoals. Each subgoal resulted in a
scientific contribution published or submitted to a peer-review journal.

In the first contribution we improve a vascular segmentation method to achieve
robustness in segmenting images coming from different imaging modalities and
clinical centers and we provide exhaustive segmentation validation. The valida-
tion was performed on 3D rotational angiography and magnetic resonance angiog-
raphy images, the two modalities used for the proposed characterization. Once
the vasculature is successfully segmented, in the second contribution we propose a
methodology to extensively characterize the geometry of the internal carotid artery
(ICA), which due to its large geometric variability has been of special interest as
a potential risk factor for the onset or rupture of aneurysms. This includes the
development of a method to automatically identify the ICA from the segmented
vascular tree. Finally in the third contribution, this automated identification is
generalized from individual vessel to a collection of vessels including their connec-
tivity and topological relationships. This is presented as a method for anatomical
labeling of the vascular segments forming the entire CoW. Identifying the corre-
sponding vessels in a population enables comparison of their geometry using the
methodology introduced for the characterization of the ICA. Thus, the above three
contributions complete our initially considered goal.

xi



Resumen. Una de las causas principales de morbilidad y mortalidad en los
páıses desarrollados son los derrames cerebrales, asociados a enfermedades cere-
brovasculares. Existe un creciente interés en la comprensión de los factores de
riesgo que influyen en la aparición de derrames cerebrales aśı como los factores
que determinan la distribución sangúınea en el cerebro. Esto ha motivado una
búsqueda de “factores geométricos de riesgo”, como configuraciones del sistema
vascular que provocan alto estrés hemodinámico en las paredes de las arterias, que
se cree que están asociadas con el desarrollo de enfermedades vasculares.

El objetivo de esta tesis es el desarrollo de métodos que a partir de imagen
angiográfica permitan el análisis geométrico de las principales arterias cerebrales,
en particular, la parte conocida como el Ćırculo de Willis (CW), que exhibe una
gran variabilidad anatómica y que es una región donde predomina la aparición
de patoloǵıas vasculares. Se ha hecho especial énfasis en que los métodos desa-
rrollados estén automatizados para producir resultados objetivos (independiente
del operador) y repetibles para minimizar la propagación de la variabilidad en el
análisis posterior. El trabajo realizado se ha dividido en tres subobjetivos, cada
uno de los cuales ha dado lugar a una contribución cient́ıfica publicada o enviada
a una revista con revisión externa.

En la primera contribución se ha mejorado un método de segmentación vascu-
lar para lograr robustez en la segmentación de imágenes procedentes de diferentes
modalidades y centros cĺınicos, con una validación exhaustiva. Esta validación se
ha realizado para imágenes de angiograf́ıa rotacional 3D y angiograf́ıa por resonan-
cia magnética, las dos modalidades utilizadas para la caracterización propuesta.
Una vez que el sistema vascular está correctamente segmentado, en la segunda
contribución se ha propuesto una metodoloǵıa para caracterizar ampliamente la
geometŕıa de la arteria carótida interna (ACI), que debido a su gran variabilidad
geométrica ha sido de interés especial como un posible factor de riesgo de aparición
o ruptura de aneurismas. Esto ha incluido el desarrollo de un método para identi-
ficar automáticamente la ACI a partir del árbol vascular segmentado. Finalmente,
en la tercera contribución, esta identificación automática se ha generalizado a una
colección de arterias incluyendo su conectividad y sus relaciones topológicas. Esto
se ha presentado como un método para el etiquetado anatómico de los segmentos
vasculares que forman el CW. Finalmente, la identificación de las arterias en un
conjunto de individuos puede permitir la comparación geométrica de sus árboles
arteriales utilizando la metodoloǵıa introducida para la caracterización de la ACI.
Aśı, estas tres contribuciones completan el objetivo considerado inicialmente.
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1.1. Motivation and clinical context
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1.1 Motivation and clinical context

The brain is an organ that is critically dependent on its blood supply. If this
supply is disrupted, permanent damage to the affected area in the brain will occur,
a condition known as stroke. A cerebrovascular disease (CeVD) is a dysfunction of
the blood vessels supplying the brain that can lead to a stroke, and consequently
to disability or death. In the western society, stroke is major cause of disability
and the second leading cause of death, after heart disease and before cancer [1,2].
Stroke appears in two forms: ischemic and hemorrhagic. Ischemic is the more
common of the two, and is responsible for 80% of strokes. In contrast, hemorrhagic
stroke has higher fatality rate.

Ischemic stroke is caused by low perfusion, which starves the brain tissue of
oxygen carrying blood. It occurs mainly due to thrombosis or embolism. Throm-
bosis appears when thrombus (blood clot) forms inside the blood vessel reducing
the lumen size to the point of blocking the blood flow. Embolism occurs as flow
blockage by arterial embolus, debris originating from elsewhere in the body, most
frequently from thrombus. Other, less frequent, causes of ischemic stroke are
systemic hypoperfusion which produces a general decrease in blood supply and
venous thrombosis, where locally increasing venous pressure exceeds the pressure
generated by the arteries, preventing the blood reaching the brain. Atherosclero-
sis, a disease where the arteries harden and narrow, is principally responsible for
creation of thrombuses and consequently ischemic stroke. It develops as a result
of the accumulation of cholesterol, when multiple plaques start forming within
the arterial wall. The plaque can then burst the wall and induce a formation of
thrombus.

Intracerebral hemorrhage occurs when blood leaks into the brain. It is a serious
medical condition since it can increase intracranial pressure. The spontaneous
bleed normally results from rupture of abnormal blood vessels such as cerebral
aneurysms. Cerebral aneurysms are pathological dilatations of the wall of arteries
and their rupture are the principal cause of subarachnoid haemorrhage (SAH), an
extensive bleeding onto brain surface with up to 50% fatality rate [3].

High blood pressure, smoking, drug abuse, cholesterol, inactivity, among other
things, are affecting artery walls and are known risk factors for CeVD. Unfortu-
nately, diseases like atherosclerosis and aneurysms progress slowly, mainly without
symptoms, and cause the stroke to occur suddenly. Therefore, they are mostly
found incidentally or after the stroke occurs, which is often too late. When iden-
tified, it is important to weigh the risk of treatment against the risk of the disease
producing the stroke. Treatments involving surgery, or drugs, carry their risks and
side-effects and a small risk of stroke can be found acceptable. However, the mech-
anisms leading to the formation and growth, and the stroke risk of atherosclerosis
and aneurysms are still not fully understood.

1.1.1 The Circle of Willis

The brain is a highly vascularized organ due to its high blood flow rate and high
oxygen demand, which consumes 15% of the blood output from the heart. The
cerebral vasculature varies across individuals to such an extent that only a few of

3



1.1. Motivation and clinical context
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Figure 1.1: The Circle of Willis: (a) Main arteries. (b) The most common sites of cerebral
aneurysms (image by Nicholas Zaorsky, M.D.).

the largest vessels are consistent and have anatomical names. The main cerebral
arteries are located at the base of the brain and are connected in a circle known
as the Circle of Willis (CoW). The CoW is named after English neuroanatomists
Thomas Willis (1621-1675) [4], who was the first to present the detailed description
of this arterial circle and understand its importance.

The CoW conducts the blood flow supplied through the left and right carotid
arteries, and the vertebral arteries to the brain [5]. It is the only region of the
human body where the arteries form a circle, by design. As it connects the left
and right anterior circulation with each other and with the posterior one, the circle
serves as a source of collateral flow, and is very adaptable to any flow changes as
a result of sudden artery occlusions. Thus, it has a crucial role in maintaining
brain’s blood supply.

The CoW is composed of the following arteries (Fig. 1.1(a)): Left and right an-
terior cerebral artery (ACA), anterior communicating artery (AcoA), left and right
posterior cerebral artery (PCA), left and right posterior communicating artery
(PcoA). The afferent internal carotid arteries (ICA) and the basilar artery (BA),
as well as efferent middle cerebral arteries (MCA), are also commonly considered
as part of the CoW.

A characteristic property of the CoW is that it exhibits a large anatomical
variability, not only in geometry but also in topology where some vessels could
be duplicated, hypoplastic or completely missing. In total, eighty-three variations
in CoW have been denoted [6]. The standard, complete and symmetric CoW is
estimated to be present in only 40−50% of the healthy population [7,8]. Thus, not
evey CoW is equally adaptable to potential vascular occlusions. Furthermore due
to conducting blood flow at a high rate and its complex geometry, it is a common
site of CeVD, in particular cerebral aneurysms tend to occur close to its artery
bifurcations [9] (Fig. 1.1(b)).
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1.1.2 Vascular geometry

Quantifying and analyzing the geometry of the cerebral arteries, in particular
those forming CoW, is of great interest. There is still a lack of knowledge on
the characteristic geometric parameters capable of differentiating between normal
and pathologic vasculature or associated with endovascular treatment outcome.
This can be also attributed to the difficulty in analyzing the complex and variable
vascular geometry of the CoW. Thus, there is a clear need to develop tools and
techniques for patient specific geometric characterization of the CoW, enabling
personalized and predictive medicine [10,11].

Geometric Risk Factors

The locations where vascular pathologies tend to occur are in general non-uniformly
distributed across the vasculature. For example, cerebral aneurysms have strong
preference for occurring at specific locations, and are frequently found at or near
the regions of high vascular curvature in arteries of the CoW [9]. Similarly,
atherosclerosis often occurs at carotid bifurcation or close to arterial bendings [12].

This phenomenon cannot be explained exclusively by risk factors such as hy-
pertension, diabetes, smoking or gender, which are all systemic and influence the
entire vasculature, hence not providing mechanisms for disease localization. Thus,
it has long been speculated and recently confirmed that local hemodynamic forces
(coming from blood motion), in particular the vascular wall shear stress, play an
important role in the initiation and localization of pathologies [13–17], which in
turn could explain their nonuniform distribution [18]. Furthermore, it is known
that the variation in geometric configuration of vasculature contributes to a corre-
sponding variation in predisposing hemodynamic forces [19, 20]. Taking this into
account, Friedman et al. [21] introduced the concept of “geometric risk factors”
as the geometric features that provoke high hemodynamic stresses on the vessel
wall. As a result, a significant effort has been put by the biomedical research com-
munity to investigate the relationship between vascular geometry, hemodynamics
and vascular diseases [12,15,22–30].

An important condition for the geometric risk factor concept is the presence
of sufficient individual variability in geometry to induce important variations in
individual hemodynamics [31]. This is particularly satisfied by the CoW, where the
large anatomical variations affect the volume flow rates in the feeding arteries [32,
33], and the incidence of variations and asymmetry has already been found to be
correlated with the presence of aneurysms [34].

Endovascular treatment

Treatment of stroke is increasingly performed using minimally invasive surgery
known as endovascular intervention, as an alternative to open neurosurgery. It
involves introduction of a catheter into the blood vessel and navigating inside
the vascular network to the treatment location. There, appropriate endovascular
devices like stents, or coils in the case of aneurysms, are deployed. Thus, accurate
quantitative assessment of 3D arterial geometry is important for endovascular
device selection, and preoperative planning of interventions [35,36].
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The operator’s choice for the technique or device is already influenced by geo-
metric and anatomical characteristics and there is a trend to apply specific type
of devices to specific anatomy. A quantitative analysis of the geometry of the
vessels will allow interventionalist to make more informed decisions in choosing
access paths and selecting appropriate devices [37]. Stent deployment is especially
sensitive to underlying geometry, and for effective treatment the dimensions of
the device must match closely the vessel geometry, which led to define geometric
parameters related to stent fitness [38, 39]. Another potential application is in
personalized microcatheter shaping, for achieving safe entry and stability during
coil placement [40–43]. Appropriately curved microcatheters better conform to
the arterial anatomy and are more stable and hence less likely to be forced out of
position during the treatment [44].

Other applications

There are a myriad of other applications that would benefit from studying the ge-
ometry of cerebral vasculature and that need methods for its description and quan-
tification. Already cataloging vascular attributes like tortuosity, radii, branching
frequency and curvature could answer many questions. How these attributes vary
in a population and how they change with onset of a disease? What is their de-
pendency across locations, and whether they follow a normal distribution [45]?
Similarly how are they affected by aging [46] or what is the effect of exercise [47]?
Are there any differences between gender, race and handedness [48]? Could some
of the vascular attributes be associated to malignancy status of the tumor they
supply [49,50] and predict the treatment response [51,52]?

Other interesting examples of geometric studies include investigating the pro-
cesses and mechanisms of vascular patterning [53]. The major vessels are patterned
by the genome but the branching of finer vessels is more stochastic. Understand-
ing the role of genetics in vascular formation is also important due to possible
relationships with some disorders. For instance an association has been found
between Alzheimer’s disease and abnormal vascular networks through a vascular
endothelial growth factor (VEGF) expression [54,55].

1.2 Geometric characterization of the vasculature

The important role of vascular geometry motivates the design of processing pipe-
lines for the image-based, subject specific geometry characterization. The avail-
ability of quantitative measures would enable to study the association of local and
global geometrical properties such as vessel curvature, tortuosity, length, radius,
branching patterns, and the topology of the CoW with clinical events and therapy
failure or to statistically analyze the variation of the CoW across a population or
between the diseased and healthy subjects.

In general, the angiographic data is becoming readily available due to wi-
despread use of 3D imaging devices, but there is still a lack of techniques for
characterization of cerebrovascular geometry which can efficiently process the data.
The characterization task is made difficult by two factors. First, by the large
anatomical variability of cerebral vasculature, and with no direct correspondence

6



1.2. Geometric characterization of the vasculature

C
H
A
P
T
E
R
1.

of blood vessels between subjects besides a few large ones [45]. Second, by the
difficulty of designing methods that can obtain measurements from various types
and quality of images in a robust, accurate and objective way [56,57].

A successful geometric characterization pipeline would consist of the following
elements:

• Angiographic image acquisition. Characterization of vascular geometry
starts with angiographic image, acquired to obtain subject specific data.

• Geometric modeling and anatomical labeling. From the image, an
accurate geometric model of subject’s vascular network is extracted. In
addition, individual, named vessels are identified to establish correspondence
between subjects.

• Characterization and statistical analysis. Characterization consists of
defining a set of meaningful geometric descriptors and a metric to measure
(dis)similarity between geometric models. This is followed by the statistical
analysis to estimate variability within a group of subjects or to discriminate
between different groups, in an effort to derive the knowledge from the data
or answer biological or medical questions.

The above elements of the pipeline are illustrated on the example of geometric
characterization of internal carotid artery (ICA) (Fig. 1.2). Of special importance
is that the elements are automated. This makes them operator-independent and
highly repeatable to minimize variability propagation to other steps of the char-
acterization pipeline. Furthermore, reducing the amount of manual interaction
enables streamlining the geometric characterization of a large number of cases,
hence increasing the power of the final statistical analysis.

Angiographic

Image

Vascular

Segmentation

Centerline

Computation

ICA

Identification

Landmarks

Detection

Geometric

Quantification

Shape Similarity

Metric

Mapping to

Euclidean

Submanifold

Image Acquisition Geometric Modelling CharacterizationAnatomical Labeling
Statistical

Analysis

Figure 1.2: Pipeline for geometric characterization of internal carotid artery [58]. (See color
insert)

1.2.1 Angiographic image acquisition

The 3D image acquisition of cerebral vasculature is nowadays routinely achieved
with three different image modalities: X-ray 3D Rotational Angiography (3DRA),
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(a) 3DRA (b) CTA (c) Time-of-flight MRA

Figure 1.3: Images of the Circle of Willis of patients bearing aneurysms, from the three an-
giographic modalities. Aneurysms are denoted with white arrows. In 3DRA, acquisition of the
right anterior part of the CoW was performed. CTA shows the skull bone as well.

Computed Tomography Angiography (CTA) and Magnetic Resonance Angiogra-
phy (MRA). 3DRA imaging device is used during endovascular interventions and
3D reconstructions are normally done for treatment planning and later evaluating
their success. It is considered an invasive procedure because of the requirement
of catheter insertion into artery, which carries a small but significant risk of com-
plication. Thus, for diagnosis and follow ups, preference is given to noninvasive
computed tomography angiography (CTA) and magnetic resonance angiography
(MRA) [9]. Examples of images acquired with the three modalities are shown in
Fig. 1.3. In the following we briefly review and compare their main characteristics.

3D Rotational Angiography

3DRA performs an isotropic 3D reconstruction from multiple conventional 2D
projection angiograms, obtained with C-arm X-ray imaging device. It is the most
recent of the three angiographic modalities, made possible by the improvements in
C-arm gantry movement and reconstruction algorithm speeds [59]. After catheter
is positioned into carotid artery, iodinated contrast is injected into blood stream
and acquisition started, which acquires ≈ 120 images, in a couple of seconds
while rotating around 240o. Compared to other modalities, it produces images
with the highest spatial and contrast resolution. Contrast makes the vessels have
high attenuating coefficient and consequently the brightest objects in the image.
However there are several common image artifacts [60–62] due to inhomogeneous
contrast distribution and beam hardening. In addition, there is no correspondence
between an imaged tissue and a range of image intensity values, as the intensities
are typically scaled to span the full dynamic quantization range. Thus, the tissue’s
intensity values depend on the selected reconstruction region, the contrast dose as
well as the presence of other high attenuating objects, like coils, clips or stents,
placed during treatment.

8



1.2. Geometric characterization of the vasculature

C
H
A
P
T
E
R
1.

Computed Tomography Angiography

In CTA, contrast material is injected into a vein, and remains present in the vas-
cular system for a duration of 20− 30 s. To acquire an entire head volume, a fast
imaging is required to make acquisition during the maximal enhancement of the
vessels, which was made possible with the introduction of spiral (helical) acquisi-
tions with multirow detectors [63]. During the vessel enhancement period, acqui-
sition is performed where the continuous rotation of the gantry is combined with
simultaneous patients movement through the gantry. Compared to 3DRA, CTA is
safer, less time-consuming and is more cost-effective. Furthermore, the obtained
image intensities have standardized Hounsfield units (HU). On the downside, the
contrast agent does not make vessels the highest intensity objects (nonenhanced:
30-45 HU, enhanced: 150-300 HU) as bones appear brighter with intensity rang-
ing from 700 (spongy bone) to 3000 HU (dense bone). Combined with anisotropic
and lower spatial resolution than 3DRA, this makes segmentation of vasculature
challenging, especially for arteries passing next to cranial structures. Therefore,
several approaches based on utilizing non-enhanced CT image, to subtract the
bone tissue from CTA have been explored [64,65].

Magnetic Resonance Angiography

MRA comprises of a group of techniques based on magnetic resonance imaging
(MRI) to image blood vessels. The non-contrast MR angiography (NC-MRA) [66],
relies on blood flow effects and the main two modalities used to image cerebral vas-
culature are: time-of-flight ToF-MRA, and phase-contrast PC-MRA. Compared
to CTA and 3DRA, NC-MRA is the only acceptable modality for imaging healthy
volunteers, as it does not involve ionizing radiation or contrast administration.
However, acquisition speed and spatial resolution are lower and operating costs
are higher. Furthermore images are susceptible to flow-related artifacts [67] and
may have difficulties in visualizing small vessels with slow or turbulent flow [8].

In the contrast enhanced CE-MRA, the images are no longer dependent pri-
marily on the inflow effect of the blood, which produces a better signal-to-noise
ratio (SNR) and fewer artifacts. There, synchronizing the image acquisition with
the arrival of the contrast agent is critical, which triggered the recent development
of contrast agents that remain in the blood pool for several hours [68]. Longer
time available for image acquisition enables higher resolution imaging, with the
downside of having both arteries and veins enhanced at the same time. CE-MRA
is not completely harmless as it does involve introduction of paramagnetic con-
trast agent but the contrast is less toxic and smaller quantities are needed than
those used in CTA/3DRA. In general, MRA is under constant development, high
magnetic fields (3T and 7T) devices [69] providing better SNR are becoming more
available, and parallel imaging techniques [70,71] are being improved to speed up
acquisition or alternatively to increase the spatial resolution.

1.2.2 Geometric modeling and anatomical labeling

The task of geometric modeling is to extract the vasculature from angiographic
image and to suitably represent it for its later characterization. Successful model-
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ing the geometry of cerebral vasculature with pathologies is challenging. Cerebral
blood vessels have a complex, tortuous anatomy with high variability of size and
curvature. They often intertwine or run in closely parallel courses, and their ge-
ometry can be affected by calcifications, aneurysms, and stenoses.

Vessel lumen segmentation from angiographic image is the crucial step toward
the accurate quantification of vasculature. Despite a big effort from the scientific
community, as reviewed in [72, 73], it still remains a difficult task. Difficulty
mainly arises from limited image contrast and spatial resolution, which are critical
factors compared with the size of the vascular segments. Furthermore, acquisition
devices produce image artifacts, have variable SNR and suffer from partial volume
effects especially where the vessel is close to other vessels or skull bone. Thus,
a segmentation process normally starts with a pre-filtering of angiographic image
to further enhance vascular, elongated structures and suppress background and
noise [74–77].

Vascular pathologies like stenoses and especially aneurysms exhibit high shape
variability. Instead of modeling them explicitly, segmentation methods are made
robust to pathologies, so that they can be detected afterwards as local deviations
from the healthy vessel model [35, 78]. Geometric deformable models based on
the level set framework [78–82] are especially suitable for this task, as they are
able to handle changes of topology and adapt locally to the shape of complex
structures. In addition, the vessel lumen, obtained from the propagating surface,
is represented implicitly on the image grid by a distance map, hence allowing
for subvoxel precision, of special interests when segmenting images with limited
spatial resolutions.

Vasculature, being composed of tubular shapes, can be efficiently represented
by a set of connected vessel centerline space curves. Therefore, after the segmenta-
tion, a skeletonization procedure is performed to obtain 4D points indicating the
spatial position of each sequential vessel skeleton point and the associated local
cross-section radius. Skeletonization methods are mainly based either on topo-
logical thinning, distance transformation or Voronoi diagrams [83]. In topology
preserved thinning, the boundary is iteratively peeled until one-voxel thick medial
curve is obtained [84]. Other approaches constrain centerlines to lie on paths max-
imally distant from the boundary [85,86], where the distance map can be replaced
by Voronoi diagram of boundary points [87, 88]. As it is performed after the seg-
mentation, potential segmentation errors are reflected on the obtained skeleton,
which then requires further pruning to remove spurious components.

Instead of performing skeletonization after the vessel segmentation, an inverse
approach is to attempt centerline extraction directly from the image, e.g. by track-
ing intensity ridges [89, 90]. The main problem with such methods is that they
often require manual initialization and the obtained set of centerlines can be dis-
connected, which requires their later reconnection [91,92]. However, the extracted
centerlines can then be used to topologically and spatially constrain a subsequent
segmentation of the lumen surface. Thus, segmentation and skeletonization are
interdependent methods, and one facilitates and improves the computation of the
other. Finally, geometric models are post-processed to compensate for some in-
accuracies introduced during segmentation and skeletonization and to refine the
data prior to later analysis [93].
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For population analysis, it is important to be able to register and compare CoW
across subjects. Thus, anatomical correspondence between vascular segments,
known as anatomical labeling, has to be established [94]. This can be seen as a
further segmentation of geometric model, where vascular segments with known
anatomical names are identified.

1.2.3 Characterization and statistical analysis

We next review the main approaches used for the characterization and statistical
analysis of geometry, relevant for the work developed in this thesis.

Geometric quantification

One characterization approach is to describe the geometry with a series of local
or global features. The choice of features depends on the application and tar-
get hypothesis. The shape of a vessel centerline curve is already a rich source of
geometric information. In particular its various tortuosity metrics are of special
interest as a potential indicator of pathology development [45, 95–97]. In addi-
tion, centerline’s local curvature and torsion describe 3D bending of the vessel and
twisting of the curvature plane in space [57, 98] and are known to affect the un-
derlying hemodynamic forces [19,99]. They also enable computing several derived
measures like curvature and torsion energy [100, 101], or axial twist [98]. Besides
the centerline shape, local vessel diameters are related the blood flow capacity and
often used measures are cross-section area, mean thickness, volume [102, 103], or
radius tapper along the vessel [104]. When comparing with other vessels, they can
detect hypoplasia and measure vascular thickness asymmetry [105,106].

Apart from vessels, geometry of bifurcations and higher order branchings have
been of interest as they are exposed to disturbed flow, making them a common
site of pathologies [56]. First requirement is to locate the center of bifurcation and
obtain its branch directions in an objective way [36, 56, 57, 104, 107, 108]. Then
various branching features can be computed: The distribution of branching an-
gles [108], the bifurcation planarity [57, 109] or expansion factor and asymmetry
computed by comparing daughter branch cross-sectional areas with the parent
one [110]. Further, statistically observing the vascular graph at a larger scale,
branching frequency [45] and their patterns [111,112] can be obtained.

Shape similarity metric

Each subject’s set of geometric features can be considered as a single high-dimensional
vector. This assumes that there is an anatomical correspondence established be-
tween subjects, so that the corresponding features are being compared. As different
features span different range of values, it is not clear how to normalize them and
weigh their contributions in the shape metric. One measure of shape similarity
is to normalize features by their mean and standard deviation and then simply
compute the Euclidean distance between the normalized feature vectors.

As an alternative, computational anatomy [113] emerged as a discipline focused
on the quantitative analysis of variability of anatomical shape in a population.
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There, individual subject shapes are modeled as transformations of a single tem-
plate shape. In the absence of realistic physical deformation models, diffeomorphic
transformations are used. This provides one-to-one and smooth transformations
with smooth inverse, which assure topological consistency and avoid anatomically
unrealistic folding artifacts [114]. This further led to the development of large
deformation diffeomorphic metric mapping (LDDMM) framework [115, 116], by
registering two shapes, this framework not only provides a diffeomorphic corre-
spondence between them, but also defines a metric in the shape space as the
length of geodesic curves matching one shape to another. In general, such defor-
mations cannot account for non-diffeomorphic differences that might appear due
to e.g. changes in topology nor for those that are below their regularizing spatial
scale [117]. However, they can be used as a way to decompose the anatomical
differences into two parts: geometric ones encoded in the deformation and the
“texture” ones (e.g. topological or small scale differences) encoded in the residu-
als [118].

Statistical analysis

From a set of geometric features a sequence of univariate statistical tests can be
performed to identify those that are statistically significantly different between two
groups of subjects [12, 20]. The advantage is that the identified features provide
direct interpretation of the difference. However, as more features are being com-
pared, it becomes more likely that the two groups will appear to differ on at least
one feature, which is known as multiple comparison problem. Thus, statistical
significance threshold has to be adjusted appropriately [119].

To take into account the correlation between features, an alternative to a mass
univariate testing is to consider all features together and then perform multivariate
analysis (MVA). The MVA is then able to discover significant patterns which are
distributed among features. There, the main limit is the curse of dimensionality,
when few subjects are available compared to the high dimensionality of the feature
space, and regularities could be found in the training set that are accidental. Thus,
a form of dimensionality reduction is performed in a preprocessing step, most often
based on principal component analysis or factor analysis.

The MVA consists of either generative or discriminative modeling [120]. In
generative modeling, a probability density is estimated for each group, frequently
assuming multivariate normal distribution. Then the classification of unknown
instances can be performed by applying the Bayes theorem. Instead of using a
generative model and modeling within class variance, it is possible to directly es-
timate the separation between the groups using a discriminative model, which in
many practical situations gives better classification results [121]. The most suc-
cessful example of non-linear discriminative models are support vector machines
(SVM) [122]. They work by projecting the data into a high number of dimensions,
where they can be better separated using a linear hyperplane. Taking the hyper-
plane which maximizes the margin confronts the problem of high dimensionality.
Both generative and discriminative models rely on having a notion of similarity
between shapes. Besides using simple Euclidean distance between feature vectors,
the shape distance measure can come from other frameworks like LDDMM.
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Unlike mass-univariate approaches, multivariate techniques are global and not
localized to discrete regions. Thus, interpreting the findings is more complex.
Here, generative models have advantage that we can sample the learned distribu-
tion from the mean along the principal directions of variation to visualize the main
captured variability within a group. For discriminative models, when linear classi-
fiers were used, one could also sample along the principal discriminative direction
to observe the shape changes from one population to the other [123]. However,
visualizing the shape differences in the case of non-linear discriminative models is
more complex [124], hence they are more appropriate for evaluating how well the
model can separate between classes.

1.3 Objectives of the thesis

The main objective of the thesis is to design, develop and implement an automated
methodology for image-based geometric analysis of the major cerebral vasculature,
in particular of the arteries forming the CoW. The path to the goal is subdivided
by proposing solutions for the three tasks:

• Vascular segmentation of images coming from different modalities and clin-
ical centers.

• Anatomical labeling of the arteries forming the CoW.

• Geometric characterization of individual vessels.

1.4 Overview and contributions of the thesis

The proposed solutions to each of the three subgoals are presented in the next
three chapters. They provide the main contributions of the thesis.

Chapter 2 describes the improvement of an automated vascular segmentation
method based on geodesic active regions (GAR) to achieve robustness in segment-
ing images coming from different imaging modalities and clinical centers. This
is accomplished by introducing an image intensity standardization filter, designed
to ensure a correspondence between specific tissues and intensity ranges common
to every image that undergoes the standardization process. The improved GAR
segmentation was then exhaustively validated on images from patients containing
cerebral aneurysms in the area of the CoW from 3DRA and ToF-MRA images,
the two modalities used in the later geometric characterization.

In Chapter 3, we propose a methodology to extensively characterize the ge-
ometry of the ICA, which due to its large geometric variability has been of interest
as a potential risk factor for the onset or rupture of aneurysms. Here, we develop
a method for detecting anatomical landmarks of the part known as carotid siphon
by modeling it as a sequence of four bends and selecting their centers and inter-
faces between them as landmarks. The bends are detected from the trajectory
of the curvature vector expressed in the parallel transport frame of the centerline
curve. Using the detected landmarks, we characterize the geometry in two com-
plementary ways. First, with a set of local and global geometric features, known
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to affect underlying hemodynamics. Second, using LDDMM to quantify pairwise
shape similarity. In addition, we develop a method to automatically identify the
ICA from segmented vascular tree.

In Chapter 4, we generalize the automated identification of ICA from a sin-
gle to a collection of vessels in a method for anatomical labeling of the vascular
segments forming the entire CoW. The proposed method is trained on a set of
pre-labeled examples, where it learns the variability of local bifurcation features
as well as the variability in the structure. Then, the labeling of the target vascu-
lature is formulated as maximum a posteriori probability (MAP) estimate, where
the likelihood of labeling individual bifurcations is regularized by the prior struc-
tural knowledge of the graph they span. Furthermore, the introduced method is
applicable to graphs with a cycle and multiple roots, which is a special requirement
for labeling CoW.

Each of these three chapters are self-contained, and are an adaptation of the
articles that were submitted or published in a peer-reviewed journals. Thus, some
of the elements from the introduction will be repeated. Finally, Chapter 5 con-
cludes the thesis and discusses the outlook and future work.
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This chapter presents evaluation of an improved version of an automated seg-
mentation method based on geodesic active regions (GAR) for segmenting cere-
bral vasculature with aneurysms from 3DRA and ToF-MRA images available in the
clinical routine. Three aspects of the GAR method have been improved: execution
time, robustness to variability in imaging protocols and robustness to variability
in image spatial resolutions. The improved GAR was retrospectively evaluated
on images from patients containing cerebral aneurysms in the area of the Circle
of Willis and imaged with two modalities: 3DRA and ToF-MRA. Images were
obtained from two clinical centers, each using different imaging equipment. Eval-
uation included qualitative and quantitative analyses of the segmentation results
on 20 images from 10 patients. The gold standard was built from cross-sections
of vessels and aneurysms, manually measured by interventional neuroradiologists.
GAR has also been compared to iso-intensity surface extraction. In addition, since
patients had been imaged with two modalities, we performed an inter-modality
agreement analysis with respect to both the manual measurements and each of the
two segmentation methods. Both GAR and ISE differed from the gold standard
within acceptable limits compared to the imaging resolution. The repeatability
of GAR was superior to manual measurements and ISE, while the inter-modality
agreement was similar between GAR and the manual measurements.

The content of this chapter is adapted from the following publication:

H. Bogunović, J.M. Pozo, M.C. Villa-Uriol, C.B.L.M. Majoie, R. van den Berg,
H.A.F. Gratama van Andel, J.M. Macho, J. Blasco, L. San Román, and A.F. Frangi. Au-
tomated segmentation of cerebral vasculature with aneurysms in 3DRA and ToF-MRA
using geodesic active regions: an evaluation study. Medical Physics, 38(1): 210-222, 2011.
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2.1. Introduction

2.1 Introduction

Cerebral aneurysm is a vascular pathology that tends to appear near bifurcations
of arteries in the Circle of Willis. Although aneurysm prevalence is relatively low,
estimated to be between 1% - 5% [9], aneurysm rupture causes sub-arachnoid
haemorrhage (SAH) having a high fatality rate (between 40% and 60%) [125].
Traditionally, for aneurysm detection, catheter 2D digital subtraction angiography
(DSA) was considered as gold standard [125] but lately it is being supplemented
or replaced by 3D rotational X-ray angiography (3DRA) [126]. Due to its superior
spatial and contrast resolution, 3DRA is normally also used for treatment planning
(surgical clipping or endovascular intervention). However, for diagnosis and follow
ups, preference is given to noninvasive computed tomography angiography (CTA)
and magnetic resonance angiography (MRA): contrast enhanced CE-MRA and
time-of-flight ToF-MRA [127].

Ruptured aneurysms are almost always treated. However, in the case of un-
ruptured aneurysms, the indication for preventive treatment is not straightforward
and the risk of treatment has to be carefully balanced against the risk of rupture.
Computational modeling is increasingly used to characterize the aneurysms in or-
der to find suitable predictors of risk of rupture [10]. Most notably, aneurysm shape
characterization [128, 129] and analysis of its hemodynamic features using com-
putational fluid dynamics (CFD) [14, 130] are becoming increasingly important.
These results are strongly determined by the modeled geometry of the aneurysms
and surrounding vessels. Therefore, vascular segmentation from radiographic im-
ages is a key methodology in the computational analysis of the vasculature.

The segmentation of cerebral vasculature with aneurysms is a difficult task
often due to their complex geometry as well as limited image contrast and spa-
tial resolution, which are critical factors compared with the size of these vascular
segments. Throughout their management cycle, patients undergo a variety of
imaging examinations with various modalities. In addition, patients with rup-
tured aneurysms have 3DRA and CTA scans while patients with unruptured ones
are preferably followed only with MRA. Thus, it is desirable to apply a cere-
brovascular segmentation method able to cope coherently with different imaging
modalities so that computational results are comparable. Furthermore, it is im-
portant that the applied segmentation method is completely automated. This
has a two-fold advantage. First, the segmentation method should be objective
(operator-independent) and highly repeatable to minimize variability propagation
to other steps of the analysis pipeline. Second, requiring manual interaction from
the operator increases the processing time and needs the allocation of human re-
sources.

To the best of our knowledge no effective solution is currently available for the
automated and multimodal segmentation of cerebral vasculature with aneurysms.
Recently, Manniesing et al. [131] reported a successful feasibility study for the auto-
mated segmentation of CTA images but their evaluation did not cover aneurysms,
thus it is not clear how their results would extrapolate to diseased parts of the
vasculature. Hernandez et al. [78] proposed a method based on a geometric de-
formable model called geodesic active regions (GAR) and presented promising
results for automated segmentation of cerebral aneurysm from different modalities
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(3DRA and CTA). However, limiting factors for its application in clinical routine
was its lack of robustness to the variation in imaging protocols and its elevated
computational costs.

The purpose of this study was to introduce improvements into the GARmethod
and to evaluate its potential and limitations in segmenting cerebral vasculature
with aneurysms from 3DRA and ToF-MRA images available in the clinical rou-
tine, including different clinical centers and imaging equipment. The evaluation
was performed retrospectively on images of patients having cerebral aneurysms.
The segmentation results were compared to the gold standard obtained from man-
ual measurements performed by interventional neuroradiologists. To analyze the
segmentation consistency across the two imaging modalities, patients having both
3DRA and ToF-MRA examinations were chosen.

2.2 Materials and methods

2.2.1 Patient selection

Ten patients (3 male, 7 female; age range: 35-70; mean age: 57 years) with 16
cerebral aneurysms scanned with 3DRA and ToF-MRA within a short period
(1 week) were retrospectively selected from two different clinical centers (7 from
Academic Medical Center (AMC), The Netherlands and 3 from Hospital Clinic
i Provincial de Barcelona (HCPB), Spain). Each center used different imaging
equipment. Anonymized imaging data sets were used and the institutional re-
view board approved the study, which had no influence on patient management.
From the database of suitable candidates, patients were selected on the basis of
the location of aneurysm to ensure that location variability followed their nat-
ural probabilities of occurrence as reported in [9]. For patients having multiple
aneurysms only those present in both 3DRA and MRA images were eligible. Even-
tually, one aneurysm per patient was singled out. The different locations were:
internal carotid artery (3), posterior communicating artery (2), anterior communi-
cating artery (1), middle cerebral artery (3) and basilar tip (1). Aneurysms varied
in size: small aneurysm of 3-5 mm (5), medium aneurysm of 8-9 mm (4) and a
large aneurysm of 19 mm (1).

2.2.2 Scanning protocols

3DRA images from AMC (HCPB, respectively) were acquired with a single-plane
angiographic unit: Integris Allura Neuro; Philips Healthcare, Best, The Nether-
lands (AXIOM Artis; Siemens Medical Solutions, Erlangen, Germany). Non-ionic
contrast agent: 320 mgI/mL iodixanol, Visipaque (240 mgI/mL iohexol, Omni-
paque), GE Healthcare, Cork, Ireland, was injected through a 6F catheter posi-
tioned in an internal carotid artery or vertebral artery. 100 images (120 images)
were acquired during a 240o (180o) rotational run in 8 seconds with 15 to 21 ml
contrast agent at 3 ml/s. On a dedicated workstation, 3D images were recon-
structed with a 2563 matrix with a reconstructed voxel size of 0.19 × 0.19 × 0.19
mm (0.39× 0.39× 0.39 mm).
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Figure 2.1: Workflow of the automated vascular segmentation method GAR. New or improved
components are highlighted in gray.

MR imaging examinations in AMC (HCPB, respectively) were performed on
a 3.0-Tesla system: Intera R10; Philips Healthcare, Best, The Netherlands (Tri-
oTim; Siemens Medical Solutions, Erlangen, Germany). The protocol included
3D ToF-MRA with multiple overlapping thin slab acquisition MOTSA (with sin-
gle slab acquisition). The parameters were as follows: TR/TE, 21/4 ms (23/4
ms); flip angle, 20o (15o); 512× 326 (640× 288) acquisition matrix, reconstructed
to 1024 × 1024 (640 × 480); FOV, 200 × 170 mm (200 × 150 mm), 85% (75%)
rectangular FOV; 1.0 mm thick sections interpolated to 0.5 mm (0.5 mm thick
sections); 220 sections (160 sections) acquired, resulting in a coverage area of 110
mm (80 mm). The measured voxel size was 0.39× 0.61× 1 mm (0.31× 0.52× 0.5
mm), and the reconstructed voxel size was 0.2 × 0.2 × 0.5 mm (0.31 × 0.31 × 0.5
mm). The scanning time was reduced with sensitivity encoding SENSE parallel
imaging (generalized autocalibrating partially parallel acquisition GRAPPA), with
a reduction factor of 1.5 (2), which resulted in an acquisition time of 7 min (4.5
min).

2.2.3 Segmentation method

The workflow of the automated vascular segmentation method GAR is shown in
Fig. 2.1. The core of the methodology was originally presented in [78], and in [132]
the image intensity standardization (IIS) filter was introduced. In this work, we
improve some of the components of the workflow, but we first summarize the
methodology that has remained unchanged.

The method is based on the geometric deformable model within the level set
framework [133]. The internal force of the deformable model is defined as the
local curvature of the evolving surface, while the external one combines region-
based descriptors with gradient ones to drive the evolution of the model towards
the vascular boundaries. The equation driving the evolution of the surface is
expressed as:

∂

∂t
Φ+ ζ(kout − kin) | ∇Φ | −η(εgKm | ∇Φ | +∇g · ∇Φ) = 0 (2.1)

where Φ is an implicit function whose zero level set at any time t of the evolution
represents the vascular surface. The gradient descriptor g is inversely proportional
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to the gradient magnitude of the image and helps stopping the evolution at the
vessel boundary. The descriptor Km is the minimal curvature of the level set
surface at each point, which favors the smoothness of the surface. The region
descriptors kin and kout are defined by

kin(x) = − log(Pin(x)); kout(x) = − log(Pout(x)) (2.2)

where Pin and Pout are the probabilities that the voxel x belongs to inner and
outer regions with respect to the vascular lumen. The constant parameters ε,
ζ and η control the influence of the curvature, region-based and gradient-based
descriptors, respectively, and were fixed as published in [78].

In general, the GAR workflow is divided into two main phases: off-line training
and segmentation.

Off-line training phase. Performed only once for each imaging modality. Images
forming the training set are passed through IIS filter and interactively labeled
into three regions: vessel, background and undecided region, which normally cor-
responds to partial volume voxels. Then, the feature vectors are calculated at
training points randomly selected from vessel and background regions. Finally,
the fuzzy classifier is trained in a supervised fashion on the set of feature vectors.
The output is a set of parameters of the classifier used to compute the probabilities
Pin and Pout during the segmentation phase.

Segmentation phase The image being segmented is first passed through the IIS
filter. At each image voxel, the feature vector is calculated and the probability of
belonging to a particular region is estimated with the previously trained classifier.
In parallel, the gradient magnitude is computed. Following Eq. 2.1, the level
sets associated with Φ evolve toward a local minimum of the energy functional
trying to maximize the probability for the vessel region inside the zero level set
and the probability for the background region outside, taking also into account
the curvature and the gradient information at the boundaries. The zero level set
at the steady solution corresponds to the segmented vessel lumen surface. The
resulting surface is extracted as a 3D triangular mesh with sub-voxel precision.

Such methodology is specially suitable for vessel segmentation from different
modalities, since for each one the region descriptors are learned from an appropri-
ate training set of images.

In this work, we have introduced the following three improvements to the
components of the workflow: The classifier has been replaced, the computation of
the feature vector has been modified and the IIS technique has been adapted to
handle large deformations.

Multiple valued neuron classifier

The originally proposed probability estimation was performed using k nearest
neighbors (k-NN) algorithm on the training set. However k-NN is not convenient
for fuzzy classification and is highly computationally demanding since during the
classification it repeatedly searches for the nearest neighbors within the stored
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training feature vectors. Thus, we replaced it with the multiple valued neuron
(MVN) [134]. This improves the classification speed by approximately 8 times
since most of the computational cost is in the training phase, which is performed
only once. Furthermore, larger sets of points (1M as opposed to 20k used with k-
NN) were used for training as their size does not influence the classification speed
of MVN. Using more points allowed building a training set with larger number of
images thus achieving better classifier generalization.

Voxel-based scale space

Features forming the feature vector are computed on multiple scales. To handle
a large variety of possible image resolutions, the range of scales used for feature
calculations is now based on image voxel spacing instead of being predefined and
fixed. More details on how features are calculated are given in Appendix.

Image intensity standardization (IIS)

To get good estimates of the probability map, the images composing the training
set should describe well the image to be segmented. In MRA and 3DRA, the
intensities do not have a direct physical interpretation and the intensity range for
the same tissues can largely vary between images. The IIS [135] ensures that the
intensity ranges corresponding to the same tissues are similar by establishing a
correspondence between histograms taken from generic images and a histogram
taken as a reference. The image histogram is aligned to the reference using a
1D non-linear registration technique. The generated intensity transformation is
applied to the image volume, standardizing the intensity ranges. This enables the
use of the same training set for any image of the same modality [132]. In this study,
we improved the registration technique to make it robust to large deformations
and applicable to both 3DRA and MRA images. Normalized cross-correlation
is used as a similarity metric and the deformation is parameterized by cubic B-
spline. Limited memory Broyden Fletcher Goldfarb Shannon with simple bounds
(LBFGSB) algorithm [136] is used as optimizer. The registration is first initialized
with a transformation composed of two control points aligning the histogram peaks
and the largest intensity values. The registration is then performed following a
multiscale approach: in three chained iterations, progressively incrementing the
number of control points (4, 5 and 6), resetting their position equidistantly at
the beginning of each iteration. The range of movement is limited to half the
inter-control points distance [137]. This results in a diffeomorphic transformation
since it is smooth and avoids folding. Although there is a constraint on the overall
deformation, allowing further stretching or compression was not found necessary
and it prevents instabilities. The IIS was able to align the histograms in both the
3DRA and MRA images of the patients (Fig. 2.2).

2.2.4 Segmentation evaluation method

One aneurysm and three surrounding vessels of clinical interest, both proximal and
distal from the aneurysm (blood flow inlets and outlets) were selected per patient.
The selected vessels and aneurysm had to be visible in both 3DRA and MRA
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Figure 2.2: Image histograms of the 10 patients before (a, b) and after (c, d) image intensity
standardization of 3DRA (a, c) and MRA (b, d) images. The logarithm of histogram values is
displayed. (See color insert)

scans of the patient. On every image, for each selected vessel 10 cutting planes
were automatically positioned 1 mm apart and orthogonal to the vessel centerline.
Three additional cutting planes were manually positioned on the aneurysm, one
cutting the neck and the other two passing through the center of the neck and
the maximum aneurysm depth. This yields 33 cutting planes per image (660 in
total). Once defined, the cutting planes were kept fixed throughout the evaluation
study. The positions of the cutting planes were chosen to representatively sample
the geometry of interest around aneurysm. Having a good segmentation of that
region is important for subsequent computational modeling approaches.

The cutting planes applied to 3D intensity image produce 2D images with
the vessel cross-section, where the manual measurements were performed. The
same cutting planes applied to segmented surface mesh produce 2D contours, on
which the same measurements were automatically extracted. Since the cutting
planes were fixed, all the measurements were taken on the same cross-sections.
Two measurements per cross-section were performed. Their definition together
with the positioning of the cutting planes and examples of measurements of the
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Vessel

Aneurysm

(a) (b) (c) (d)

Figure 2.3: (a) Positioning of cutting planes. (b) For measuring vessels and aneurysm neck
the two measuring segments need to be orthogonal to each other (1st width is chosen first) and
located where the width is maximum. Dome depth is the distance from the neck center to the
farthest point on the dome, while dome width is the length of the longest chord of the dome
parallel to the neck plane. (c) Example of manual measurements. (d) Example of automated
measurements. (See color insert)

cross-sections are shown in Fig. 2.3.

The shape of the vessel and aneurysm neck cross-section was assumed to be
round but not necessarily circular. We proposed to describe the shape by the
two orthogonal widths, which capture its major and minor axes and reduce the
ambiguity when performing the manual measurements. Measurements of the dome
are relative to the neck plane and its center. For each aneurysm neck cross-section,
its center was computed. Thus, all the parameters of the neck were fixed and did
not introduce variability into the measurements of the dome.

To build the gold standard, manual measurements performed by 5 interven-
tional neuroradiologists from two clinical centers in 2 sessions were averaged. The
measuring guidelines were easily followed by the clinicians performing the man-
ual measurements. We also compared the GAR to another segmentation method:
interactive contouring based on iso-intensity surface extraction (ISE). The iso-
intensity surface is the interface between the regions of the image I: I ≥ c (the
inside) and I < c (the outside), where c is a constant intensity value. The sur-
face is obtained by marching cubes method [138] where the points at which the
iso-intensity surface intersects the edges of the voxel cube are obtained by linear
interpolation, producing a triangular mesh with sub-voxel accuracy. Four expert
users, with more than 3 years of angiographic experience, performed ISE segmen-
tation in 2 independent sessions.

In order to evaluate the inter-modality agreement, a correspondence between
cutting planes in both imaging modalities was established for each patient. Cut-
ting planes on vessels were manually aligned, starting the cutting sequence at the
same anatomical position in both imaging modalities. To establish corresponding
aneurysm cutting planes, the 3DRA and MRA segmented surface models were
first rigidly registered. Then the cutting planes that were manually positioned in
3DRA were transferred to their corresponding locations in MRA.
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(a) (b)

Figure 2.4: Examples of the registered surfaces from the two modalities 3DRA (in white) and
MRA (in blue). (See color insert)

The rigid registration was performed in a supervised fashion. First, correspond-
ing pairs of points on the two meshes were identified and an initial transformation
was applied to approximately align them. Next, the registration was refined us-
ing the Iterative Closest Point algorithm [139]. This was repeated until the two
meshes were adequately registered after visual inspection (Fig. 2.4). To evaluate
the repeatability of such procedure, the registration was performed three times for
each pair of meshes.

Qualitative analysis

The segmentation results were qualitatively evaluated by visual inspection of the
cross-sections obtained from the segmentation results. The cutting planes where
the segmented contours were missing, unrealistically deformed or merged with
neighboring vessels, were classified as erroneous. Their occurrence rate and the
effects causing them were analyzed. However, they were excluded from the sub-
sequent quantitative analysis, since they would otherwise introduce large errors,
which are not representative of the segmentation performance in denoting the
actual border of the vessel lumen.

Quantitative analysis

For the quantitative analysis, three main factors, as proposed by [140], were con-
sidered: repeatability, accuracy and efficiency. In addition, we also evaluated the
global correctness by region overlap with manual segmentations and the inter-
modality reproducibility.

Repeatability The main variability of GAR results is introduced by the dif-
ferences between the images used as a training set for the classifier. This
variability was estimated from results obtained with different training sets.
In addition, we evaluated the influence that the number of images in the
training set has on the variability. The variability of manual measurements
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and ISE results is introduced by the observer, thus we estimated their inter-
and intra-observer variability.

Accuracy For GAR and ISE methods it was estimated in two complementary
ways. First, as an average absolute difference from the gold standard. Sec-
ond, as limits of agreement with the gold standard, which represent the bias
and the 95% likely range for the differences. From this, a variability in-
dex was introduced where deviations from the gold standard are put into
perspective by comparing them to the variability of manual measurements.

Region overlap To complement the accuracy measurements, the segmentation
results were converted from mesh to voxel representations and compared to
manual segmentations performed on the geometry of interest by two experi-
enced observers. Although less sensitive to small, sub-voxel variations, this
more global metric can detect serious mis-segmentations of the vessel region.
Two region overlap measures, as used in the recent works [141, 142], were
calculated: the Dice [143] and the conformity [144] scores.

Efficiency Estimated as average time spent in segmenting an image. For au-
tomated GAR method, it was the computer execution time, while for in-
teractive ISE, was the time spent by the observer deciding on the optimal
iso-intensity value.

Inter-modality reproducibility Estimated for manual measurements and the
two segmentation methods as limits of agreement between the corresponding
values on the results from the two modalities.

As the evaluation is based on limits of agreement, variability index and region
overlap scores, we summarize their calculation details.

Limits of Agreement (LoA). In order to analyze the LoA between each segmen-
tation method and the gold standard in a repeated study (multiple sessions), a
two-way analysis of variance (ANOVA) with a statistical linear mixed model was
used [145]. To obtain the standard deviation of the method with respect to the
ideal gold standard (having zero variability), the variability of the gold standard
σgs was removed from the standard deviation of LoA (σloa).

σ
l̂oa

=
√
σ2
loa − σ2

gs. (2.3)

Variability index. To compare the deviation of segmentation results from the gold
standard, with the variability of manual measurements, we defined the variability
index (similar to the Williams index [146]) as the ratio of the method’s standard
deviation and the inter-observer variability of the manual measurements:

I =
σ
l̂oa

σinter-clinician
(2.4)

If the value of this index I < 1, the segmentation method deviates from the gold
standard less than the manual measurements vary between themselves.
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Region overlap scores. The Dice and the conformity scores are defined as follows:

Dice = 2
|Smethod ∩ Sgs|
|Smethod|+ |Sgs|

× 100%; (2.5)

Conformity =

(
1− |SFP|+ |SFN|

|STP|

)
× 100%, (2.6)

where Smethod and Sgs are the sets of vessel region voxels labeled by the segmenta-
tion method and the gold standard, respectively. SFP, SFN and STP are the sets of
false positives, false negatives and true positive voxels, respectively, with respect
to the gold standard. |X| denotes the cardinality of the set X. Both scores reach
the value of 100% in the case of perfect overlap and are mutually related by

Conformity = 3− 2

Dice
. (2.7)

2.3 Results

Results are grouped according to the region of interest (aneurysms or vessels)
and according to the imaging modality (3DRA or MRA). The two widths used
as descriptors of vessel and aneurysm cross-sections were evaluated together. For
reporting statistical significance, two-tailed 95% confidence intervals were consid-
ered.

2.3.1 Qualitative analysis

The following effects were causing erroneous segmentations in certain cutting
planes:

Touching vessel effect Two vessels are merged and the 1st width is the sum
of both vessel diameters. It occurred mostly in 3DRA images where small
vessels can appear very close or touching. In ToF-MRA images, due to the
low spatial resolution and the low blood flow in small vessels, these vessels
are usually not visible in the images.

Missing vessel effect The cutting plane contains no segmentation contour. It
happened mostly in ToF-MRA images due to the low signal in a vessel.

Wide aneurysm neck The aneurysm dome is merged with the surrounding vas-
culature. Hence, the neck is largely oversegmented.

Indented aneurysm Aneurysm neck and dome become severely undersegmented
(shape is deformed) due to the low signal in the image. It happened only in
ToF-MRA images, where the low signal is caused by flow induced artifacts
(e.g. turbulent flow).
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Table 2.1: Percentage of excluded cutting planes due to the occurrence of qualitative segmen-
tation errors. Per modality there were: 300 planes positioned on vessels (10 patients, 30 planes
each), and 30 planes positioned on aneurysms (10 patients, 1 plane positioned on the neck and
2 on the dome).

Effect
Occurrence rate [%]

GAR ISE

3DRA MRA 3DRA MRA

Touching vessel effect 8.7 (26/300) 0.3 (1/300) 16 (48/300) 5.7 (17/300)

Missing vessel effect 0 (0/300) 2 (6/300) 0.3 (1/300) 2 (6/300)

Wide aneurysm neck 40 (4/10) 20 (2/10) 30 (3/10) 30 (3/10)

Indented aneurysm 0 (0/30) 17 (5/30) 0 (0/30) 10 (3/30)

(a) (b) (c) (d)

Figure 2.5: Examples of qualitative errors: Touching vessel effect (a), missing vessel effect (b),
wide aneurysm neck (c) and indented aneurysm (d). (See color insert)

Examples of the above-mentioned effects are shown in Fig. 2.5. The percentage
of occurrence for each specific modality and segmentation method is shown in
Table 2.1.

The occurrence rate of touching vessels in GAR was half of the value in ISE
for 3DRA images (close to being statistically significant, p = 0.06, binomial-test)
and significantly smaller than in ISE for MRA images (p = 0.01, binomial-test).
The missing vessel effect was rare for both segmentation methods. In contrast, the
problems at the aneurysm were equally frequent for both GAR and ISE (p > 0.8,
binomial-test). The aneurysm neck is especially susceptible to qualitative errors
since in many cases it is hard to approximate a neck using a 2D plane.

2.3.2 Quantitative analysis

Repeatability

The variability of the GAR segmentation results is mainly due to the training
set and depends on the number of images used to produce it. This variability is
expected to decrease as the size of the training set increases, because the variability
introduced by manually segmenting each image is canceled out when averaging
more images. To evaluate the repeatability of GAR, the segmentation of the 10
3DRA images was repeated with 16 different training sets: 4 sizes were selected
to build the training set (number of images: 3, 6, 8 and 10) and, for each size, 4
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Figure 2.6: Inter-training set variability (from 4 different training sets) of GAR in 3DRA in
relation to the number of images (3, 6, 8 and 10) used to build the training sets. Error bars
present the 95% confidence intervals.

Table 2.2: Standard deviations (SD) of variability (two-way ANOVA) with their 95% confidence
interval (CI), for manual measurements and ISE segmentation method.

Method
SD ± 95% CI [mm]

Vessel Aneurysm

3DRA MRA 3DRA MRA

Inter-observer
Manual 0.27± 0.02 0.30± 0.02 0.30± 0.05 0.29± 0.05

ISE 0.18± 0.01 0.22± 0.01 0.15± 0.03 0.24± 0.05

Intra-observer
Manual 0.17± 0.01 0.18± 0.01 0.26± 0.05 0.20± 0.04

ISE 0.14± 0.01 0.16± 0.01 0.11± 0.02 0.20± 0.04

independent (non-overlapping) sets of images were used. For training sets having
10 images, the inter-training set variability was less than 0.05 mm for the vessel
and aneurysm regions (Fig. 2.6).

The operator-induced variability values for manual measurements and ISE seg-
mentation method are presented in Table 2.2. The variability of the GAR method
was clearly lower than even the intra-observer variability of the ISE and the man-
ual measurements. The rest of the presented GAR results on 3DRA correspond
to those made with 4 different training sets composed from 10 images each.

Accuracy

Limits of agreement of GAR and ISE with the gold standard are presented in Ta-
ble 2.3 and displayed in Fig. 2.7(a) where they are compared to the inter-observer
variability of manual measurements. The error is shown in Fig. 2.7(b) and is
expressed as the average difference (in absolute values) between the segmenta-
tion methods and the gold standard. The variability index (Eq. 2.4) is shown in
Fig. 2.7(c).
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Table 2.3: Agreement between the segmentation methods and the gold standard, expressed
as bias with its 95% confidence interval (CI) and the population’s standard deviation (SD)
(computed with Eq. 2.3).

Method
LoA with gold standard: bias ± 95% CI (SD) [mm]

Vessel Aneurysm

3DRA MRA 3DRA MRA

GAR
−0.09± 0.03

(0.27)
−0.12± 0.04

(0.37)
0.09± 0.11

(0.19)
−0.14± 0.10

(0.22)

ISE
0.01± 0.03

(0.29)
0.15± 0.04

(0.39)
0.20± 0.12

(0.28)
0.11± 0.12

(0.31)

With the exception of the vessel region in MRA, the following observations
are valid for GAR. The 95% limits of agreement were within those of manual
measurements. The bias, although statistically significant, was small: less than one
third of the image spatial resolution (∼ 0.3 mm for 3DRA and ∼ 0.5 mm for MRA)
and two to three times smaller than the standard deviation. The average error,
when equally weighted between vessel and aneurysm region, was 0.2 mm for 3DRA
and 0.27 mm for ToF-MRA, which was similar to that of manual measurements.
The variability index was below 1. Compared to ISE, GAR performed similarly
in the vessel region and clearly better in the aneurysm region. In vessel region for
MRA, both ISE and GAR performed worse than the manual measurements.

Region overlap

Manual voxel labeling has been performed by two operators on 3DRA and MRA
images of the first 4 patients in a region of interest positioned around aneurysm,
having an average size of 340000 (70× 70× 70) voxels. The region overlap scores
between each of the two segmentation methods and the manual segmentations are
shown in Fig. 2.8, and are compared to the corresponding score between both
manual segmentations as a measure of the inter-observer variability. The scores
were averaged from all pairs of images and gold standard manual segmentations.

The overlap scores with the gold standard, for both segmentation methods
were larger or comparable to the inter-observer ones. Thus, no notable mis-
segmentation occurred for neither of the methods. Overlap scores for GAR and
ISE were similar which suggests that most of the differences between the results
of the two methods are at the sub-voxel level.

Efficiency

The GAR execution time depends on the size of the evolving surface i.e. the
amount of vasculature being segmented. On average, for a cuboidal region of
interest with a size of 2563 voxels, the execution time was 17 ± 4 min (standard
deviation) on a standard PC with an Intel quad-core 2.4GHz processor and 4GB
of memory. For ISE, on average ∼ 5 min were required to decide on the optimal
iso-intensity (the computational time for extraction of the iso-intensity surface was
negligible).
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Figure 2.7: (a) Limits of agreement between the segmentation method and the gold standard.
Bias is denoted with a marker while the bars correspond to 95% limits of agreement (±2σ

l̂oa
).

Agreements are compared with inter-observer limits of agreement for the manual measurements.
(b) Average absolute difference from the gold standard with 95% confidence intervals. (c) Vari-
ability index with corresponding 95% confidence intervals. In (b) and (c), statistically significant
difference (p < 0.05, t-test) is denoted with an asterisk (*).
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Figure 2.8: Dice and conformity region overlap scores for the segmentation methods and the
gold standard, with their 95% confidence intervals.

Table 2.4: Inter-modality limits of agreement, expressed as bias (MRA-3DRA) with its 95%
confidence interval (CI) and the population’s standard deviation (SD).

Method
Inter-modality LoA: bias ± 95% CI (SD) [mm]

Vessel Aneurysm

Manual −0.21± 0.04 (0.48) 0.03± 0.22 (0.84)

GAR −0.24± 0.04 (0.49) −0.37± 0.24 (0.69)

ISE −0.10± 0.05 (0.58) −0.17± 0.25 (0.75)

Inter-modality reproducibility

Inter-modality agreement of manual measurements, and GAR and ISE methods
are shown in Table 2.4. In the vessel region, GAR performed similar to manual
measurements and both had a statistically significant bias. In the aneurysm region,
the segmentation methods had large limits of agreement but were within those of
the manual measurements. The variability introduced by the mesh registration
procedure was 0.12± 0.05 mm (standard deviation with its 95% confidence inter-
val), which was small compared to the standard deviations of the inter-modality
limits of agreement.

2.4 Discussion

We evaluated the GAR method’s potential for segmenting cerebral vessels and
aneurysms in 3DRA and MRA images acquired at different medical centers and
with different imaging equipment. Three main improvements to the GAR method
were introduced to make it suitable for segmenting images from clinical routine.
Using an MVN classifier speeded up the region-based probability map computa-
tion. Using a voxel based feature scale selection enabled handling a larger variety
of image spatial resolutions. The IIS component enabled the training set to be
built irrespective of the clinical center and the imaging equipment.

32



2.4. Discussion

C
H
A
P
T
E
R
2.

As revealed by the qualitative analysis, the success of the segmentation de-
pended on the local complexity of the vascular geometry, especially in the aneurysm
region. Vessels which are very close to each other or to the aneurysm were some-
times merged in the extracted geometrical mesh. This partly happened because
of insufficient imaging resolution, which means that more difficult geometrical
configurations would require higher resolution and contrast to noise ratio for en-
suring successful segmentation. In ToF-MRA images, segmentation was further
hampered by large signal variations due to slow or turbulent flow.

In general, when qualitative segmentation errors occur, further interactive post-
processing is required to remove the artifacts from the mesh. Favorably, the ar-
tifacts are of local nature and are easily detected visually. The methods used for
their removal depend on the application. For the use in computational blood flow
simulations, a sequence of local operations like mesh element removal and hole fill-
ing followed by an additional volume-preserving smoothing are typically applied
to improve the mesh quality and to correct for geometrical and topological irregu-
larities. There are various open-source tools already available, like ReMESH [147],
MeshLab [148] or GIMIAS [149], which are able to efficiently repair triangular
meshes. Repairing the mesh is time consuming and depends on the extent of the
artifacts and the operator’s experience. As a reference, a single touching vessel
artifact can be removed in less than 5 min. However, limiting the occurrence of
such artifacts is still a strong incentive for the research community to continue
designing new segmentation algorithms.

The GAR method has been compared to the ISE method. The aim was to do
the comparison with a method that is already clinically available. ISE is commonly
used as a segmentation method on the commercial workstations of the imaging
equipment, since the highest intensities in 3DRA and MRA images correspond to
vessels [150].

The automated GAR and interactive ISE methods differed from the gold stan-
dard within acceptable limits compared to the imaging resolution and had similar
region overlap scores. GAR had an average accuracy of 0.2 mm for 3DRA and 0.27
mm for ToF-MRA, and had a repeatability of 0.05 mm. Compared to ISE, GAR
had a lower qualitative error in the vessel region and a lower quantitative error
in the aneurysm region. Moreover, GAR is automated and its repeatability was
superior to both ISE and manual measurements. In contrast, the inter-observer
variability of ISE could even result in differences in the extracted vascular topol-
ogy, which would also mean adding a large variability to any subsequent vascular
analysis.

Comparison of our evaluation setup and results to that of the current state
of the art methods is given in Table 2.5. All the methods use some variant of
the deformable model and produce results with sub-voxel precision. Most require
interactive initialization in the form of a seeded region growing. Manniesing et
al. [131] study is the most similar to ours. They also presented a fully automated
method capable of extracting the whole vascular tree, as opposed to other groups
focusing on the interactive segmentation of individual vascular segments, and used
manual measurements of the cross-sections as gold standard. However, they de-
scribe the shape with only one diameter, no observer variability was reported and
no aneurysms were included in the evaluation. Chang et al. [141] and Firouzian
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et al. [142] used manual voxel-based segmentations as gold standard, loosing sub-
voxel precision in the process. Firouzian et al. limited the evaluation to just the
aneurysms but unlike Chang et al. they did report the inter-observer variabil-
ity. Castro el al [151] and Antiga et al. [130] used digital and physical phantoms,
respectively, which enabled them to estimate surface to surface distance to the
gold standard. Castro et al. and Chang et al. combined the performance on
vessels and aneurysms, which made the results biased towards the ones on vessels
since aneurysms composed only a small part of the resulting volume or mesh. Fi-
nally, only Chang et al. compared their results with another method: intensity
thresholding, a voxel-wise variant of ISE.

Ideally, the results of segmenting the same vasculature from two different
modalities should coincide, although some differences might appear due to dif-
ferent image formation mechanisms. Of the two results from the two modalities,
we assume that the one from 3DRA is closer to ground truth due to 3DRA’s higher
imaging resolution and contrast to noise ratio, which is also in agreement with the
inter-observer variability being larger in MRA than in 3DRA. Thus, observing
the inter-modality agreement in the vessel region, the GAR and the manual mea-
surements tended to undersegment ToF-MRA on average. Probably, the actual
vessel lumen was underestimated because of the very slow flow near the vessel
wall and the saturation effects so the vessel seemed narrower in the cross-section
image. In the aneurysm region we noticed differences in the shape of reconstructed
aneurysms between 3DRA and MRA, especially for medium and large sized ones.
This may be attributed to the difference in the contrast distribution, visible in
3DRA images, and the blood flow, visible in ToF-MRA images. Thus, although
it was recently shown that 3T ToF-MRA and CE-MRA were equivalent in eval-
uating the occlusion status of cerebral aneurysms [152], CE-MRA might produce
better images for the purpose of accurate aneurysm segmentation. However, un-
derstanding the cause of these differences between the two modalities goes beyond
the scope of this study.

This evaluation study had some limitations. The most important one is that
the performance was evaluated only on certain cutting plane positions, not on the
entire extracted surface. In addition, cross-sections were only described with two
measured widths. This decision was made to have less but meaningful measure-
ments in a larger amount of images and processed by more clinicians. Otherwise
the amount of required manual effort would have reduced the number of analyzed
patients. However, we did perform a smaller study using region overlap scores
and no notable mis-segmentations were observed. Lastly, the imprecision in es-
tablishing inter-modality correspondences between the cutting planes might have
influenced the inter-modality limits of agreement.

Taking all the evaluation results into account, the GAR performed better than
ISE in accuracy and repeatability, also achieving a good agreement with the gold
standard in 3DRA and in ToF-MRA imaging modalities. Thus, we conclude that
GAR is able to segment 3DRA and ToF-MRA images coming from clinical rou-
tine and is better suited than ISE for extracting vascular geometry for use in a
computational modeling process.

Automated and repeatable image segmentation technique like GAR is essential
to achieve reproducibility and consistency of the subsequent analysis steps in com-
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putational modeling pipelines. Such pipelines rely on the availability of accurate
patient-specific vascular models and are able to streamline the creation of per-
sonalized anatomical, structural and haemodynamic models [10]. These are then
used to derive robust and reliable quantitative descriptors providing an integrated
decision support system to assess the risk of aneurysm rupture in patients and to
optimize their treatments.

Appendix. Multiscale feature vector

The region-based information of GAR is represented in the form of a probability
map associated with a particular region R. For the application of vessel segmen-
tation in 3DRA and MRA we define two regions: vessel region and background
region. The estimated probability value at each voxel x of the probability map
represents the conditional probability, P (x ∈ R | f(x)), that voxel x belongs to
region R observing the feature vector f(x). The feature vector f(x) is built from
differential invariants [153] up to the second order and in the multiscale frame-
work [154]. Differential invariants are invariant to rigid transformations but not
to scale, thus they are computed at several scales (having standard deviations:
σ0 . . . σm).

f(x) = (fσ0
, . . . , fσm

)(x). (2.8)

The set of derivatives used at one scale consists of the local jet of order two
(L,Li, L

i
j) from which we compute the invariants. The formulation is given in

Eq. 2.9, using Einstein tensor notation:

fσn(x) = (L,Li
i, LiL

i, Li
jL

j
i , LiL

i
jL

j , Li
jL

j
kL

k
i , LiL

i
jL

j
kL

k). (2.9)

When calculating the local jet, the image is convolved with a Gaussian kernel
having standard deviation σn, which is related to the scale at which we compute
the local-jet. Given the impossibility of computing the invariants at all scales, we
need to quantize the scales.

To deal with the large variety of possible image resolutions, the scales used
for feature calculations are based on voxel spacing and not on world spacing. It
assumes that small vessels look like large ones just on a different scale so the
number of voxels per vessel diameter is the important factor [155] instead of the
vessel width in mm. By modeling the intrinsic image resolution as a Gaussian
point spread function with standard deviation of half a voxel size, the standard
deviation of the applied Gaussian filter kernel is taken as:

σn =
√

λ2
n − 0.52, (2.10)

where the scales in voxel units are:

λn = 0.5 exp(nδ). (2.11)

The scale sampling parameter δ was chosen to be 0.3 and the number of scales as
5, n = 0, . . . , 4. Both present a compromise between the density of sampling in the
scale space and the computational requirements. As a result, the standard devi-
ations of Gaussian filter kernels used are σn = {0, 0.5535, 0.9941, 1.5830, 2.4255},
expressed in voxel units. Having 7 features per scale, this produces for each voxel
a 35 dimensional feature vector.
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This chapter presents a methodology for an objective and extensive geometric
characterization of carotid siphon parameterized by a set of anatomical landmarks.
We introduce a complete and automated characterization pipeline. Starting from
the segmentation of vasculature from angiographic image and its centerline ex-
traction, we first identify internal carotid artery (ICA) by characterizing vessel
tree bifurcations and training a support vector machine classifier to detect ICA
terminal bifurcation. On ICA centerline curve, we detect anatomical landmarks of
carotid siphon by modeling it as a sequence of four bends and selecting their cen-
ters and interfaces between them. Bends are detected from the trajectory of the
curvature vector expressed in the parallel transport frame of the curve. Finally,
using the detected landmarks, we characterize the geometry in two complemen-
tary ways. First, with a set of local and global geometric features, known to affect
hemodynamics. Second, using large deformation diffeomorphic metric curve map-
ping (LDDMCM) to quantify pairwise shape similarity. We processed 96 images
acquired with 3D rotational angiography. The characterization based on pair-wise
LDDMCM performed better in classification of the carotid siphon shape classes
than the one based on geometric features.

The content of this chapter is adapted from the following publication:

H. Bogunović, J.M. Pozo, R. Cárdenes, M.C. Villa-Uriol, R. Blanc, M. Piotin, and
A.F. Frangi. Automated Landmarking and Geometric Characterization of the Carotid
Siphon. Medical Image Analysis, 16(4): 889-903, 2012.
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Figure 3.1: Carotid siphon with an aneurysm on the bifurcation with the posterior communi-
cating artery.

3.1 Introduction

The locations where vascular pathologies tend to occur more frequently are in
general non-uniformly distributed across the vasculature. For example, cerebral
aneurysms (pathological bulging of arteries) have strong preference for occurring at
specific locations, and are frequently found at or near the regions of high vascular
curvature in arteries of the Circle of Willis [9]. Similarly, atherosclerosis (thickening
of the arterial wall) often occurs at carotid bifurcation [12] or near the bifurcations
of coronary arteries [13,156].

Since geometry varies among different locations in the vasculature, it is believed
that this geometric variation contributes to a corresponding variation in predis-
posing hemodynamic forces [20]. These forces, coming from blood motion, are
speculated to play an important role in the initiation and localization of patholo-
gies, which in turn could explain their nonuniform distribution [18]. Taking this
into account, Friedman et al. [21] introduced the concept of “geometric risk fac-
tors” as the geometric features that provoke high hemodynamic stresses on the
vessel wall.

An important condition for the geometric risk factor concept is the presence
of sufficient individual variability in geometry to induce important variations in
individual hemodynamics [31]. One vessel of clinical interest that satisfies this
requirement is the internal carotid artery (ICA). Located on each side of the
neck, ICA is the main vessel that feeds blood to the arteries forming the anterior
circulation of the brain. The geometry of ICA varies widely across the population,
in particular the part known as the carotid siphon [157]. The carotid siphon
(Fig. 3.1) is the tortuous segment of the ICA that extends from the carotid canal
to the terminal bifurcation (ICA-TB) at which the ICA bifurcates into the anterior
cerebral artery (ACA) and the middle cerebral artery (MCA).

Geometry of ICA is of special interest as incidence rate of aneurysms on it
is high, as one third of all cerebral aneurysms occur along the carotid siphon or
its terminal bifurcation [9]. A couple of studies already identified effects linking
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Figure 3.2: The image-based pipeline for geometric characterization of the carotid siphon.

geometry and aneurysmal pathology on ICA. Piccinelli et al. [158] concluded that
ICA bends hosting ruptured aneurysms tend to be shorter, having smaller radius,
lower maximum curvature, and the aneurysms are located closer to the bend cen-
ter. Kim et al. [159] found that a relatively shorter length of the supraclinoid
ICA may be a risk factor for the development of an ICA-posterior communicating
artery aneurysm due to higher hemodynamic stress. The geometry of ICA was
also of interest to evaluate endovascular accessibility of lesions and for treatment
planning, which involves choosing the optimal path and selecting the appropriate
type of microcatheters, guidewires and stents [38, 41,42,160].

The aim of this work is to provide a methodology for extensive geometric char-
acterization of carotid siphon in an objective, robust and automated way, starting
from an angiographic image. The characterization should allow the comparison of
carotid siphons within and between subjects and measure their similarity. Such
a method would facilitate cataloguing the normal values and the variability of
carotid siphon geometry to guide future exploration and identification of specific
geometric risk factors.

The summary of the chapter is the following. In section 3.2, we overview the
state-of-the-art in the geometric characterization of vasculatures. In section 3.3,
we start presenting the automated characterization pipeline (Fig. 3.2), with a focus
on identifying ICA and detecting anatomical landmarks of carotid siphon. Based
on these landmarks of correspondence, we propose two approaches for the geomet-
ric characterization (Fig. 3.2). One is based on computing several geometrically
intuitive features (section 3.4), while the other on measuring the pair-wise simi-
larity between carotid siphons taking their entire shape into account (section 3.5).
In section 3.7, we validate the automated ICA identification and landmark detec-
tion and compare the two characterization approaches in their ability to separate
carotid siphons having different shape classes, related to endovascular accessibil-
ity. Finally, section 3.8 discusses the benefits and limitations of the proposed
characterization and presents our conclusions.

3.2 Related work

The geometric characterization of vasculature and in particular of ICA, have al-
ready attracted a lot of attention. The state-of-the-art can be divided into two
main approaches. The most common one is to represent the vessel shape with a
set of geometric indices, which are considered as candidates for being geometric
risk factors. The other approach is to consider each point of a centerline as a func-
tion of its arc length parameter and then apply functional data analysis (FDA) to
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explore the variability in a population.

Bullitt et al. [95] focused on the measure of tortuosity of the intracerebral vas-
culature. Three different tortuosity metrics were compared by their effectiveness
in detecting several types of abnormalities. The same authors in [45], created a set
of vessel attributes containing radius, three measures of tortuosity and branching
pattern. Statistical properties of these attributes were then explored. In [161], the
aim was to evaluate the maximal magnitude of deformation on the coronary artery
and intracoronary devices due to heart contraction. Curvature, torsion and tortu-
osity and their change along the heart cycle were computed in a selected region of
a coronary tree. In [96], tortuosity and deviation index as well as curvature angle
were computed for describing the terminal part of the basilar artery. O’Flynn et
al. [36] described the anatomy of normal human abdominal aorta and its side renal
arteries with tortuosity, non-planarity of bifurcations, branching angles, curvature
and torsion. In the works by Meng et al. [100,101], carotid siphon is characterized
by its spatial complexity defined as the sum of the curvature and torsion energy.
The above methods, apart that they limit the characterization to a small set of
isolated geometric indices, require user-interaction.

A framework for geometric analysis of vasculature is introduced by Piccinelli
et al. [57]. Starting from image segmentation and centerline extraction, vascular
structures, are objectively characterized using computational geometry. Curva-
ture, torsion and tortuosity are used to characterize centerlines. Parallel transport
on the normal vector bundle of a curve is used for comparing angular positions
at different locations. Using such framework, in [158], they presented a geomet-
ric characterization of ICA and searched for patterns that can be associated to
the presence and rupture status of aneurysms. Vessel centerline is partitioned
into a sequence of quasi-planar bends. Each bend is then characterized with sev-
eral geometric indices: torsion peaks at proximal and distal endpoints, mean and
maximum curvature, length, radius, angular orientation of aneurysm, etc. How-
ever, their method does not guarantee the correspondence of the bends, which is
reflected by the discrepancy in the number of bends obtained from different sub-
jects. Furthermore, the number of such obtained bends strongly depends on the
applied scale for vessel centerline smoothing.

As opposed to computing geometric indices, Sangalli et al. [162] applied FDA to
characterize a set of centerline curves of ICA. An atlas of curves was created where
the reference curve and a set of affine transformations of arc length parameter are
simultaneously estimated by Procrustes fitting. From the set of aligned curves,
functional principal component analysis of their local radius and curvature was
performed. Using the principal modes of variation corresponding to the change
in radius and curvature, they were able to discriminate patients with aneurysms
in different areas. In [163], they extended their atlas to allow for multiple ref-
erence curves. A method called k-mean alignment is proposed for simultaneous
alignment and clustering of spatial curves. Thus, each cluster center corresponds
to a different reference curve. They were able to obtain two reference curves
which correspond to the two main classes of carotid siphon shape: Ω-shaped and
S-shaped. However, as the transformations are restricted to be affine, the align-
ment does not assure correspondences between points and bends of curves. These
inter-subject anatomical correspondences are essential for computing geometrical
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descriptors. Besides, we consider them an important requirement for the correct
shape comparison between ICAs.

3.3 ICA segmentation

3.3.1 Segmentation of the vasculature

Segmentations of the vasculature are performed in an automated way with a ge-
ometric deformable model called Geodesic Active Regions (GAR) [78, 164]. The
method was demonstrated to be accurate for 3D rotational angiography (3DRA)
and time-of-flight magnetic resonance (TOF-MRA) images. The result of the
segmentation is a triangular mesh modeling the vascular lumen with sub-voxel
precision.

3.3.2 Vascular tree centerlines computation

The shape of tubular objects, like vessels, can be approximated by the shape of
their centerline (medial axis), which is a 3D spatial curve. We obtain the set of
vessel centerlines in two steps. First, to obtain the estimate of the topology of
the vascular tree, fast topological thinning based on collapsing fronts followed by
a fast marching computation to assure centerline connectivity [165] was applied to
obtain the skeleton of the segmentation (Fig. 3.3). The skeleton, due to imaging
resolution and segmentation inaccuracies producing touching vessels, might not
have the topology of a tree. However, its end-points do correspond to the root
and the terminal leaves of the underlying vascular tree. The root was taken to be
the end-point with the maximal associated radius at the lowest axial plane, which
corresponded to the ICA entering the imaged field of view.

Second, the set of accurate centerlines is obtained by backtracking along the
minimal cost path from the end-points toward the root using [88], implemented in
the open-source library VMTK [166]. Every point of such centerline, corresponds
to the center of a maximally inscribed sphere and the set of centerlines topologically
form a rooted tree with the edges directed away from the root in accordance with
the blood flow.

3.3.3 ICA identification

To identify ICA in the extracted vascular tree, we applied the method for detect-
ing ICA-TB, that we preliminarily presented in [167]. A machine learning based
approach is applied, where a classifier is trained on a set of labeled bifurcation
feature vectors. Then, a breadth-first traversal of tree bifurcations is performed
until the first positive detection. With this strategy we only needed to differen-
tiate ICA-TB from other bifurcations along the ICA as the potential error would
appear either as a false positive along the ICA or a false negative at its terminal
bifurcation.

Origins of the bifurcations forming the vessel tree and their bifurcation vectors
(unit vectors denoting directions of parent vessel and the two daughter branches),
are defined using the objective and robust criteria of [56, 57]. The two daughter
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Figure 3.3: Segmented vascular mesh and its skeleton.

branches are differentiated by their radius: the larger daughter branch and the
smaller daughter branch. Then, each bifurcation is geometrically characterized
with the following 15 dimensional feature vector:

• Ratios of mean vessel radii between each pair of vessels forming the bifurca-
tion (3).

• Sagittal, axial and coronal-components of the three bifurcation vectors (9).

• Angles between each pair of bifurcation vectors (3).

When compiling the feature vector, the two daughter branches are differentiated
by their radius: Larger daughter branch and smaller daughter branch (Fig. 3.4(a)).

As a classifier, we employed C−Support vector machine (C−SVM) [168] where
the training feature vectors x⃗i are mapped into a higher dimensional space having
inner-product defined by a Gaussian kernel:

K(x⃗i, x⃗j) = exp(−γ∥x⃗i − x⃗j∥2), γ > 0 (3.1)

SVM then finds a linear separating hyperplane with the maximal margin in this
higher dimensional space. It has two parameters: the penalty C of the training er-
ror and the kernel parameter γ. Optimal classifier parameter values were obtained
by a simple grid search through multiple combinations. The ones giving the best
cross-validation (CV) score were chosen.

Finally, once the ICA-TB is detected, ICA is extracted as a sequence of 4D
points (3 spatial centerline coordinates plus the vessel radius) along a curvilinear
abscissa starting from the ICA-TB and proceeding toward the heart until it reaches
the root of the tree (Fig. 3.4(b)).
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Figure 3.4: (a) Bifurcation characterization: Origin (black cube) and associated bifurcation
vectors. (b) Example of identified ICA and its centerline. (See color insert)

3.3.4 Carotid siphon landmarks

To compare carotids within and between subjects, we identify a set of sparse
landmark points of anatomical correspondence. They are essential as they will
serve as a base for geometric characterization. We model the carotid siphon, the
part of ICA from terminal bifurcation to carotid canal, as a sequence of four
bends named (from ICA-TB towards the heart): superior, anterior, posterior and
inferior bend, following their anatomical position with respect to the siphon center
(Fig. 3.5). The inferior, posterior and anterior bends have been observed to be
highly planar.For the superior bend, the planar approximation is not found to be
valid as its shape resembles more a helix (non-zero torsion).

The landmarks we selected corresponded to: ICA-TB, the centers of the bends
and to the interfaces between the bends of the model. However, for the helical
superior bend, the location of its center turned out to be highly ambiguous and that
landmark has consequently been omitted. The final set of chosen seven landmarks
is shown in Fig. 3.5.

As the landmarks are associated with the four-bend model, we first identify the
four bends on a centerline spatial curve. For this, we will make use of two natural
frames defined on a spatial curve: The Frenet-Serret and the parallel transport
one [169,170]. We start by giving an overview of the two frames and then present
the method for bends and landmarks detection.

Frames on a spatial curve

Given a regular parameterized differentiable space curve Γ with a normalized arc
length parameter s,

Γ = {x⃗(s)|s ∈ [0, 1], x⃗ ∈ R3}, (3.2)
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Figure 3.5: Carotid siphon with the four bends (in color) and the seven landmarks (in black).
White area denotes: outside the region of interest. (See color insert)

the Frenet-Serret frame is defined locally by a triad: tangent T⃗ (s), normal N⃗(s)

and binormal B⃗(s),

T⃗ (s) = x⃗ ′(s)

N⃗(s) =
T⃗ ′(s)

∥ T⃗ ′(s) ∥
=

x⃗ ′′(s)

∥ x⃗ ′′(s) ∥

B⃗(s) = N⃗(s)× T⃗ (s) =
x⃗ ′(s)× x⃗ ′′(s)

∥ x⃗ ′(s)× x⃗ ′′(s) ∥
. (3.3)

Thus, (T⃗ (s), N⃗(s), B⃗(s)) forms an orthonormal basis. N⃗ is a unit vector point-
ing towards the center of the locally osculating circle, i.e. in the direction the
curve is curved. The vector T⃗ ′(s) = κ(s)N⃗(s), with the magnitude being the
scalar curvature κ(s) =∥ x⃗ ′′(s) ∥, is then called the curvature vector. Example of
Frenet-Serret frame on a spatial curve is given in Fig. 3.6(a). Frenet-Serret frame
can change orientation abruptly and is not defined when curve is locally straight
(x⃗ ′′(s) = 0).

The parallel transport frame [169], is the frame obtained by parallel transport
in the normal bundle of the curve. It can be obtained from any orthonormal basis
{E⃗1(0), E⃗2(0)} spanning the plane orthogonal to the tangent T⃗ (0) at the initial
point x⃗(0), by parallel transporting it along the curve. The following equation
defines such a frame:

T⃗ ′(s)

E⃗1
′
(s)

E⃗2
′
(s)

 =

 0 k1(s) k2(s)

−k1(s) 0 0

−k2(s) 0 0




T⃗ (s)

E⃗1(s)

E⃗2(s)

 . (3.4)

E⃗1
′
and E⃗2

′
depend only on T⃗ and are parallel to it, hence are well defined ev-

erywhere on a regular spatial curve, regardless of curvature. Example is given in
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Figure 3.6: Centerline spatial curve with: (a) Frenet-Serret frame with normal N⃗ (green) and

binormal B⃗ (purple) vectors. (b) Parallel transport frame with E⃗1 and E⃗2 (red and blue). (c)

Normal vector N⃗ in the region of bend transition changes the orientation with respect to E⃗1 and
E⃗2. (See color insert)

Fig. 3.6(b). Such frame is smoothly varying and not affected by the underlying
torsion.

We are interested in representing the curvature vector in the parallel transport
frame:

T⃗ ′(s) = κ(s)N⃗(s) = k1(s)E⃗1(s) + k2(s)E⃗2(s). (3.5)

Thus, k1 and k2 are the components of the curvature vector with respect to basis
{E⃗1, E⃗2} and every spatial curve is uniquely represented in the (k1, k2) space up to
a rotation. Indeed, this introduces a natural extension to 3D of the notion of the
oriented or signed curvature restricted to 2D plane curves. Such a representation
avoids the computation of torsion (which requires third-order derivatives), hence
we only require curves to be of class C2, which makes it more stable and robust
to the level of noise on the extracted curve.
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3.3. ICA segmentation

Bends and landmarks detection

Bends are curved parts of the centerline and are separated by a local curvature
minimum at their ends. However, the total number of the curvature extremums
varies across population and also depends on the scale and on the extent of ICA
visible in the image. To avoid false positive detections due to consecutive curvature
minimums forming the same anatomical bend, we will make use of curvature vector
expressed in the parallel transport frame. The main idea is to use the property
that the curvature vector changes orientation at the bend transitions, while E⃗1

and E⃗2 of the parallel transport frame remain stable along the curve (Fig. 3.6(c)).
To detect the bend transitions, we then use the curve representation in the above
defined (k1, k2) space. Thus, the change of bends between two centerline points
corresponding to local curvature maximums is expected to produce a wide angle
(θ > 90◦) between their vectors. On the other hand, if the angle between them is
small (θ < 45◦), the two curvature maximums are expected to belong to the same
bend (Fig. 3.8(a)).

We argue that this is a more robust approach to bend subdivision than the one
based on observing the torsion and curvature peaks along the centerline, presented
by Piccinelli et al. [158]. The sensitivity of the torsion profile to the amount of
noise on the centerline makes it difficult to select the level of centerline smooth-
ing, as the level appropriate for one subject is not necessarily appropriate for the
others. The proposed representation in (k1, k2) space is a more stable approach
as the angle between curvature vectors of two centerline points corresponds to
the amount (integral) of torsion between them. Detecting bend transitions with a
set of angle thresholds was able to consistently identify the corresponding bends
across subjects. This is demonstrated in Fig. 3.7, where the results of the two
approaches are compared.

The landmark that will serve as a reference point to identify all four anatomical
bends is the one in the middle, marking the interface between the anterior and
the posterior bend. It is identified by combining the curvature information with
the coronal coordinate of the centerline (Fig. 3.8(b)). As the anterior bend is
anatomically positioned at the front, starting from the position of maximum of
the coronal coordinate of the centerline and moving against the blood flow we
search for the two neighboring curvature maximum points that have θ > αant-post,
where αant-post is a threshold parameter. The point of curvature minimum between
the two such maximums is then the interface landmark.

From the anterior-posterior interface landmark, and moving along the blood
flow, we identify the anterior and the superior bends by searching for their interface
landmark point as curvature minimum where the two surrounding points of curva-
ture maximums have θ > αsup-ant. Similarly, moving opposite to the blood flow we
identify the posterior-inferior interface landmark with αpost-inf. Subsequently, the
end of the inferior bend and ROI is found with αinf-end. The threshold parameters
were fixed to αant-post = 60◦, αsup-ant = αpost-inf = 45◦, and αinf-end = 110◦ after
observing θ values appearing in a subset of our data.

Once the bends are detected, we estimate their central landmarks. We model
the central landmark to correspond to the center of the curved segment of the
bend at a scale where its centerline has only one curvature maximum. Thus, if a
bend is initially composed of multiple curvature peaks we observe the bend at a
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Figure 3.7: Subdivision of carotid siphon into bends. (a-c) Bend subdivision using the method
of [158] with the same level of Laplacian smoothing of the centerlines. The scale appropriate for
case (a), is to small for case (b) and too large for case (c). (e-f) The four bends detected on the
same subjects using the proposed method, with fixed, small level of centerline smoothing.

larger scale. This is achieved by convolving the centerline curve of the bend with
a Gaussian function, as the standard deviation of the Gaussian increases. Such
curve evolution is repeated until only one curvature maximum remains. Then, the
central segment is defined as the region around the curvature maximum, delimited
on both sides by the mean of the curvature values at the maximum and at the
corresponding end. The central landmark is taken as the midpoint of the central
segment (Fig. 3.8(c),(d)).

3.4 Geometric quantification

Having identified the bends and the landmarks of the carotid siphon, we are now
able to compute a set of local and global features that quantify its geometry. As
the shape is defined by the object geometry that is invariant under similarity
transformation (translation, rotation, and uniform scaling) [171], the proposed set
of features is accordingly made invariant under this transformation. We compute
the following set of geometric features.
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Figure 3.8: Bends and landmarks detection: (a) (k1, k2) space of the centerline. Numbers
denote the curvature peaks sequentially starting from ICA-TB. Between points 3 and 4 (θ1 ≈
120◦) there is a transition of bends. Points 4 and 5 (θ2 ≈ 20◦) belong to the same bend
(posterior). (b) Coronal coordinate and the curvature of the centerline. The global coronal
coordinate maximum is denoted with vertical blue line. The interface landmarks between the
four bends are denoted with vertical black lines. (c) Estimation of central segment (bounded
with two vertical magenta lines) and central landmark (vertical black line) of the posterior bend,
using scale space. (d) The four bends with their central segments (in more saturated color: green,
red, yellow) and central landmarks (black). (See color insert)

3.4.1 Bend lengths and average vessel radius

Lengths of each of the four bends are presented as percentages of the region of
interest occupied by each of the bends, obtained from their normalized arc lengths.

Vessel cross-section area is more related to hemodynamic properties than the
radius of the maximally inscribed sphere [102]. Thus, we define as local vessel ra-
dius, the radius of a circle having the same cross-section area. Along the centerline
of the bend, perpendicular cutting planes are automatically positioned to obtain
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the vessel cross-sections from the segmented mesh, and the circle equivalent radius
is computed. However, if the aspect ratio of minimal over maximal cross-section
diameter is below certain threshold (the value of 0.75 is chosen after visual ob-
servation), the section is considered to cross an aneurysm or a vessel bifurcation,
the cross-section is ignored and its diameter value is linearly interpolated from its
neighbors.

3.4.2 Osculating planes

For the bends that are observed to be quasi-planar (inferior, posterior, anterior),
their osculating planes are fitted to the points forming the central segment of each
bend using least squares fit. The plane normal vector defined by its sagittal, axial
and coronal-components is then used as a feature.

3.4.3 Change of osculating planes

The bends forming the siphon are concatenated in a non-planar way and the
osculating planes change. In general, it has been shown that non-planar connection
of double-bend geometries influences the hemodynamics, especially the mixing and
swirling of blood flow [99]. Thus, we quantify this change of osculating planes of
the siphon with the following values:

• Angles between all pairs of osculating plane normal vectors n⃗i computed
directly as: arccos(n⃗i · n⃗j), i ̸= j.

• Directed angles between osculating plane normal vectors of consecutive bends,
computed after parallel transporting one to another on the normal bundle
of the curve.

• Two directed angles describing the ouf-of-plane rotation (OPR) of two con-
secutive bends (proximal and distal): inferior and posterior; posterior and
anterior. One (OPR1) corresponds to the rotation around the axis lying
in the plane of the proximal bend while being orthogonal to the centerline
tangent at the transition landmark between the two bends (Fig. 3.9(a)).
The other (OPR2) corresponds to the rotation around the axis defined by
the centerline tangent at the transition landmark between the two bends
(Fig. 3.9(b)).

3.4.4 Bending radii

The points of the central segment of each planar bend are fitted with a circle
using Gauss-Newton method for non-linear least squares optimization (Fig. 3.10).
Radius of the circle divided by the average vessel diameter of the corresponding
bend is then used.
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(a) OPR1 (b) OPR2

Figure 3.9: Illustration of the measured change of osculating planes between the posterior and
the anterior bend. Each angle (between blue and red vectors) measures the rotation around the
corresponding axis (magenta). (See color insert)

Figure 3.10: Circles (in black) fitted to the central segments of the anterior and the posterior
bends. (See color insert)

3.4.5 Global features

Global features are computed from the region of interest starting from the terminal
bifurcation of ICA until the most proximal landmark (center of the inferior bend).
We consider five global features:

Tortuosity Defined as the relative increment in the length of a curve deviating
from a rectilinear line, tortuosity χ is computed as [57]:

χ =
L

d
− 1, (3.6)

where L is the total arc length of the centerline under analysis and d is the
Euclidean distance between its endpoints.

Bending and twisting energy The energy required to bend and twist a straight
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line into its curved shape. It corresponds to the average value of the square
curvature κ and torsion τ , respectively, over the total arc length L of the
centerline under analysis. Bending energy (BE) and twisting energy (TE)
are defined as [101]:

BE = L2

∫ 1

0

κ2(w)dw; TE = L2

∫ 1

0

τ2(w)dw, (3.7)

The L2 factor guarantees scale invariance.

Curvature ratio and torsion ratio Dimensionless ratios of vessel radius with
curvature and torsion radii form part of the Dean and Germano numbers
that characterize flows in curved tubes [172]. Thus, we define mean squared
curvature ratio (CR) and mean squared torsion ratio (TR) as:

CR =

∫ 1

0

R2(w)κ2(w)dw;

TR =

∫ 1

0

R2(w)τ2(w)dw, (3.8)

where, R, κ and τ are local vessel radius, curvature and torsion, respectively.

3.5 Shape similarity metric

In addition to geometric quantification, we characterize the variability of carotid
siphon shapes using the framework of computational anatomy [113]. There, shape
variations are modeled by diffeomorphisms (differentiable transformations with
differentiable inverse). One of the proposed paradigms for diffeomorphic regis-
tration is the large deformation diffeomorphic metric mapping (LDDMM) [116],
which apart from providing correspondences between shapes defines a metric in
shape space.

To establish the shape similarity distance measure between carotid siphons, we
use the large deformation diffeomorphic metric curve mapping (LDDMCM) [173],
between each pair of their centerline curves. The registration of two spatial curves
C and S is performed by searching for a diffeomorphism φ, which matches the
given curves: φ(C) = S, taken as the end point t = 1 of a flow of diffeomorphisms
ϕt modeled by a time-dependent velocity vector field vt : Rd → Rd as

∂ϕt

∂t
= vt(ϕt); ϕ0(x) = x. (3.9)

The distance between the two curves in the shape space, D(C,S), is then defined
by the length of the shortest diffeomorphism flow matching them:

D(C, S) = inf ρ(ϕt), when ϕ0(C) = C, ϕ1(C) = S. (3.10)

The length is defined as the deformation cost function

ρ(ϕt) =

(∫ 1

0

||vt||V dt
) 1

2

, (3.11)
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where the space V is a reproducing kernel Hilbert space (RKHS) of the smooth
velocity fields with reproducing kernel being the Gaussian function with standard
deviation σV , which determines the smoothness of the deformation.

The optimal transformation φ = ϕ1 is then computed by minimizing the energy
functional

JC,S(ϕt) = γρ(ϕt)
2 + E(ϕ1(C), S), (3.12)

where E is a curve matching term and γ is a parameter of regularization weight.
The matching term defined in [173] was

Ecr(ϕ1(C), S) = ||µϕ1(C) − µS ||2W∗ , (3.13)

where µC is a linear functional that embeds the curve C in a RKHSW ∗ of currents,
enabling comparison of curves without assuming point correspondences between
them. The reproducing kernel is defined by the Gaussian function with standard
deviation σW , representing a spatial scale of currents, and determines the scale
of geometric details of curves that are taken into account. σW was set to a small
value of 2 mm.

We extend the matching term by landmark matching of our previously (sub-
section 3.3.4) extracted N = 7 landmarks (x⃗n, y⃗n), n = 1, . . . , N . This assures
anatomically valid matching as the anatomical landmarks are required to corre-
spond. We apply inexact landmark matching [174] with normalized Euclidean
metric, assuming independency between the landmarks

Elm(ϕ1(x⃗), y⃗) =
N∑

n=1

||y⃗n − ϕ1(x⃗n)||2

σ2
n

, (3.14)

where each landmark n has σn associated, which represents the expected inaccu-
racy in its localization.

Thus, the final energy term that we minimize is

JC,S,x⃗,y⃗(ϕt) = γρ(ϕt)
2 + γcrEcr(ϕ1(C), S)

+ γlmElm(ϕ1(x⃗), y⃗), (3.15)

where γ, γcr, and γlm are weights of the regularization, curve matching and land-
mark matching terms, respectively. As the Ecr and Elm matching terms are not
symmetric to the choice of source and target curves, neither is the resulting pair-
wise distance. To symmetrize it, we take the distance to be the mean value from
minimizing JC,S and JS,C :

D(C, S) =
1

2
(D(C, S) +D(S,C)). (3.16)

Before the start of the LDDMCM registration, the two curves are registered
under the similarity transformation as any variability described by this trans-
formation is not considered as difference in shape. The importance of adding
the landmark matching term is demonstrated in Fig. 3.11. Although the trans-
formed centerlines are similar, the registration without using the landmarks does
not provide correct anatomical correspondences of the bends and underestimates
the geodesic distance in shape space, compared to the one that does match the
landmarks.
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(a) D = ρ(ϕt) = 5.7 (b) D = ρ(ϕt) = 6.8

Figure 3.11: Diffeomorphic registration of source centerline (blue) to target centerline (red),
with the registered centerline (green) and estimated distance D in shape space: (a) without
(E = Ecr) and (b) with landmark matching term (E = Ecr + Elm). (See color insert)

3.6 Evaluation methodology

In this section, the methodology applied for evaluating the elements of the geo-
metric characterization pipeline is presented.

3.6.1 ICA classification performance

To evaluate the success of ICA-TB identification, 5-fold cross-validation (CV) was
repeated 10 times and the estimated accuracy of correct classification was taken as
the average CV success rate for all repetitions. To provide a better understanding
of which are the most discriminating bifurcation features, we performed feature
selection as a sequential forward selection (SFS). Starting with an empty set, at
each forward (inclusion) step, the feature added to the feature subset is the one
that maximizes the cross-validation (CV) classification rate.

3.6.2 Landmark detection

As the later geometric characterization is based on the landmarks, their detection
has been extensively evaluated both qualitatively and quantitatively.
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Qualitative evaluation

First, the carotid siphons were visually inspected to check whether they have been
been partitioned into the four bends and that none of them were merged or split.
Second, to evaluate the stability of the thresholds chosen for the four bends of
the model, we displayed the probability densities of angles θ in (k1, k2) space
(Fig. 3.8(a)) between curvature maximums that belonged to the true and false
transitions.

Quantitative evaluation

The landmarks from the four-bend model attempt to reproduce the human in-
tuition of where are the corresponding points representing bend transitions and
their centers. As the model is just an approximation of objects having much larger
anatomical variability, these points do not necessarily coincide with the curvature
properties like the maximum and minimum. Thus, we considered expert observer
as the best reference for identifying these corresponding points along the siphon.
The reference landmark positions were obtained as the average across multiple ob-
servers of the manually placed ones. To evaluate the accuracy of the automatically
determined landmarks we then computed:

• The limits of agreement of the automatically determined landmarks with the
reference, which represent the 95% confidence interval of the differences [175]
and are expressed as bias and standard deviation σloa.

• The standard deviation of the inter-observer variability σo, computed using
one-way analysis of variance (ANOVA) [145].

• The variability index I, defined as the ratio of the above two standard devi-
ations:

I =
σloa

σo
. (3.17)

If the value of this index I < 1, the landmarks from the automated method
deviate from the reference less than the manually placed landmarks vary
between observers.

3.6.3 Geometric quantification

The values of the computed geometric features (section 3.4) depend on the esti-
mated landmark positions. Thus, we compared the values of features computed
from automatically determined landmarks to the ones obtained with manually
placed landmarks. Reference is taken to be the average of the values obtained
from individual landmarkings by each observer. We then computed for each fea-
ture the variability index I (Eq. 3.17) and the normalized mean error computed
as absolute error divided by the population range of values.

3.6.4 Shape similarity metric

The pairwise shape similarities also depend on the estimated landmark positions.
We take the reference to be the shape distances obtained using the reference land-
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Figure 3.12: Examples of carotid siphon shape classes.

mark positions and enforcing the exact landmark matching during the registra-
tion process. Exact landmark matching is enforced by setting a high value to the
weight γlm in Eq. 3.15. The distances based on automated landmarking were then
computed with three different options for the landmark matching terms: no land-
mark matching, exact landmark matching, and the proposed inexact landmark
matching. The limits of agreement with the reference for these three variants are
computed and compared. In addition, we evaluated how different choices of the
parameter σV , which defines the smoothness of the deformation field, affect the
obtained distances and the matching residuals (Eq. 3.12).

3.6.5 Carotid siphon shape classes

To evaluate and compare the characterizations based on the proposed geometric
features and LDDMCM, two clinicians labeled the class of siphon shape following
the classification proposed by [157]. Such classification has been used in evaluating
the vascular accessibility between the guide-catheter and the lesion [37]. Essen-
tially, there are four shape classes: U, C, V and S (Fig. 3.12), with variation being
mainly in the part of the anterior and the posterior bend. We then expect that
the siphons characterized by the two proposed schemes will cluster by classes i.e.
the siphons belonging to the same class will have similar geometric features and
small LDDMCM distance to each other.
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The following steps were then performed. First, we applied dimensionality
reduction to map all the carotid siphons to an Euclidean submanifold. Principal
Geodesic Analysis (PGA) [176] is applied on the geometric features as they are
composed of a mixture of features in R+ (radii and lengths), SO(2) (angles), and
S2 (normal vectors). Each normal vector is treated as a single feature, having two
degrees of freedom. Similarly, for LDDMCM, classical multidimensional scaling
(CMDS) [177] is applied. We performed two dimensionality reductions. One
to 2D, for the purpose of visualizing and qualitatively evaluating the achieved
clustering. The other, to a smallest dimension still preserving the 99% of the total
data variance, for the purpose of quantitative evaluation as a classification success
rate of a linear classifier. In the obtained submanifold, we trained a classifier using
linear discriminant analysis (LDA) and leave-one-out cross-validation classification
rate is reported as a measure of how well separated the four classes are. Finally,
we looked at the LDDMCM classification performance for different choices of σV

while for the characterization based on geometric features we performed SFS of
features to identify the most relevant ones.

3.7 Results

The geometric characterization pipeline was retrospectively applied to 96 images
acquired with 3DRA, from 86 patients (age range: 33−76, mean age: 53 years, 74%
women). Contrast was injected to enhance the vessels comprising anterior cerebral
circulation of either left (43) or right (53) hemisphere (10 patients had both sides
imaged). Acquisitions were performed with an angiographic unit: Allura Xper
FD20 (Philips Healthcare, Best, The Netherlands). On a dedicated workstation,
3D images were reconstructed with a 2563 matrix having a voxel size of 0.29 ×
0.29× 0.29 (mm). All images were successfully segmented and had their vascular
tree centerlines and topology extracted.

3.7.1 ICA classification performance

From all 96 vascular trees, the feature vectors of 297 bifurcations along ICA were
manually labeled as “terminal” (96) or “non-terminal” (201), and supplied to SVM
classifier for training and cross-validation (CV) (Fig. 3.13). Feature selection re-
vealed that the two features that contributed the most to the ICA-TB discrimina-
tion were: ratio of mean radii between the smaller and the larger daughter branches
and axial component of the smaller daughter branch vector. At peak CV rate (6
selected features) ICA-TB was misclassified in only one case (99% success) rate,
producing one false positive and zero false negatives (99.5% specificity and 100%
sensitivity). The false positive sample was the only example available of a bifurca-
tion of ICA with a tentorial marginal branch, hence during its testing none were
present in the training data. The results show that the chosen features describe
adequately the bifurcation.
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Figure 3.13: Classification of ICA-TB with SVM. (a) Cross-validation (CV) classification rates
for sequential forward selection of features. (b) Example of classification in 2D feature space
where the two features chosen were the ones giving the highest CV rate. The classifier trained
in this 2D space misclassified one terminal and three non-terminal vectors (In 6D space there is
only one non-terminal misclassified).

(a) (b) (c) (d)

Figure 3.14: Automated landmarking examples:(a-c) Successful cases. (d) A case where the
posterior and the inferior bend were merged into one (θpost-inf = 40◦). (See color insert)

3.7.2 Landmark detection

Qualitative evaluation

Detection of landmarks for partitioning the carotid siphon into bends failed in three
cases (97% success rate) (Fig. 3.14). Failure occurred mostly when the transition
between the posterior and the inferior bend was missed due to small angle between
vectors in (k1, k2) space (θ < αpost-inf = 45◦, Fig. 3.14(d)).

Evaluation of threshold stability is shown in Fig. 3.15. Of the four thresholds,
the αant-post, αinf-end are the more stable ones, as they separate two distributions
tightly grouped around their means. We can observe that any choice of αant-post

in the range of [40o − 80o] would produce the same results. Choice of αpost-inf and
αant-sup is more critical but given that they were evaluated on a large number of
cases, a good generalization is expected.
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Figure 3.15: Distribution of angles in (k1, k2) space that present bend transition (BT) and
non-bend transition (No-BT), in a form of a box-plot and histogram. (a) anterior-superior, (b)
anterior-posterior, (c) posterior-inferior, (d) inferior-end.

Quantitative evaluation

Three observers manually placed the landmarks on sequentially chosen subset of 50
cases. The results are shown in Fig. 3.16. The transition between the superior and
the anterior bend (L1) has the largest localization error in both bias and standard
deviation. However, this is the location with the largest inter-observer variability
as well. For other landmarks, either the bias is not statistically significant or the
variability is within 50% of the inter-observer one. The central landmarks (L2, L4,
L6) are particularly well detected with no significant bias and the deviation from
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Figure 3.16: (a) Limits of agreement between automated landmarking and the reference. Bias
is denoted with a marker and 95% confidence interval, while the bars correspond to 95% limits
of agreement (±2σloa). Agreements are compared with inter-observer limits of agreement for
the manual measurements (b) Variability index for each landmark. Landmarks are ordered from
distal to proximal: superior-anterior (L1), central anterior (L2), anterior-posterior (L3), central
posterior (L4), posterior-inferior (L5) and central inferior (L6).

the reference being below the inter-observer one for the posterior and the inferior
bends.

3.7.3 Geometric quantification

The evaluation results for the total set of geometric features is shown in Fig. 3.17.
We can observe that all the features have I < 1.8 and normalized mean absolute
error below 8% with more than half of them having I < 1.3 and error less than
3%. Thus, we can assume that landmark localization is sufficiently accurate not
to affect the computed geometric features.

3.7.4 Shape similarity metric

For the registrations using inexact landmark matching, previously evaluated σloa

(Fig. 3.16(a)) of each landmark’s limits of agreement are used to normalize cor-
responding Euclidean distances (σn = σloa

n ) in Eq. 3.14. Thus, the larger the
landmark’s discrepancy from the reference, the smaller is its influence during the
registration.

The parameters γcr and γ were experimentally set to γcr = 1 and γ = 0.1, for all
registrations. Observing the effect of the parameter σV on the registration results,
for large σV (> 6 mm), due to strong smoothness constraint on the deformation,
the final matching precision deteriorates. At such scales, the deformation is not
accounting for the details that we consider to be part of the difference in geometry
as opposed to noise. Small σV (< 1 mm), allows highly irregular speed fields
and nearby regions start to move independently. The obtained distance is not
representative of the one in the shape space and the registration optimization is
likely to end in a local minimum. The analysis (Fig. 3.18) confirms this observation.
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Figure 3.17: Boxplot for geometric features, showing the distribution of: (a) variability index
and (b) normalized mean error. Boxes span the lower (higher) quartiles and whiskers extend up
to 1.5 the inter-quartile range.

0 1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

20

σ
V

 [mm]

D
, E

 

 

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
V

 (
%

)

D = ρ(φ
t
)

E( φ
1

(C),S)

Shape classi!cation

Figure 3.18: Sensitivity to the parameter σV of: The distance D, the matching residual E after
the registration with inexact landmark matching (average curves across pair-wise registrations),
and the cross-validation (CV) siphon shape classification rate.

The values of σV from the range [1, 6] produce small matching error and the
optimal choice depends on a priori assumptions and the final application. We
chose σV = 4.5 mm, which is the scale of the average vessel diameter. This choice
is later reevaluated for the application to siphon shape classification.

For the inexact landmark matching, to find γlm we took a small sample of the
first 10 cases and used it as a training set. Then, the sweep search with γlm =
{2−3, . . . , 23} was performed and the value that produced the best agreement with
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Figure 3.19: Limits of agreements of distances based on automated landmarking with the
reference distances. Results for LDDMCM with the three types of landmark matching terms are
shown: None, exact and inexact.

the reference was used (γlm = 1).
To compare the results with the three different landmark matching terms, the

distances based on automated landmarking were then computed with: no land-
mark matching (γlm = 0), exact landmark matching (γlm = 100), and the proposed
inexact landmark matching (γlm = 1). The limits of agreement with the reference
for these three variants are shown in Fig. 3.19. We can observe: First, that
using landmarks is important as otherwise the obtained similarity distances are
underestimated. Second, using the proposed inexact landmark matching showed
improvements in terms of smaller bias and standard deviation compared to en-
forcing exact landmark matching, since any inaccuracies in landmark localization
influence less the registration process. The distances obtained with inexact land-
mark matching had the variability index I = 1.1, which is close to the variability
obtained with the manual landmarking.

3.7.5 Carotid siphon shape classes

As many siphons had ambiguous shape, only the ones where both clinicians agreed
on the shape class were used (43 cases). The first step in the evaluation is the
dimensionality reduction and we look at the residual variances as a measure of the
obtained statistical fit (Fig. 3.20(a)). Residual variance is defined as 1−R2, where
R is the correlation coefficient between the pairwise point distances in a subspace
and the original space. We can observe that the items with characterization based
on the LDDMCM can be better represented in a low dimension (< 5D) than the
ones characterized by the geometric features. For other dimensionality reductions,
both characterizations produce similar residual variances and the more dimensions
used, the better the statistical fit.

Observing, the items mapped to a 2D Euclidean submanifold (Fig. 3.20(b)
and (c)), LDDMCM appears to produce more discriminating clusters than the
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Figure 3.20: Dimensionality reduction to a submanifold. (a) Comparison of residual variances
after dimensionality reduction. (b,c) Items mapped to a 2D Euclidean submanifold, with labels
denoting siphon shape classes.

geometric features. This is confirmed by the classification of labeled items mapped
to a 12-dimensional submanifold (where residual variance for both approaches
is negligible), as there CVLDDMCM = 84% while CVFeature = 63%. To further
evaluate the importance of using landmark matching in the registration process,
we computed the CV rate for the results obtained without the landmark matching
term: CVLDDMCM no landmarks = 77%, which produced worse class separability
than the proposed method.

LDDMCM classification for different choice of σV parameter (Fig. 3.18), shows
that the performance is very stable in the range [3, 5] mm, and still quite stable
(77%-86%) in the entire evaluated range [0.5, 10] mm. The results of geometric
feature selection are shown in Fig. 3.21. Using the feature selection improves the
CV rate and the peak CVFeature = 77% is reached already with four features.
The four features in the order of importance were: tortuosity, normal vector of
the anterior bend’s osculating plane, length of the anterior bend and the bending
radius of the anterior bend. This is in good agreement with the visually observed
variability of shape types, which is mostly due to the change in the geometry of
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Figure 3.21: Siphon shape classification: Cross-validation (CV) classification rates for sequen-
tial forward selection of geometric features.

the anterior and the posterior bends.

3.8 Discussion

We presented a pipeline for extensive geometric characterization of carotid siphon.
Starting from angiographic image the pipeline identifies and extracts the center-
line and radius of the ICA. On the extracted centerline we automatically detect
anatomical landmarks of the region of interest corresponding to carotid siphon,
which are prerequisites for the proposed geometric characterization. Landmarks
as points of anatomical correspondence are used for computing both: geometric
features and LDDMCM shape similarity.

The method to identify ICA from a vascular tree by detecting ICA-TB had
a high classification success rate (99%). Looking at the two most discriminative
features: ratio of mean radii between the smaller and the larger daughter branches
and axial component of the smaller branch vector, the classifier learned that ICA-
TB branches into two similarly big vessels as opposed to a narrow side vessel and
also that the smaller branch vector (corresponding to ACA) is pointing towards
the top of the head.

One of the main elements of this work was automated landmark detection as it
is essential for later characterization. Landmarks were associated to the four bend
model of the carotid siphon. Apart from the superior bend, the other three bends
were modeled as planar. An alternative would be to split the superior bend into
two smaller quasi-planar bends, but we observed that those two bends are not
consistently present between subjects. Direct application of the bend detection
method by [158], which uses curvature and torsion centerline profiles, was not
suitable as it does not assure bend correspondences and the results are sensitive
to the applied centerline smoothing scale. Thus, a more robust method, based on
the curvature vector expressed in the parallel transport frame is proposed.

Landmarks are essential for geometric features as they define, in an automated
and consistent manner, the corresponding regions of interest for local and global
features. They are crucial for computing LDDMCM as they assure anatomically

65



3.8. Discussion

correct registrations. The validation study showed that the automatically obtained
landmarks are in agreement with the ones selected manually and that they do not
affect the obtained geometric quantities or LDDMCM distances with respect to
manual landmarking. Using automated approach avoids observer variability and
enables high reproducibility among a set of individuals, which is imperative in
performing robust population studies.

The presented set of geometric features were selected from typical geometric
quantities used in the literature, known to affect hemodynamics. In general, they
should be defined and selected in accordance to the hypothesis one is testing.
Characterization based on geometric features and LDDMCM are two complemen-
tary approaches. The former has the advantage that any observed associations or
variabilities of features are straightforward to interpret. The later quantifies shape
differences directly hence is more effective in capturing subtle changes in geometry
but its interpretation is more abstract. Both approaches avoid the need for any
point correspondences, apart from the sparse set of anatomical landmarks.

The explanatory power of the characterization was evaluated by observing the
discrimination of siphon shape classes in the submanifold coordinates, seen as
modes of anatomical variation of population. The characterization based on LD-
DMCM proved better in classifying the carotid siphon shape classes than the one
based on geometric features. These shape classes already have direct clinical rele-
vance in selecting the endovascular treatment strategy, but they could be replaced
by any other clinical condition of interest, e.g. presence of aneurysm or its rupture
status. Then, insights about the relation of the geometry of carotid siphon with
its clinical condition could be obtained and automatically quantified in a large
population.

The proposed methodology has limitations. As we assume all carotid siphons
can be modeled with the four bends, the landmarking fails when two neighboring
bends are perceived as one large bend. In our database, this assumption was rarely
violated (3%). In general, the method could be extended to learn the geometric
properties of the bends, to detect unrealistic (unprobable) solutions. Regarding
the computation of LDDMCM similarities, the drawback of the registration metric
is that it is not symmetric with respect to the source and target curves. Thus, the
resulting shape distance was taken as the mean value from the two registrations.
In addition, adding a new case requires registering it with all the cases from the
database. For a limited size database, like ours, this is not a problem, as the
registration of spatial curves is generally much faster than the registration of volu-
metric images. In the case of larger datasets, a low-dimensional manifold could be
first learned from a set of curves used as a training set. Then, each new centerline
curve would be projected directly on the manifold, as similarly presented for brain
images in [178].

3.8.1 Conclusions and outlook

Geometry of carotid siphon has a large variability across subjects, which makes it
a good candidate to be a potential risk factor for the onset of vascular pathologies
on and off the ICA. We have presented a complete and automated pipeline for
geometric characterization of the carotid siphon. The proposed approach, based
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on anatomical landmarks, enables the analysis through a set of geometric features
and LDDMCM shape similarities.

Some elements of the proposed pipeline are new and represent contributions in
themselves. In this sense, the main contributions of developed in this chapter are
the following:

• Algorithm for the automated identification of ICA-TB and its discriminating
features.

• Algorithm for the automated detection of vessel bends based on the curva-
ture vector expressed in the parallel transport frame and its application to
anatomical landmarking of carotid siphon.

• Definition and computation of geometric quantities like angles of rotation
between osculating planes of consecutive bends, having a known influence
on hemodynamics.

• The use of LDDMCM similarity metric for vessels and the importance of
using the inexact landmark matching to obtain anatomically valid deforma-
tions.

Although the methodology is tuned to carotid siphons, it is applicable to other
vessels. The classifier used for the identification of ICA can be extended to detect
more bifurcations for the purpose of anatomical labeling of the vascular tree and
this is currently under study. The bend identification algorithm and the geometric
quantities defined on them are generic and can be applied to any vessel (e.g. aorta,
coronaries or peripheral arteries) or tubular structure. However, the number and
the type of bends might not be as consistent along the population as they are for
the carotid siphon. In that case, classical LDDMCM, without the landmarks, can
be used as a shape similarity metric and the number of bends can then become a
geometric feature in itself.

The presented characterization is the first step in the pursuit of geometric risk
factors of carotid siphon. Identifying these factors was not the aim of this work,
but will form part of the future one. In addition, the techniques used here will be
extended to a more distal level, in an effort to characterize the complete Circle of
Willis.
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This chapter presents anatomical labeling of the cerebral arteries forming the
CoW. This enables inter-subject comparison, which is required for geometric char-
acterization and discovering risk factors associated to cerebrovascular pathologies.
We present a method for automated anatomical labeling of the CoW by detecting
its main bifurcations. The CoW is modeled as rooted attributed relational graph,
with bifurcations as its vertices, whose attributes are characterized as points on
a Riemannian manifold. The method is first trained on a set of pre-labeled ex-
amples, where it learns the variability of local bifurcation features as well as the
variability in the topology. Then, the labeling of the target vasculature is formu-
lated as maximum a posteriori probability (MAP) estimate where the likelihood
of labeling individual bifurcations is regularized by the prior structural knowledge
of the graph they span. The labeling method is able to handle graphs with a cycle
and multiple roots. It was evaluated by cross-validation on 50 subjects, imaged
with magnetic resonance angiography, which showed that 95% of bifurcations were
correctly identified. In addition, besides providing MAP, the method ranks the
labelings. The proposed method can naturally handle anatomical structural vari-
ability and is demonstrated to be suitable for labeling arterial segments of the
CoW.

The content of this chapter is adapted from the following publication:

H. Bogunović, J.M. Pozo, R. Cárdenes, L. San Román, and A.F. Frangi. Anatomical
Labeling of the Circle of Willis using Maximum A Posteriori Probability Estimation.
submitted.
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4.1 Introduction

The Circle of Willis (CoW) is a ring of cerebral arteries, located at the base of
the brain, that connects the left and right anterior circulation with each other
and with the posterior one, enabling a source of collateral flow in case of vascular
occlusions [5]. It is also known to be a common site of pathologies, in particular
of cerebral aneurysms (pathological dilations of blood vessels) [9] whose rupture
can result in a subarachnoid hemorrhagic stroke, which is fatal in up to half of all
the cases [3].

Many variants of CoW configuration exist, in which certain arteries are hy-
poplastic (very thin), missing, or duplicated [179, 180]. The standard, complete
and symmetric CoW is estimated to be present in only 40 − 50% of the healthy
population [7, 8]. These anatomical variations in the CoW affect the volume flow
rates in the feeding arteries [32]. In [34], the incidence of CoW variations was
found to be significantly higher in the aneurysm series than in the control circles
without aneurysm. Specifically, the asymmetry of the circle was found to be cor-
related with the presence of aneurysms. This led to the hypothesis that geometric
variation of the CoW, by altering the hemodynamic forces, plays a role in the
development and rupture risk of cerebral aneurysms [34,181].

Understanding what constitutes the normal geometric variability of CoW and
what are the deviations associated with cerebrovascular pathologies is hence im-
portant and is currently still not clear. Analyzing the statistical variation of the
geometry of the arteries and bifurcations constituting the CoW can lead to the
identification of geometric risk factors [21, 31] for the onset and progress of vas-
cular pathologies in general. To be able to register and compare CoW of differ-
ent subjects, the anatomical correspondence between vascular segments, known as
anatomical labeling, has to be established. Manual anatomical labeling is a tedious
and time consuming task. Thus, automating it becomes crucial for streamlining
the geometric characterization of a large number of cases.

In particular, we are interested in anatomical labeling of the main arteries of
CoW and the bifurcations connecting them (Fig. 4.1), where 90% of all the cerebral
aneurysms occur [9]. These are the following. Internal carotid artery (ICA) which
branches into anterior cerebral artery (ACA) and middle cerebral artery (MCA).
MCA is of interest up to its principal bifurcation, which divides it into the M1
and M2 segments. Two anterior trees are connected with anterior communicating
artery (AcoA), which splits the ACA into A1 and A2 segments. The anterior trees
are connected to the posterior tree via posterior communicating arteries (PcoA).
The posterior tree is formed by the basilar artery (BA) from which left and right
posterior cerebral arteries (PCA) branch, and are further split into P1 and P2
segments by PcoA. To the set of eleven bifurcations that connect these arteries,
throughout the text, we will refer to as bifurcations of interest (BoI).

In this work, we present a method for automated and robust classification of
blood vessel bifurcations, which we applied to the task of anatomical labeling the
CoW. The proposed method formulates the labeling of bifurcations as maximum
a posteriori probability where:

• Likelihood term is based on local geometric characterization of bifurcations.
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Figure 4.1: Anatomy of the Circle of Willis. (a) Surface rendering. (b) Schematic repre-
sentation: The arteries (in red), the inflow (arrows), and the bifurcations of interest (in blue).
Notation: ‘-A’ denotes anterior, ‘-P’ posterior, ‘-L’ left and ‘-R’ right. (See color insert)

• Prior term accounts for their connectivity and topological relationship.

The method was designed to satisfy the following main requirements: 1) handle
inter-subject variability in the topology and the number of BoI present; 2) be
robust to the presence of spurious branches coming from small side-branches and
segmentation imperfections; 3) be able to identify BoI as part of higher order
furcations; and 4) learn from newly labeled examples and improve with time.
This represents an extension to the complete CoW of our previous work [182],
which was focused on the anatomical labeling of the single anterior circulation
trees only, hence avoiding the presence of circle and multiple roots.

The rest of the chapter is organized as follows. In section 4.2, we overview
the related work in anatomical labeling of 3D tubular structures. Section 4.3
presents the workflow of the proposed methodology. Evaluation on a set of 50
magnetic resonance angiography (MRA) images is presented in section 4.4. Finally,
section 4.5 discusses the advantages and limitations of the proposed method and
concludes the chapter.

4.2 Related work

Anatomical labeling and anatomical matching are two related but different prob-
lems. In anatomical matching, the correspondence is sought between a pair of
anatomical structures. It is normally designed for intra-patient comparison, and
it assumes that the structure and/or geometry is relatively stable between the
two acquisitions. Examples are the anatomies obtained from intra-patient follow-
up [183–185], before and after treatment [186], from different modalities [185,187]
or different phases of the breathing cycle [188,189].
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Anatomical labeling is a broader problem, where emphasis is on establishing
correspondences across a population. It can be seen as a matching of an unlabeled
case to an atlas, represented by a knowledge base of population average and the
geometric and structural variability. One labeling approach is to use a pair-wise
matching algorithm to match the unlabeled case with one or multiple labeled
examples and then transfer the labels from the corresponding points of the best
match or combine the matches in a voting scheme. Such approaches were applied
for human airway tree data labeling [190–192]. However, the reported success rates
were generally lower than the atlas-based ones, described next.

Automated anatomical labeling of 3D tubular structures in general has already
attracted interest in the past. Especially the labeling of airway trees [94,193,194]
as its geometry is linked to a progression of a variety of respiratory diseases. The
seminal work was done by Tschirren et al. [94]. They match branchpoints of
a target airway tree to the labeled reference tree, representing population atlas.
Atlas is built from a training set of airway trees and is represented by the mean and
standard deviation values of geometric and topological features. The two trees are
matched using weighted association graph where the weights are probability-like
estimates of single and inter-branch features. The maximum weighted clique then
corresponds to the best match.

Van Ginneken et al. [193], studied the distributions of several branch charac-
teristics in a population of airway trees: orientation, average radius, and angle
with the parent segment. Assuming independent normal distributions they obtain
probabilities for assigning particular label to a branch. Labels are then assigned
in a recursive manner, starting from the root (trachea), where the final probability
that a particular label should be assigned is conditioned on those of its children
and grand children. No further methodological details are given and it does not
handle the main anatomical variations.

Mori et al. in a series of works [194–196] developed knowledge-based frame-
work for anatomical labeling of airway tree branches based on machine learning
and combination optimization. Each branch is modeled as a straight line and de-
scribed with a set of geometric features to train the AdaBoost classifier. Thus,
for each branch of the target tree the classifier provides the likelihood of having a
certain label. Then, the combination of branch labels yielding the maximum total
likelihood is selected. However, their method uses rigid topological constraints
and does not seem to be robust to large anatomical variations in the topology.

In general, airway trees are characterized by many similar bifurcations con-
nected by short straight branches. Furthermore, one branch bifurcates into two
branches of approximately the same size and anatomical name changes at every
bifurcation. This makes the methods designed for them difficult to apply directly
to the task of labeling blood vessels which are long and tortuous and can span
over many bifurcations with smaller side branches.

Mori et al. [197] tuned their approach to a specific task of labeling abdominal
arteries, where many thin arteries branch from the thick ones. They describe a
branch with six geometric features. Each branch is modeled with multivariate
Gaussian distribution which is then used to obtain label likelihood for a given
test branch. The branch-label combination that gives maximal likelihood (ML)
under anatomical constraints is selected. Unfortunately, the method is anatomy
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Table 4.1: Overview of the state of the art methods in anatomical labeling of 3D tubular
structures.

Reference Anatomy Modality # cases
# anat.
labels

Accuracy
rate

Tschirren et al.
(2005) [94]

Airways CT 17 32 97%

Bulow et al.
(2006) [190]

Airways CT 6 34 40-69%

van Ginneken et al.
(2008) [193]

Airways CT 36 32 90%

Mori et al.
(2009) [194]

Airways CT 90 ≈ 30 86.9%

Mori et al.
(2010) [197]

Abdominal
arteries

CTA 89 11 84.2-88.8%

Feragen et al.
(2011) [191]

Airways CT 20 34 83%

This work
Circle of
Willis

MRA 50 11 95%

specific as it divides the tree into four specific regions and for each region different
geometric features of abdominal arteries are used.

To the best of our knowledge, automated anatomical labeling of the complete
CoW has not been attempted in the past. The closest works related to matching or
labeling cerebral arteries, besides our previous effort [182], are the ones of Tang and
Chung [198], and Uchiyama et al. [199]. In [198], they propose a pair-wise matching
algorithm that is based on combinatorial optimization strategy to compute the
approximated tree edit distance (node delete and insert costs) between two anterior
circulation trees obtained with 3D rotational angiography (3DRA). Their results
are verified only qualitatively on a pair of synthetic structures and a pair of 3DRA
data. In [199], they first rigidly register a target MRA image to the labeled
reference image. Then the target arterial regions were classified into eight classes
by assigning the closest label from the reference image. They label entire artery
regions rather than individual arteries. Furthemore, the method’s sensitivity to
the choice of the reference image is not clear.

Table 4.1 summarizes the results of the above methods. Typical evaluation
method used was leave-one-out cross-validation, where in an iterative scheme, one
case is used for testing, and the others are used as the training set. All of the
methods were designed to label structures which have a topology of a tree. In that
respect, the problem of labeling CoW is special, since the arteries form a graph
containing a cycle and there are multiple roots.
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4.3 Methodology

4.3.1 Preprocessing: from angiographic image to vascular
model

As a preprocessing step for labeling, a vascular model needs to be extracted from
an angiographic image. As arteries have near-circular cross-section they can ef-
fectively be modeled (represented) with their centerline and a local radius at each
point [93]. Segmentation and skeletonization of the vasculature can, in principle,
be done with a variety of methods, as reviewed in [72, 73]. We used the following
approach.

Vessel centerlines are extracted as intensity ridges in MRA images using the
method of [90], available within the open-source TubeTK toolkit [200]. From a
set of points distributed on the image, the method is able to locate the nearby
ridges and track them. This results in a series of centerlines, but with many being
disconnected. In order to connect the centerlines, from each centerline end-point
we start a fast marching with underlying image intensity as a speed function,
until another centerline object is reached. We then backtrack using local gradient
direction to obtain the minimal cost path that connects the two centerlines [201].
This provides us with a skeleton representation of the underlying vasculature.

To obtain the blood vessel radii, from the skeleton we start automated lumen
segmentation using the level set based on geodesic active regions [78], which was
demonstrated to be accurate for 3DRA and time-of-flight (ToF) MRA images [164].
Potential problem of two nearby blood vessels merging into one is avoided by using
topology preserving evolution [202]. As in the level set method the segmented
surface (lumen) is implicitly represented with a distance map, at the end of the
evolution (Fig. 4.2(a)), the distance value at every skeleton point corresponds to
the radius of the maximal inscribed sphere.

The skeleton represents a graph, where edges correspond to the individual
blood vessels, while the vertices to the bifurcations and the loose vessel ends (ver-
tices of degree one) (Fig. 4.2(b)). The edges describe vessels with a sequence of
points (xi, yi, zi, ri), where xi,yi,zi are the coronal, sagittal and axial coordinates
of the centerline, respectively, and ri is the radius.

The CoW can be viewed as three separate rooted trees: anterior left and right,
and the posterior one; mutually connected by communicating arteries (Fig. 4.1(b)).
The three root vertices that correspond to the points where the blood flow enters
the imaged field of view are identified as the vertices (of degree one) on the lowest
axial plane, with a sufficiently large radius (r > 1 mm). Ordering them by the
sagittal component, posterior root of BA is positioned in between the left and
right anterior roots of ICAs.

The anatomical variability of CoW is related to the presence/absence of the
three communicating paths between the trees. Based on that, we define eight
different high level structure types {ST1, . . . ,ST8} (Table 4.2 and Fig. 4.6). To
obtain insight into this underlying structure type of the extracted graph, we ob-
serve the mutual reachability of the three roots. If all the roots are mutually
reachable, to additionally detect whether the CoW is complete, we search for the
cyclic paths in the graph. To discriminate potentially erroneous cycles due to
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(a)

(b)

Figure 4.2: (a) Skeleton and segmentation of region of the Circle of Willis. (b) Skeleton
represented as a graph with edges and vertices (bifurcations in light gray, loose ends in dark).

connectivity error, to qualify as the CoW cycle the three roots have to connect to
the cycle at three different vertices (Fig. 4.1). If more such cycles are found, the
shortest length one is selected, as erroneous connections are more likely to appear
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Table 4.2: Graph structure types and their following properties. The presence of communicat-
ing paths between the trees: anterior communicating path (AcoP), left posterior communicating
path (LPcoP) and right posterior communicating path (RPcoP); the mutual reachability of the
three roots: left-right (LR), left-posterior (LP), and right-posterior (RP); the presence of the
CoW cycle.

Type Description
Communicating Paths Root Reachability Cycle

AcoP LPcoP RPcoP LR LP RP

ST1
Three isolated

trees
0 0 0 0 0 0 0

ST2
Left ant. tree

isolated
0 0 1 0 0 1 0

ST3
Right ant.
tree isolated

0 1 0 0 1 0 0

ST4
Post. tree
isolated

1 0 0 1 0 0 0

ST5
Connected via

post. tree
0 1 1 1 1 1 0

ST6
Connected via
right ant. tree

1 0 1 1 1 1 0

ST7
Connected via
left ant. tree

1 1 0 1 1 1 0

ST8
CoW

complete
1 1 1 1 1 1 1

deeper in the vasculature. From such observations we can then identify directly 5
out of 8 structure types, with ambiguity remaining between ST5, ST6, and ST7.

4.3.2 Labeling as maximum a posteriori probability

The task of anatomical labeling is posed as identifying the BoI (defined in sec-
tion 4.1), on the extracted vascular model. The paths connecting the BoI then
identify the blood vessels of interest. Identifying bifurcations, rather than vessels
directly, has several advantages. First, as a vessel can have several side-branches,
finding its start and end bifurcations makes the method robust to the presence
and the number of such real or artifact side-branches. Second, geometric features
of bifurcations synthesize better the underlying vasculature since they contain in-
formation of several branches at a specific location.

Extracted vascular model is formally considered as rooted Attributed Rela-
tional Graph (rARG).

Definition Rooted Attributed Relational Graph is a quadruple Ĝ = (V,E,A,R),
where G = (V,E) is an undirected graph with the vertex set V and the edge set E,
R is the set of root vertices, and A is the set of unary vertex attributes A : V → F ,
with F being the space of vertex features.

In the case of G containing the CoW cycle, the three vertices where the roots
connect define the cycle’s joining vertices ok for k ∈ {1, 2, 3}. In addition, each
root rk ∈ R, k ∈ {1, 2, 3} defines an orientation within the set of ordered vertex
pairs S(rk) ⊂ V × V , where (vi, vj) ∈ S(rk) iff there exists a simple path from
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r

Ø Ø

Ø Ø

Ø

Ø

Figure 4.3: Example of a labeling L (dotted arrows) of a target graph Gt (dark gray) based on
a reference graph Gr (light gray) with the bifurcations of interest. Vertices of both graphs can
be left unmatched (denoted by ø on target graph).

rk to vj , passing through vi, but not through any of its non-corresponding joining
vertices ok′ for k′ ̸= k. This associates to each root a directed graph (digraph)
Gk = (V, S(rk)). We create such digraph by starting from the root a breadth-
first order vertex traversal, preventing the traversal beyond its non-corresponding
joining vertices, in the case of the complete CoW (examples shown in Fig. 4.6).
Any artifact cycles are afterwards made bidirectional, hence the orientation for
vertices on such cycles will be noninformative. We can then always complement
rARG with this derived structure Ḡ = (V,E,A,R, {S(rk)}).

The labeling, in the form of a classification of bifurcations, is based on the
availability of a knowledge base (KB) which consists of several elements. First,
it contains a set of predefined reference graphs {Gr}, one for each structure type
(Table 4.2 and Fig. 4.6), having BoI as its vertices V r = {vri : 1 ≤ i ≤ M}. Second,
from a representative sample of prelabeled graphs as a training set, it extracts
the set of sample’s vertex attributes {Ar} together with the sample’s set of joint
BoI configurations appearing {V r} for each structure type. The target rARG
Ḡt corresponds to the extracted vasculature, having its bifurcations as vertices
V t = {vtj : 1 ≤ j ≤ N}, vessels as edges Et, root vertices as Rt, and the bifurcation
attributes as At = {atj}.

Then, on the target graph we define a labeling process as a mapping L : V t →
V r∪{ø}, where by the null label ø we denote a bifurcation which is not of interest,
and is not part of a reference Gr (Fig. 4.3). Mapping to the ø can be many-to-one,
while the mapping L restricted to the codomain V r is injective. Due to anatomical
variability in topology, L is not always a surjection and the actual topology (set
of BoI) detected, will be denoted with V r

L = L(V t) ∩ V r.

Our goal is to estimate the probability P (L|Ĝt,KB) of L being correct. There
is only one correct labeling and

∑
L P (L|Ĝt,KB) = 1. We are then interested in

finding the mode of this posterior distribution. Thus, the problem is formulated
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as finding a labeling L∗ with the maximum a posteriori (MAP) probability

L∗ = argmax
L

P (L|Ĝt,KB) (4.1)

where by the Bayes theorem

P (L|Gt, At, Rt,KB) ∝ p(At|L, Gt, Rt,KB)P (L|Gt, Rt,KB) (4.2)

In such MAP estimate, the prior term P (L|Gt, Rt,KB) presents our knowledge-
based expectations about the topology of the labeled target graph, where con-
nectivities are considered but local bifurcation features are ignored. This prior
regularizes the likelihood estimate p(At|L, Gt, Rt,KB), which will be considered
to depend only on the local attributes. The dependence on KB will be further
omitted for brevity as it is always given.

4.3.3 Likelihood term

To estimate the likelihood term, we assume that the distribution of attributes At

only depend locally on the bifurcation label and are independent of their connec-
tivity Et. Furthermore the attributes are assumed to be statistically independent
between bifurcations. Thus, the likelihood term can be written and factorized as

p(At|L, Gt, Rt) = p(At|L, V t) =
N∏
i=1

p(ati|L(vti)). (4.3)

Following the work of Antiga et al. [56,57], each bifurcation is characterized by
objective criteria for defining the origin of a bifurcation and bifurcation vectors of
the parent branch and the two daughter branches (Fig. 4.4 (a)). The individual
bifurcation is modeled by its spatial position and with its three unit vectors point-
ing away from its center, in the direction the vessels branch off. Furthermore, each
vector has a radius associated, obtained as the median cross-section radius of the
branching vessel (Fig. 4.4 (b)). Thus, each bifurcation is defined as a 7-tuple

a = (x,n0, r0,n1, r1,n2, r2) ∈ M = R3 × S2 × R+ × S2 × R+ × S2 × R+. (4.4)

The space M is a manifold endowed with the natural internal operations in each
of its factors (vector addition in R3, rotations in S2 and multiplication in R+),
which makes it a Riemannian symmetric space.

The estimate p(ati|L(vti)), i.e. the likelihood that a bifurcation with the label
L(vti) has the unary attribute ati, had been computed using nonlinear statistics
on the manifold M as done similarly by Fletcher et al. [176]. To linearise the
operations on the manifold Riemannian log and exponential maps are used, which
map the elements of M to its tangent space TpM at a base point p ∈ M. The
maps of M are the direct product maps of each components. For R3 this is the
identity map. For R+, these are the standard logarithm and exponential functions
on real variables, while for S2 this is the spherical log and exponential map (defined
in [176]). The Riemannian log map to the tangent space for the whole feature space
is defined as

Logp(a) = (x,Logp0
(n0), log(r0),Logp1

(n1), log(r1),Logp2
(n2), log(r2)). (4.5)

80



4.3. Methodology

C
H
A
P
T
E
R
4.

This tangent space is a linear space R12, which will be considered Euclidean. We
will denote the tangent vectors as u = (x,v0, ρ0,v1, ρ1,v2, ρ2), where x ∈ R3 is the
positional tangent component, ρ ∈ R is the radius tangent component (ρ = log(r)),
and v ∈ R2 is the spherical tangent component. The Riemannian exponential map
is analogously

Expp(u) = (x,Expp0
(v0), exp(ρ0),Expp1

(v1), exp(ρ1),Expp2
(v2), exp(ρ2)).

(4.6)
To estimate variability, second order statistics are computed from the vectors

ui = Logµ(ai),u ∈ TµM, in the tangent space of the intrinsic mean µ. Intrinsic
(Fréchet) mean µ on a manifold is defined as

µ = argmin
p∈M

N∑
i=1

d(p, ai)
2, (4.7)

which can be found using gradient descent. The norm of the tangent vector u ∈
TpM is defined as

∥u∥ = (∥x∥2 + ρ20 + ∥v0∥2 + ρ21 + ∥v1∥2 + ρ22 + ∥v2∥2)
1
2 . (4.8)

Then the geodesic distance between two bifurcation feature vectors a1, a2 ∈ M is
given by

d(a1, a2) = ∥Loga1
(a2)∥. (4.9)

Data is assumed to be localized around the mean and is verified that the spherical
tangent components v0,v1,v2 are lying within the distance of π/2 from the mean.
Equivalently, it is visually confirmed that individual bifurcation vectors of the
population are distributed within one hemisphere (Fig. 4.4 (c)).

The likelihood is then estimated from multivariate normal distribution as

p(ati|L(vti)) =
1√

(2π)k |S|
exp(−1

2
D2), (4.10)

where k is the dimension of the space, D is the Mahalanobis distanceD = uTS−1u,
and S is the covariance matrix of the label L(vti), estimated from the sample as

S = 1
N−1

∑N
i=1 uiui

T . The covariance matrix S is specific to each label, as differ-
ent reference bifurcations will have different variabilities. The proposed represen-
tation is especially suitable when BoI appears as part of higher order furcations
(Fig. 4.4(d)), which is handled by selecting the combination of three branches that
minimize the Mahalanobis distance to the corresponding mean feature element.

Ideally, given a large amount of training data, the above Eq. 4.10 would be
computed for the full k = 12 dimensional space. However, for a more limited
data, due to the curse of the dimensionality problem, such a large number of
parameters affects the generalization capability of the Bayes estimator. Thus, we
split the likelihood as a product of three separate likelihood estimates for: 3D
space of positions, 6D tangent space of bifurcation vectors and 3D tangent space
of radii. This implies the reasonable assumption that the three types of features
are independent.
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Parent 
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(a) (b)
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Figure 4.4: Unary attributes: (a) Bifurcation characterization, (b) general cylindrical model of
a bifurcation, (c) distribution of bifurcation vectors (example for a terminal ICA bifurcation), (d)
example of BA bifurcation (parent in blue and daughters in red) forming part of a quadfurcation.
(See color insert)

Finally, it is necessary to define the likelihood for assigning a null label ø to
a vertex, i.e. p(ati|ø). In the absence of any other information, we assume that
the bifurcations corresponding to ø are uniformly distributed on the reachable
finite region of the manifold M. For positional R3, the uniform distribution in
a fixed cuboid region of interest (ROI), defined by expected BoI position range,
with volume VROI has a constant value of 1/VROI. The space R+ is limited to the
expected range of radii values, producing 1

log rmax−log rmin
. Uniform distribution on

the whole unit sphere S2 has a value of 1
4π . Thus, we obtain:

p(ati|ø) =
1

VROI

(
1

4π

)3 (
1

log rmax − log rmin

)3

, (4.11)

where the expected ranges are obtained from the training set.
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4.3.4 Prior term

As mentioned in section 4.1, vasculature of CoW exhibits big variability in its
topology. Thus, for many subjects not all BoI are present, i.e. some of the nodes
of the reference graph do not have a match on the target graph. Furthermore, some
BoI are more probable to be missing than others and absence of one bifurcation can
imply that some others further downstream of the flow cannot be present either.
In addition, bifurcations can only appear in certain ordering, starting from the
roots. Thus, the use of the prior term has a double role. First, it assures that the
labels assigned to the target graph follow the ordering they have on the reference
graph. Second, it models the probability distribution of topologies {V r

Lj
}, i.e. the

presence of the detected BoI combination.
The ordering of BoI is defined by the root-specific digraphs Gk. Thus, each

root rk induces a partial order on vertices through digraph reachability relationship
specified by S(rk). The labeling of the target graph will be considered compatible
with the reference graph if labels on the target digraphs Gt

k preserve the partial
order of the reference digraphs Gr

k. More formally, if for all pairs of the assigned
labels which are in Sr(rk) their corresponding pair of target vertices is in St(rk),
for all roots:

(V r
L × V r

L) ∩ Sr(rk) ⊆ L(St(rk)), ∀rk. (4.12)

Prior term then restricts the set Lt of all possible labelings of the target only to
the compatible ones L ∈ Lt

c ≡ {L1, . . . ,LQ}, each labeling with its corresponding
set of involved BoI Vr

c ≡ {V r
L1
, . . . , V r

LQ
}. Then we can write:

P (L|Gt, Rt) =

{
0 if L /∈ Lt

c

P (i|V t, Et, Rt, Lt
c) if L ∈ Lt

c;L = Lt
c(i)

(4.13)

where P (i) denotes the probability that the correct labeling is at the ith indexed
position in the set of compatible labelings.

The probability distribution of the non-zero prior P (i|V t, Et, Rt, Lt
c,V

r
c), can

then be obtained under certain assumptions. It is first assumed that the probabil-
ity of a particular labeling from the set Lt

c will be independent on the particular
Et and Rt:

P (i|V t, Et, Rt, Lt
c,V

r
c) = P (i|V t, Lt

c,V
r
c). (4.14)

Thus, the locations of ø do not affect the prior probability. We further assume that
the prior probability only depends on the detected topology V r

L and is independent
of the particular vertices of V t that map to the V r

L, as long as L ∈ Lt
c. Thus,

P (i|V t, Lt
c,V

r
c) = P (i|Vr

c) ∝ P (Vr
c|i)P (i) ∝ P (Vr

c|i), (4.15)

where we have considered that P (i) is constant, i.e. the order of the labelings in
the set Lt

c is arbitrary. Lastly, given that the correct labeling L is in the position
i (L = Li) we assume that the prior only depend on V r

Li
and that the presence

of any other set of compatible topologies in the set Lt
c is equally probable and

independent of Li:
P (Vr

c|i) ∝ P (V r
Li
|i) = P (V r

L) (4.16)
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Figure 4.5: Volume rendering of a subject with P1 segment missing, where the left PcoA
(denoted with arrow) takes the role of the left PCA. Thus, PcoA-A bifurcation is present but
not PcoA-P.

Finally, the prior term can then be summarized as

P (L|Gt, Rt) =

{
0 if L /∈ Lt

c

P (V r
L) if L ∈ Lt

c;
(4.17)

4.3.5 Reference graphs and their selection

For every structure type (Table 4.2), we created a reference graph (Fig. 4.6), which
forms part of KB. All reference graphs have all the BoI present. This is because
the communicating paths do not necessarily have to be cut at the communicating
arteries, as A1 or P1 segments could also be missing and the communicating ar-
teries AcoA and PcoA would connect directly to A2 and P2 segments, respectively
(example shown in Fig 4.5). Thus, we cannot deduce beforehand which of the BoI
are missing and such lower scale ambiguities and the actual topology have to be
resolved later by the labeling method.

The labeling method requires that the target and the reference graphs induce
compatible partial orders from their roots. As different topologies of CoW will in-
duce different partial orders, we need to select the appropriate reference graph from
KB. The selection is based on the observed target structure type. As mentioned in
subsection 4.3.1, we can uniquely identify the target structure type, except when
only one communicating path is missing (ST5, ST6, and ST7), as there all roots are
mutually reachable. Thus, in such cases, we perform three separate labelings with
each of the three possibly corresponding reference graphs, having the same prior
P (Gr). We then combine all the resulting labelings, expecting that those based
on incompatible reference graphs will produce very low posterior probabilities.

Lastly, the reference graph used in the labeling adapts the prior term of the
posterior probability estimate (Eq. 4.2). In particular, the presence of the three
communicating paths affects the prior probability of detecting BoI on them. Their
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(a) ST1: Three isolated trees
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(b) ST2: Left ant. tree isolated
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(c) ST3: Right ant. tree isolated
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(d) ST4: Post. tree isolated
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(e) ST5: Conn. via post. tree
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(f) ST6: Conn. via right ant. tree
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(g) ST7: Conn. via left ant. tree
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(h) ST8: Complete CoW

Figure 4.6: The eight reference graphs with overlayed digraphs, induced by each root of the
graph. In (h), the joining vertices are denoted with square. Bifurcation and artery names
correspond to the Fig. 4.1. (See color insert)
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presence status is uniquely determined by the structure of the reference graph.
Considering the probability of presence of BoI belonging to different paths to be
independent, we obtain:

P (V r
L|Gr) = P (V r

L|AcoP,LPcoP,RPcoP) =
= P (ICAL,AcoAL,AcoAR, ICAR|AcoP)·
· P (PcoA-AL,PcoA-PL|LPcoP)·
· P (PcoA-AR,PcoA-PR|RPcoP)·
· P (MCAL)P (MCAR)P (BA),

(4.18)

where the BoI and path names (from Table 4.2) denote their presence status.

4.3.6 Optimization

MAP estimation, in general, is very computationally expensive. Exhaustive test-
ing for all possible labelings L ∈ Lt is not feasible. However, many vertex-label
pairings can be automatically discarded based on either zero prior probability or
low likelihood. In fact, the prior probability P (L|Gt, Gr) is non-zero only for
a small subset of all combinations (L ∈ Lt

c) i.e. only for those which are com-
patible with the reference graph. To avoid labelings involving very low probable
attributes, we exclude outliers based on their Mahalanobis square distance D2.
Under multivariate normal distribution assumption, it is a χ2 distribution. We
then detect the outliers at 99.99% cutoff level.

The labeling is a morphism L ⊆ V t × (V r ∪ ø). A standard algorithm for
mapping between two graphs is based on building their association graph and
then finding maximal cliques of such an undirected graph [203, 204]. Association
graph G = (V a, Ea) is built from Gt and Gr, where nodes are denoted with a pair
of indices V a = {vai,j ≡ (vti , v

r
j)} ⊂ V t×(V r∪{ø}). The following rules are applied.

Node is created only if unary attribute of vti with the label of vrj is not considered
an outlier. Edge (vai,j , v

a
k,l) is created for i ̸= k and j ̸= l, unless (vrj , v

r
l ) ∈ Sr(rk)

and (vti , v
t
k) /∈ St(rk) for any rk, ensuring ordering compatibility. Edges pairing

with the ø are always created.

Finding maximal cliques, which in our case will always be of the size N of
the target graph, in an undirected graph is in general a NP-complete problem.
However, removing the nodes of the association graph detected as outliers, cuts
down the computational effort to a manageable size. Here any clique finding
algorithm can be used [205]. We used the algorithm of Tomita el a. [206], in
which pruning methods are employed to reduce the size of search space, and where
benchmarks showed to run fast in practice.

4.4 Results

We evaluated the proposed methodology on a set of 50 images of healthy volunteers
(25 male, 25 female, age range: 19-66, mean age: 39), acquired with ToF-MRA
on a 3T unit under standardized protocols. Images were reconstructed with 448×
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448 × 128 matrix, having a voxel size of 0.5 × 0.5 × 0.8 mm3. The images come
from the dataset that was used in [50] and is freely available as open data1.

In a preprocessing step, the images were first resampled in axial direction by
a bicubic interpolation to obtain isotropic resolution. As the graph attributes
are position and pose dependant, all images were registered with similarity trans-
formations, using mutual information metric, to the one chosen as the reference
(first image in the dataset). To evaluate the influence, we have repeated the later
experiments with two other, randomly chosen, reference images and the mean
performance values have remained the same, showing robustness to the actual ref-
erence choice. Influence was observed in three cases when two best labelings had
similar posterior probabilities, causing them to exchange places.

In addition, region of interest (ROI) around CoW was defined on the reference
image and all the registered images were cropped for the purpose of processing
speed-up and preventing potential connectivity errors deep in the vascular network.
The ROI is visible in Fig. 4.2, and was chosen with a large margin around BoI
positions. The images were then segmented and vascular models constructed. The
root vertices and the presence of CoW cycle have been correctly determined in all
cases. The number of branching nodes (BoI candidates) present in the graphs was
38± 7 (mean ± std).

The performance of anatomical labeling method was evaluated using cross-
validation of BoI classification. One expert clinician manually labeled the BoI on
each vascular model. All the other bifurcations were assigned the ø label. Leave-
one-out cross-validation was then run. In the performance analysis we evaluate
detection accuracy, precision, sensitivity and specificity rates (Table 4.3). Exam-
ples of anatomical labeling results are shown in Fig. 4.7, where the surface of each
corresponding vessel segment is color labeled. We separately evaluated per case
rate of correctly labeling all the BoI and the topology detection: whether the set
of BoI determined to be present is correct.

From the table, it can be observed that the BoI detection rates are high, but
unfortunately the errors are evenly spread across cases so 60% are labeled entirely
correctly. Most of the detection errors (Fig. 4.7(e)&(f)) are in locating the MCA
terminal bifurcation (excluding MCA, 84% of cases would be correctly labeled),
which is always present (P (MCA) = 1.00 in Eq. 4.18). The difficulty in locating
this bifurcation is not unexpected as the MCA has the most complex branching
pattern of any of the major cerebral arteries [207, 208]. Furthermore, MCA is
outside the cycle forming CoW and no BoI is located further away, hence the
connectivity and prior term are not contributing strongly to its localization. In
general, the result shows that the method favors sensitivity over specificity, i.e. it
finds false BoI rather than miss one. This can be attributed to the conservative
size of the finite reachable region of the feature space used in estimating the ø-label
likelihood (Eq. 4.11). The region was guaranteed to include any bifurcation, with
the risk of being too large. Of the false positives, most appeared due to mistaking
a small side branch for a communicating artery (PcoA or AcoA), when the latter
was actually missing. In particular, anterior choroidal artery, which is located just
next to PcoA and branches in the same direction, can be mistaken for a PcoA
branching from the anterior side and not connecting with the posterior root.

1http://hdl.handle.net/1926/594
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Table 4.3: Performance analysis of the proposed method. For detection rate: accuracy, pre-
cision, sensitivity and specificity are given (N/A denotes “not available” when 0/0). The mean
values are weighted across BoI.

Bifurcation
of interest

Detection

Accuracy Precision Sensitivity Specificity

ICAL 0.98 1.00 0.98 N/A
ICAR 1.00 1.00 1.00 1.00
PcoAFL 0.98 1.00 0.97 1.00
PcoAFR 0.98 0.97 1.00 0.93
AcoAL 0.96 0.98 0.98 0.89
AcoAR 0.98 1.00 0.97 1.00
PcoABL 0.96 0.95 1.00 0.87
PcoABR 1.00 1.00 1.00 1.00
BA 0.96 0.98 0.98 N/A
MCAL 0.80 0.80 1.00 N/A
MCAR 0.84 0.84 1.00 N/A

Mean 0.95 0.95 0.99 0.95

Per case Labeling all correct: 60%, Topology correct: 88%

Table 4.4: Comparison of mean performance values between different method variants.

Method
Detection mean rates

Topology
Accuracy Precision Sensitivity Specificity

AT ∼ [167,199] 0.91 0.91 0.98 0.76 64%
AT+G∼ [94, 197] 0.92 0.93 0.98 0.81 62%
AT+G+AP 0.93 0.93 0.98 0.85 76%
AT+G+AP+R 0.95 0.95 0.99 0.95 88%

To evaluate the contribution of different elements of the method we repeated
the above evaluation for different method variants. The first variant (AT) is based
just on the unary attributes without taking the graph and its node connectivity,
nor prior term into account. Such variant can be seen as an adaptation of the
labeling presented in [167, 199]. The second variant (AT+G) is using the unary
attributes and the graph preserving ordering, but without the prior term. This
can be considered as an adaptation of the approaches of [94,197]. Finally, the last
two variants, are the proposed method with two different prior terms. One prior
term (AT+G+AP) contains overall population appearance probabilities indepen-
dent of the reference graph used, while the other (AT+G+AP+R) further adapts
them based on the structure type of the chosen reference graph (Eq. 4.18). Their
performance values are shown in Table 4.4.

Gradually adding the regularization terms improved the performance across
the rates. In particular, adding the prior term clearly improved the specificity and
topology detection. With it, some bifurcations with side branches are prevented
from assigning a BoI label as otherwise they would form configurations which are
uncommon in a population. In particular the reference graph based prior was
shown effective and improved specificity and topology by ∼ 10%. With just AP
prior, the false positives appeared when assigning communicating arteries while
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(a) Complete CoW (b) Right PcoA missing

(c) Both PcoA missing (d) Right ACA missing

(e) Error in left MCA bifurcation (f) Error in right MCA bifurcation

Figure 4.7: Anatomically labeled Circle of Willis. Denoted vessels: ICA (red), BA (turquoise),
ACA (yellow), PCA (brown), PcoA (blue), AcoA (purple), MCA (green). Correct labeling is
shown in (a-d). Examples of incorrect MCA labeling are shown in (e,f), where the arrow denotes
the true terminal bifurcation. (See color insert)

they were missing. By using AP+R prior, these errors are avoided as they would
be contradictory with the property of having disconnected roots.

As the method is formulated in a probabilistic framework the candidate label-
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AT+G+AP+R (prior from [7])
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AT+G+AP (prior from [7])

AT+G

AT

Figure 4.8: Percentage of cases with the correct labeling appearing ahead or equal the given
rank, for the three method variants: AT+G, AT+G+AP, and AT+G+AP+R.

ings can be ranked by their estimated posterior probabilities. The method always
selects the most probable one (the highest ranked one). However, in the case that
selected labeling is visually observed to be incorrect, this enables a user to select
the next most probable candidate in the ranked list. Thus, for the erroneously
labeled cases, we searched for the correct labeling in the ranked list (Fig. 4.8).
From the figure it is evident that using the prior term helps to position correct
labelings higher in the ranking list, and for 90% of cases the correct labeling is
within the first ten positions.

The prior term was shown above to have a positive effect on the classification
and ranking success. To evaluate whether the learned prior was data specific, we
first compared (Table 4.5) the prevalence of anatomical variants learned from this
data with the one reported in [8], where they visually inspected 150 ToF-MRA
images of healthy volunteers. Overall, the obtained values were similar and none
of the differences were statistically significant (p > 0.05). Second, we formed the
prior term exclusively based on [8] and rerun the labelings (Fig. 4.8). The obtained
rankings were also similar, which shows that the learned prior and the data used
could be representative of the normal healthy population.

4.5 Discussion

In this work we developed a method for labeling main arteries of the CoW, known
to exhibit large anatomical variability. In the dataset used for evaluation, the
complete CoW was present in one third of the cases (34%), hence encountering
missing arteries was the norm, not the exception. The task of anatomical labeling
was posed as the classification of the BoI to make the method insensitive to the
number of side branches that an artery might have.
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Table 4.5: Prevalence of the main anatomical variants. Comparison between the reference
study [8] (150 subjects) and the values learned from this data (50 subjects). Numbers represent
percentage of subjects with the given topological property.

Hartkamp et al. [8] Learned data

Complete CoW 42% 34%
Complete anterior part 74% 80%
AcoA missing 19% 16%
A1 segment missing 7% 4%
Complete posterior part 52% 48%
Both PcoA missing 11% 12%
Unilateral PcoA missing 33% 30%
P1 segment missing 4% 10%

Bifurcations are characterized as points in a Riemannian manifold, and statis-
tics computed in tangent space, inspired by the work on medial representation
atoms [209, 210]. This is especially suitable when BoI appears as part of higher
order furcations. Although in cerebral vasculature trifurcations are rare, BoI hav-
ing other, side bifurcations in close vicinity can appear as part of a higher order
furcation due to limit in skeletonization reconstruction resolution. Bifurcations
not of interest (ø label) are modeled as uniformly distributed on the finite region
of the feature space. Being able to estimate likelihood for assigning ø is crucial for
comparing labelings containing different number of BoI detected. Both the BoI
feature distributions and the prior probabilities of appearance are learned from
the training set of prelabeled examples. We tested substituting prior probabilities
with the ones from [8], which showed that the method could integrate the values
from other, future studies, which analyze anatomical variability of CoW of a large
population, in sufficient detail.

The method supports graphs that contain a cycle and have multiple roots, as
long as each root is attached to the cycle at a different node, which allows to
split the graph into multiple digraphs. Each digraph induces partial order on its
nodes and enables finding reference topology preserving labelings. Such labelings
are obtained by computing maximal cliques of the association graph, which is
a standard method for graph matching [203]. Although finding maximal cliques
is known to be NP-hard, it is a well studied problem and powerful heuristics
exist which efficiently find good approximate solutions. In our application, it
was computationally feasible to find all maximal cliques, as the association graph
could be substantially pruned by removing outlier pairing nodes based on local
features.With the pruned association graph having ≈ 50 nodes, maximal cliques
were found in a couple of seconds, using the implementation in C programming
language.

A limitation of our method is that BoI merging is not supported. There is
a known anatomical variability where AcoA’s length reduces to a point (AcoAL

and AcoAR bifurcations merge), but it is rare (1.3% prevalence in [8]) and is not
taken into account in this work. In general this could be handled in a labeling
post-processing step, by analyzing a bifurcation that has a high likelihood of being
two neighboring BoI. In addition, the chosen BoI of CoW never switch their or-
dering, otherwise a separate reference graph for each ordering variant is required.
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Finally, we do not make use of any binary (edge) attributes. They might further
improve the robustness of the method, but also introduce difficulty in modeling
the likelihood of ø assignments, and the treatment of spurious side branches.

The closest related works are the ones of Tschirren et al. [94] and Mori et
al. [197], designed to label airway and abdominal vascular trees, respectively.
Their and our approach is in the essence combination optimization regularized
by digraph. They both model branch or branchpoint feature variability also with
normal distribution. The main difference from our work is that they did not face
the problem of missing branches, and comparing labelings having different refer-
ence graphs and labels present. Thus, their approach can be seen as maximal
likelihood (ML) estimate, as opposed to our MAP. Furthermore their anatomical
structures had a simpler topology: a rooted tree.

The performance comparison with the related work is difficult, as none are
directly applicable to the CoW. Thus, we created variants of the proposed method
which are adaptations of the concepts used elsewhere. The results showed that the
proposed MAP method outperformed the ML-based one. The method has been
evaluated on open data, which should facilitate future comparisons with other
methods and studies. In addition, the statistical values reported in Table 4.5
could be of value to future users of the same dataset.

Overall, the BoI were detected with high (95%) accuracy and precision. These
rates are comparable to the ones obtained by the state of the art methods designed
for other anatomies (Table 4.1). However, it had a relatively low success rate
(60%) of completely labeling the entire CoW. Errors were focused mostly around
the location of MCA terminal bifurcation which is known to be hard to identify.
As a comparison, other related works unfortunately avoided reporting the per
case labeling success. It can be read only from the results of [94], where it would
correspond to the per case labeling success of 47% (8/18). This hints that similar,
low overall performances, are expected to be present in other works, and shows the
difficulty and future challenges in designing a successful labeling method. That
is why we proposed to find all topologically valid labelings and rank them by
their posterior probability. This has a practical value in the scenario of minimally
interactive labeling. If the MAP solution is not found to be correct after visual
inspection by the user, the method can quickly provide other promising candidates.
For erroneously labeled cases, the evaluation showed that the correct solution was
most frequently ranked second. Finally, the corrected solution can then be used
to increase the training set and improve future performance.

4.5.1 Conclusions and outlook

The proposed labeling method is based on combining local BoI attributes and their
graph connectivity with the prior probability of encountering the global topology
they form. From a set of prelabeled examples, the method is able to learn bifur-
cation feature variability as well as variation in topology and their probabilities
of occurrence. It does not require any parameter setting, besides the one used for
outlier removal in the optimization step, which has intuitive interpretation and
can remain fixed. The main contributions of the presented work are the following:

• Characterizing the bifurcations as points on Riemannian manifold, where
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spherical components facilitate comparison of bifurcations with general n-
furcations.

• Modeling the likelihood for ø assignment, hence enabling comparison be-
tween labelings detecting different number of labels.

• Introduction of a priori probabilities of label configuration appearance.

• Method for defining partial order on graphs with a cycle and multiple roots.

The methodology (section 4.3), is posed general and can find application in
labeling other tubular or vascular structures, apart from CoW. Structures where
the underlying graph has cycles, can be observed at the level of capillary networks.
In addition, in many organs, arteries can directly fuse (anastomose) with each
other, forming collateral circulation, which can appear naturally or as a result of
pathology remodeling.

The method developed in this work is a step toward the extensive geometric
characterization of the CoW. Apart from topology and bifurcations geometry, the
geometry of individual vessels can further be characterized using the technique
proposed in [58]. Having such complete characterization of CoW in a population
is of value in the pursuit of identifying geometric risk factors, a goal of the future
work.
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This thesis has focussed on the development and validation of a method for
image-based geometric characterization of the Circle of Willis (CoW), covering
the entire processing pipeline from a medical image to the extraction of geometric
descriptors allowing comparison and dissimilarity measure between subjects. This
goal has been achieved by solving sequentially the following tasks:

• Achieve automated segmentation of the cerebral vasculature from images
obtained with different modalities, across the clinical centers (Chapter 2).

• Once segmented, characterize individual vessels (Chapter 3) and bifurcations
(Chapter 4), accounting for the full complexity of their shape.

• Identify from the segmentation the principal vessels (arteries) and bifurca-
tions of CoW, to be able to compare their characteristics in a population of
subjects (Chapter 4).

The ordering presented in the thesis does not necessarily coincide with the
positions of the developed methods in the characterization pipeline. In particular,
anatomical labeling of the CoW (Chapter 4) can immediately follow the vascular
segmentation (Chapter 2). Then, although not explicitly done, each identified
vessel could be characterized using the approach developed for the internal carotid
artery (ICA) (Chapter 3), which is the vessel of the CoW with the most complex
geometry.

5.1 Overview

We next summarize the advances presented in previous chapters and discuss the
problems encountered, and promising topics for the future work.

5.1.1 Vascular segmentation

As reported in Chapter 2, few methods are able to achieve fully automated segmen-
tation, as majority of them require certain amount of user-interactivity to guide
the segmentation, especially in the initialization phase. Relying on the training
set of pre-segmented images and the image intensity standardization filter, our
automated improved geodesic active regions method was shown to be able to gen-
eralize well on images coming from different clinical centers. The method was
selected and extensively used for segmenting angiographic images within the large
scale integrated project @neurIST [11, 211]. There, the vessel segmentation was
the first step in a processing pipeline for estimating aneurysm rupture risk, based
on computational fluid dynamics (CFD) studies. To obtain sufficiently large num-
ber of images, typically, multiple clinical centers have to be recruited. Thus, the
robustness of segmentation methods to different image acquisition protocols and
devices, in addition to automation, was of high importance.

In general, the success of the segmentation is tightly linked with the angio-
graphic image quality (spatial resolution and signal-to-noise ratio). We found
particularly difficult the task of accurately segmenting the aneurysms from ToF-
MRA images, as that modality is prone to artifacts coming from slow and dis-
turbed blood flow, especially present inside large aneurysms. Similarly due to its
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low spatial resolution, it was difficult to avoid merging of nearby structures (vessels
touching each other or nearby aneurysm). This could be prevented by using prior
knowledge of the underlying skeleton structure to constrain a topology preserving
level set evolution, an inverse skeletonization approach we pursued in Chapter 4.

5.1.2 Geometric characterization

In Chapter 3, we presented the methodology for characterization of carotid siphon
part of the ICA. As a first step toward the characterization we developed a novel
method for identification of its constituent four bends. Achieving good robustness
to the varying levels of centerline smoothness was one of the main advantages of the
proposed approach. Although the choice of bends was specific to ICA anatomy, the
method developed is applicable to other vessels. Identifying the bend transitions
as points of correspondence across subjects is also part of anatomical labeling, a
task we took on for the entire CoW in Chapter 4. There, we also proposed a
characterization of bifurcations.

Characterization of the siphon was performed by two different approaches.
First, more traditionally, as a set of local and global geometric features known to
have an effect on hemodynamics. Second, establishing novel dissimilarity measure
between ICAs, based on the LDDMCM energy of registering one ICA to another.
Geometry of ICA is especially interesting to characterize due to its importance as
one of the main afferent arteries of CoW and due to its large geometric variability.
Although performing clinically oriented studies was not part of the thesis objec-
tive, the developed characterization methodology opens the path for the search
of geometric risk factors and predicting treatment difficulty and success. Due to
its complex shape and being a frequent site of diseases, ICA is a very suitable
case-study vessel for obtaining insight and knowledge of the interplay between
geometry, hemodynamics and pathology [212].

5.1.3 Anatomical labeling

The identification of the main cerebral arteries by detecting the bifurcations form-
ing CoW was approached in Chapter 4. In general, the labeling task is tightly
linked with the one of the characterization of bifurcations, which is used to differ-
entiate between them. A novel bifurcation characterization was developed where
they are described as points on a Riemannian manifold. The bifurcations of inter-
est are modeled as normally distributed, while the rest, spurious or not of interest,
as uniformly spread on a finite region of the feature space. The main challenge
of the labeling method was handling the large anatomical variability present in
both geometry and topology of the CoW. For that, we proposed a solution within
the maximum a posteriori probability framework, where the prior knowledge of
possible topologies regularizes the estimated labeling likelihood based on local ge-
ometric properties only. Furthermore, we showed how to benefit from the graph
connectivity of bifurcations, even in the presence of a cycle and multiple roots.

98



5.2. Outlook and further research directions

C
H
A
P
T
E
R
5.

5.2 Outlook and further research directions

The characterization pipeline developed in the thesis is a step toward building a
generative statistical model of the CoW, which would ultimately capture its full
complexity from the variability in geometry of its vessels and bifurcations to the
one in topology. Capturing the joint variability requires having a large number of
CoW examples, hence enabling high-throughput processing is essential.

Furthermore, it would be of interest to know how does this variability affect
blood circulation and to understand the sensitivity of cerebral perfusion on CoW
geometry. An estimate of the blood flow within the CoW can be obtained by using
CFD, which approximately solves Navier-Stokes equations, as done in [213–215].
However, CFD is very computationally demanding and currently modeling the
flow in the arteries of the entire brain takes ≈ 40 hours [216]. Alternatively, it
could be substituted by time-resolved PC-MRA acquisitions, sacrificing the spatial
and temporal resolution offered by CFD [217]. Ideally a statistical model should
also include the CoW hemodynamics. Building such combined models is part of
an exciting, emerging field of computational functional anatomy [218].

Building a statistical model of the CoW still requires finding solutions to several
basic problems. In particular the problem of defining suitable metric in the shape
space of CoW. For example, it is not clear how to encode or weigh the changes in
topology and those in geometry to obtain CoW (dis)similarity measure or how to
do statistics on such graph-structured data [219, 220]. Only recently, efforts have
been made in that direction for the case of simpler, tree-like structures, where
the first techniques properly defining an average structure [221] and the principal
modes of variation [222] in a non-Euclidean shape space are being proposed.

Such models could find their use in answering several basic but still open ques-
tions, some of which are [48]:

• How does the average CoW looks like and what are its principal variations?

• Is there any difference in CoW geometry and topology between men and
women? Given that prevalence of aneurysms is larger in women, it would
be interesting to know if this can be partly attributed to the different CoW
geometry between them.

• Is the difference in handedness reflected in the CoW?

• Does the CoW change with aging and how?

• What would be considered normal variability of the CoW and what would
be deviations associated with the risk of developing a pathology?

• Can we predict or estimate a risk of aneurysm rupture, from the CoW? A
question of prime clinical importance for the treatment selection.

None of these questions have a proper answer yet, which is partly due to the lack
of techniques able to process the data and characterize the CoW, the gap this
thesis has tried to close.
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the circle of Willis from magnetic resonance data,” Journal of Engineering Mathematics,
vol. 47, pp. 369–386, 2003.

[214] S. Moore, T. David, J. G. Chase, J. Arnold, and J. Fink, “3D models of blood flow in the
cerebral vasculature,” Journal of Biomechanics, vol. 39, no. 8, pp. 1454–1463, 2006.

[215] M. S. Alnaes, J. Isaksen, K.-A. Mardal, B. Romner, M. K. Morgan, and T. Ingebrigtsen,
“Computation of hemodynamics in the circle of Willis,” Stroke, vol. 38, pp. 2500–2505,
Sept. 2007.

[216] F. Mut, S. Wright, G. Ascoli, and J. Cebral, “Characterization of the morphometry
and hemodynamics of cerebral arterial trees in humans: A preliminary study,” in Proc.
2nd Int. Conf. on Computational and Mathematical Biomedical Engineering (CMBE)
(P. Nithiarasu and R. Lohner, eds.), pp. 87–90, 2011.

[217] J. R. Cebral, C. M. Putman, M. T. Alley, T. Hope, R. Bammer, and F. Calamante,
“Hemodynamics in normal cerebral arteries: Qualitative comparison of 4D phase-contrast
magnetic resonance and image-based computational fluid dynamics,” Journal of Engineer-
ing Mathematics, vol. 64, pp. 367–378, Jan. 2009.

[218] M. I. Miller and A. Qiu, “The emerging discipline of Computational Functional Anatomy,”
NeuroImage, vol. 45, pp. S16–539, Mar. 2009.

113

http://www.aneurist.org


[219] H. Wang and J. S. Marron, “Object oriented data analysis: Sets of trees,” Annals of
Statistics, vol. 35, pp. 1849–1873, Oct. 2007.

[220] A. Feragen, F. Lauze, P. Lo, M. de Bruijne, and M. Nielsen, “Geometries on spaces of
treelike shapes,” in Proc. Asian Conference on Computer Vision (ACCV), pp. 160–173,
Nov. 2010.

[221] A. Feragen, S. Hauberg, M. Nielsen, and F. Lauze, “Means in spaces of treelike shapes,” in
Proc. 13th IEEE Int. Conf. on Computer Vision (ICCV), Barcelona, Spain, pp. 736–746,
IEEE Press, 2011.

[222] B. Aydin, G. Pataki, H. Wang, E. Bullitt, and J. S. Marron, “A principal component
analysis for trees,” The Annals of Applied Statistics, vol. 3, pp. 1597–1615, Dec. 2009.

114



List of Thesis Publications

Journal articles
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Figure 1.2, page 7: Pipeline for geometric characterization of internal carotid artery.
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(c) 3DRA, after IIS (d) MRA, after IIS

Figure 2.2, page 23: Image histograms of the 10 patients before (a, b) and after (c, d) image
intensity standardization of 3DRA (a, c) and MRA (b, d) images. The logarithm of histogram
values is displayed.

Vessel

Aneurysm

(a) (b) (c) (d)

Figure 2.3, page 24: (a) Positioning of cutting planes. (b) For measuring vessels and aneurysm
neck the two measuring segments need to be orthogonal to each other (1st width is chosen first)
and located where the width is maximum. Dome depth is the distance from the neck center to
the farthest point on the dome, while dome width is the length of the longest chord of the dome
parallel to the neck plane. (c) Example of manual measurements. (d) Example of automated
measurements.
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(a) (b)

Figure 2.4, page 25: Examples of the registered surfaces from the two modalities 3DRA (in
white) and MRA (in blue).

(a) (b) (c) (d)

Figure 2.5, page 28: Examples of qualitative errors: Touching vessel effect (a), missing vessel
effect (b), wide aneurysm neck (c) and indented aneurysm (d).

Parent 

branch

Larger

branch

Smaller

branch

(a) (b)

Figure 3.4, page 45: (a) Bifurcation characterization: Origin (black cube) and associated
bifurcation vectors. (b) Example of identified ICA and its centerline.
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Anterior
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Posterior
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Inferior
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Figure 3.5, page 46: Carotid siphon with the four bends (in color) and the seven landmarks
(in black). White area denotes: outside the region of interest.

(a) (b)

(c)

Figure 3.6, page 47: Centerline spatial curve with: (a) Frenet-Serret frame with normal N⃗

(green) and binormal B⃗ (purple) vectors. (b) Parallel transport frame with E⃗1 and E⃗2 (red and

blue). (c) Normal vector N⃗ in the region of bend transition changes the orientation with respect

to E⃗1 and E⃗2.
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Figure 3.8, page 50: Bends and landmarks detection: (a) (k1, k2) space of the centerline.
Numbers denote the curvature peaks sequentially starting from ICA-TB. Between points 3 and
4 (θ1 ≈ 120◦) there is a transition of bends. Points 4 and 5 (θ2 ≈ 20◦) belong to the same
bend (posterior). (b) Coronal coordinate and the curvature of the centerline. The global coronal
coordinate maximum is denoted with vertical blue line. The interface landmarks between the
four bends are denoted with vertical black lines. (c) Estimation of central segment (bounded
with two vertical magenta lines) and central landmark (vertical black line) of the posterior bend,
using scale space. (d) The four bends with their central segments (in more saturated color: green,
red, yellow) and central landmarks (black).
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(a) OPR1 (b) OPR2

Figure 3.9, page 52: Illustration of the measured change of osculating planes between the
posterior and the anterior bend. Each angle (between blue and red vectors) measures the rotation
around the corresponding axis (magenta).

Figure 3.10, page 52: Circles (in black) fitted to the central segments of the anterior and the
posterior bends.
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(a) D = ρ(ϕt) = 5.7 (b) D = ρ(ϕt) = 6.8

Figure 3.11, page 55: Diffeomorphic registration of source centerline (blue) to target centerline
(red), with the registered centerline (green) and estimated distance D in shape space: (a) without
(E = Ecr) and (b) with landmark matching term (E = Ecr + Elm).

(a) (b) (c) (d)

Figure 3.14, page 59: Automated landmarking: (a-c) Examples of successful cases. (d)
Example of a case where the posterior and the inferior bend were incorrectly detected as one
(θpost-inf = 40◦).
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Figure 4.1, page 73: Anatomy of the Circle of Willis. (a) Surface rendering. (b) Schematic
representation: The arteries (in red), the inflow (arrows), and the bifurcations of interest (in
blue). Notation: ‘-A’ denotes anterior, ‘-P’ posterior, ‘-L’ left and ‘-R’ right.
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branch
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branch
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Figure 4.4, page 82: Unary attributes: (a) Bifurcation characterization, (b) general cylindri-
cal model of a bifurcation, (c) distribution of bifurcation vectors (example for a terminal ICA
bifurcation), (d) example of BA bifurcation (parent in blue and daughters in red) forming part
of a quadfurcation.
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(c) ST3: Right ant. tree isolated
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(d) ST4: Post. tree isolated

MCA-TL MCA-TR

ICA-TL ICA-TR

AcoAL AcoAR

PcoA-AL PcoA-AR

PcoA-PRPcoA-PL

BA-T

ROOTLA ROOTP ROOTRA

MCA

ICA

ICA

ICA

MCA

BA

PcoA PcoA

ACA ACA

PCAPCA

ICA

(e) ST5: Conn. via post. tree
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(f) ST6: Conn. via right ant. tree
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(g) ST7: Conn. via left ant. tree
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(h) ST8: Complete CoW

Figure 4.6, page 85: The eight reference graphs with overlayed digraphs, induced by each root
of the graph. In (h), the joining vertices are denoted with square.

xxv



(a) Complete CoW (b) Right PcoA missing

(c) Both PcoA missing (d) Right ACA missing

(e) Error in left MCA bifurcation (f) Error in right MCA bifurcation

Figure 4.7, page 89: Anatomically labeled Circle of Willis. Denoted vessels: ICA (red), BA
(turquoise), ACA (yellow), PCA (brown), PcoA (blue), AcoA (purple), MCA (green). Correct
labeling is shown in (a-d). Examples of incorrect MCA labeling are shown in (e,f), where the
arrow denotes the true terminal bifurcation.
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