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Abstract / Resumen / 摘要

Abstract: Over the last decade, there has been a growing interest in assessing
cerebral aneurysmal wall motion, because of its potential connections to the biome-
chanical conditions of the vessel wall, which could eventually aid the prediction
of aneurysmal rupture risk. Such quantification could provide a valid surrogate
for the vascular wall status and integrity. However, the vast majority of current
morphological indices used in the literature to predict growth and rupture in cerebral
aneurysms do not take into account the temporal changes that occur during the
cardiac cycle. This is because these indices are derived from image modalities that do
not provide sufficient temporal and/or spatial resolution to obtain dynamic aneurysm
information, which is expected to be similar to or below image resolution. Among
currently available vascular imaging techniques, 3D rotational angiography (3DRA)
and digital subtraction angiography (DSA) have the highest spatial (and temporal)
resolution. Still, for a human operator relying solely on qualitative visual observation,
even when using images from these modalities, to objectively analyze the small
motion and shape changes of the cerebrovasculature of an individual throughout the
cardiac cycle is difficult, if not impossible. Therefore, the availability of a robust
morphodynamic analysis tool is needed.

In this context, this thesis focuses on developing techniques to estimate, quantify
and analyze cerebrovascular wall motion, particularly aneurysmal wall motion, using
such modalities. The main contributions of the thesis are: 1) a first methodology
to estimate and model patient-specific cerebrovascular morphodynamics over one
cardiac cycle, through a proposed multiple 2D to 3D image registration framework;
2) an extension of this methodology to provide robust and efficient estimates of
cerebrovascular wall motion for clinical evaluation and for further biomechanical
modeling of the cerebrovascular wall; 3) a patient study that demonstrates the validity
of the developed techniques from clinical practice, through an analysis of 3DRA and
DSA images. Each of these contributions is published in or submitted to a peer-
reviewed international journal.

iii



Resumen: Durante la última década se ha dado un creciente interés en la evalu-
ación del movimiento de la pared vascular en aneurismas cerebrales. Éste hecho ha
sido motivado en gran medida por la relación existente entre dicha motilidad y sus
condiciones biomecánicas, pudiendo éstas llegar a ser útiles en la predicción del riesgo
de ruptura del aneurisma cerebral analizado. De este modo, de ésta cuantificación,
se podría llegar a derivar un indicador indirecto del estado e integridad de la pared
vascular. Sin embargo, la gran mayoría de los índices morfológicos utilizados en la
actualidad para predecir crecimiento y ruptura de aneurismas cerebrales no consideran
los cambios que se producen en el tiempo a lo largo del ciclo cardíaco. Esto se debe a
que dichos índices se obtienen a partir de modalidades de imagen que no proporcionan
suficiente resolución espacial y/o temporal para obtener información dinámica del
aneurisma, cuyo rango de variación se espera sea similar o inferior a la resolución
de la imagen. Entre las técnicas de imagen vascular disponibles en la actualidad,
la angiografía rotacional 3D (3DRA) y la angiografía de substracción digital (DSA)
son las que ofrecen la mayor resolución espacial (y temporal). De todos modos, aún
utilizando imágenes de estas modalidades, el análisis objetivo de pequeñas diferencias
de forma y movimiento en los vasos cerebrales de un individuo a lo largo de un ciclo
cardíaco es difícil, si no imposible para un operador humano utilizando únicamente
medidas cualitativas guiadas por inspección visual. Por lo tanto, la disponibilidad
de herramientas robustas para el análisis morfodinámico de la vasculatura cerebral
resulta necesaria.

En este contexto, la investigación de esta tesis se concentra en el desarrollo de
técnicas para estimar, cuantificar y analizar el movimiento de las paredes de los
vasos cerebrales, con particular énfasis en el movimiento de la pared en aneurismas,
utilizando las modalidades indicadas anteriormente. En líneas generales, esta tesis
presenta tres contribuciones principales: 1) una primera metodología de estimación y
modelado morfodinámico de vasos cerebrales a lo largo de un ciclo cardíaco, utilizando
una técnica de registrado de imágenes 2D-3D; 2) una metodología extendida para
proporcionar una estimación robusta y eficiente del movimiento de las paredes de
los vasos cerebrales para su evaluación clínica y posterior modelado biomecánico de
dichas paredes; 3) un estudio sobre una población de pacientes que demuestra la
validez de las técnicas desarrolladas en la práctica clínica, a través del análisis en
imágenes de 3DRA y DSA. Cada una de estas contribuciones ha sido publicada o se
encuentra en fase de revisión en revistas internacionales indexadas.

摘要: 在过去的十年里，人们对脑动脉瘤壁的运动有了越来越大的兴趣，这是因
为人们认为这项研究与血管壁的生物力学条件分析有潜在的联系，而后者又有助于进
行动脉瘤破裂风险预测的进一步研究。但是，当前大多数主要文献中讨论的脑动脉
瘤形态增长和破裂的风险因素并没有考虑心动周期内发生的形态变化。这是因为这些
因素是从不同医学图像技术中分析得出的，而这些图像技术不能提供足够的时间和空
间分辨率以获得动脉瘤的这种非常小的动态变化信息。在现有的脑成像技术中，三
维旋转血管造影（3DRA）和数字减影血管造影（DSA）具有最高的空间（和时间）分
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辨率。不过，即使借助于这类图像，仅靠人肉眼来客观地分析整个心周期过程中个
体脑血管形状变化是非常困难的，或者说甚至是不可能的。因此，一个可靠的动态
形变分析工具具有帮助颅内动脉瘤的术前规划和治疗方案的选择的潜在力。

本论文的研究主要集中于开发算法来估算，量化和分析在3DRA图像中脑血管壁的
运动，尤其是动脉瘤壁的运动。总的来讲，本论文的主要贡献有: 1) 一个采用多
帧2D／3D图像配准的方法，用于对人脑血管动态信息进行建模; 2）一个基于方法一
但更为高效完善的算法，以便用于临床评估和进一步的脑血管壁运动生物力学建模;
3）一个基于临床病人数据的分析研究，通过对3DRA和DSA影像的多模态相关性分析
来验证本论文提出的技术在临床实践中的有效性。以上的每一项贡献都分别在一份被
同行评审的国际期刊上发表了或审批中。
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Ĩ(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Pictures of the in silico data. . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Pulsation waveforms expressed as maximum wall displacement. . . . . . . 25
2.6 Instantaneous changes in diameter and volume measured over time. . . . 26
2.7 Instantaneous estimated pulsation amplitude distribution. . . . . . . . . . 27
2.8 Instantaneous volume measured over time under realistic conditions using

different weighting window widths. . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Boxplots of the relative volume error eV at 16 time points over the canon-

ical cardiac cycle under ideal conditions. . . . . . . . . . . . . . . . . . . . 29
2.10 Boxplots of the relative volume error eV at 16 time points over the canon-

ical cardiac cycle under various imaging conditions. . . . . . . . . . . . . . 31
2.11 Evaluation of effects of reference volume selection (1). . . . . . . . . . . . 32
2.12 Evaluation of effects of reference volume selection (2). . . . . . . . . . . . 33
2.13 Boxplots of the relative volume error eV at 16 time points over the canon-

ical cardiac cycle under different downsampling factor. . . . . . . . . . . . 33
2.14 The silicone side-wall aneurysm phantom. . . . . . . . . . . . . . . . . . . 35
2.15 Results on in vitro phantom on checkerboard comparisons of the original

and simulated projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.16 Results on in vitro phantom on motion curve and displacement distribution. 37
2.17 Color-coded displacement range and the histogram. . . . . . . . . . . . . . 37

3.1 The framework of the method. . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 An illustration of the DRRs computation process. . . . . . . . . . . . . . 50
3.3 Example pictures of in silico phantoms. . . . . . . . . . . . . . . . . . . . 52
3.4 In vitro phantom experiments setup. . . . . . . . . . . . . . . . . . . . . . 53
3.5 Details of in vivo datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



3.6 Boxplots of in silico phantoms. . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Evaluation on the three different schemes in terms of estimation error eV

and computational time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.8 Wall displacement amplitude and radial Cauchy strain for an in silico

phantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.9 Results from in vitro phantom. . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10 Results of aneurysm wall motion in patient #1. . . . . . . . . . . . . . . . 60
3.11 Results of vessel wall motion in patient #2. . . . . . . . . . . . . . . . . . 61
3.12 Results of catheter tip movements in patient #2. . . . . . . . . . . . . . . 62
3.13 Comparison of the accuracy using different SBR regions. . . . . . . . . . . 63
3.14 Results comparing the influence of inhomogeneous contrast filling on two

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.15 An illustration of how information is repacked for the final DRRs compu-

tation for three structures of interest. . . . . . . . . . . . . . . . . . . . . 67

4.1 Patients data (#2,5,6,8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Patients data (#9,10,11,12). . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Results for patients #2, 5, 6, 8. . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Results for patients #9, 10, 12, 13. . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Correlation and agreement between average displacements range over the

cardiac cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Motion pattern after temporally synchronized among patients according

to ECG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



List of Tables

1.1 Previous work reporting both cerebral aneurysm and artery motion am-
plitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Design parameters for digital phantom studies . . . . . . . . . . . . . . . 23
2.2 Design parameters for physical phantom studies . . . . . . . . . . . . . . . 34

3.1 3DRA imaging settings for the in vitro and in vivo data, using the Allura
FD20 imaging system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Patient population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Pearson correlation coefficient of the temporal average displacement esti-

mates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Mean and standard deviation of the spatial average wall motion amplitude

during the cardiac cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xi





List of Acronyms

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
3D+t 3D plus time
3DRA Three-dimensional Rotational Angiography
4D Four-dimensional
ACA Anterior Cerebral Arteries
AComA Anterior Communicating Artery
ASG Anti-Scatter Grid
BA Basilar Artery
CA Contrast Agent
CB Cone-Beam
CBCT Cone-Beam CT
CeVD Cerebrovascular Disease
CFD Computational Fluid Dynamics
CNR Contrast-to-Noise Ratio
CPU Central Processing Unit
CT Computed Tomography
CTA Computed Tomography Angiography
CVD Cardiovascular Disease
DRR Digitally Reconstructed Radiographs
DSA Digital Subtraction Angiography
ECG Electrocardiogram
FBP Filtered Back Projection
FDK Feldkamp Davis Kress
FFT Fast Fourier Transform
FOV Field Of View
GPU Graphics Processing Units
HU Hounsfield Units
ICA Internal Carotid Arteries
II Image Intensifier

xiii



MCA Middle Cerebral Artery
MR Magnetic Resonance
MRA Magnetic Resonance Angiography
MTF Modulation Transfer Function
PCA Posterior Cerebral Arteries
PCoA Posterior Communicating Artery
ROI Region Of Interest
SD Standard Deviation
SID Source to Intensifier Distance
SNR Signal-to-Noise Ratio
SOD Source to Object Distance
SPR Scatter-to-Primary Ratio
UIA Unruptured Intracranial Aneurysms
VOI Volume Of Interest

xiv



Preface

This thesis marks the fulfillment of my journey on obtaining my PhD degree in
Universitat Pompeu Fabra. I would like to thank several people who have contributed
to the accomplishment of this thesis.

First of all, I would like to thank my advisor Alejandro Frangi, who introduced me
to the medical imaging research field, guided me to carry out research, and provided
me the financial support. Maria-Cruz Villa-Uriol was my daily supervisor during the
last four and a half years of this thesis work. Her continuous commitment to my work
and organizational aspects have been fundamental. I am also very grateful to all other
co-authors of the different parts of this thesis, Mathieu De Craene, Jose-Maria Pozo,
Ruben Cardenes, Bart Bijnens, Juan Macho, Vincent Costalat, Alain Bonafé, with
whom I have had pleasant collaborations and constructive discussions.

I would like to express my sincere gratitude to Prof. Alain Bonafé, Vincent
Costalat, and Hans Aerts who offered me the opportunity to have a three-month
research stay at CHU Montpellier, Service de Neuroradiologie, Hôpital Gui de Chau-
liac, Montpellier, France. They provided me the convenience of accessing clinical
data and they were always available and helped me understanding many aspects of
radiology clinics. Special mention also goes to all members from the department, for
their collaborations during my stay.

I would also like to thank Dr. Daniel Rüfenacht and Luca Augsburger from
Geneva University Hospitals (HUG), for permitting us to use their aneurysm silicone
phantoms, and Dr. Jordi Blasco from Hospital Clínic de Barcelona, Dr. Elio Vivas
from Hospital General de Catalunya, and Roel Hermans from Philips Healthcare,
Best, The Netherlands, for the 3DRA phantom acquisitions.

A journey becomes easier once you get company. I am grateful to all the past
and current colleagues of CISTIB, who together have created a very friendly working
environment and have accompanied me for lots of wonderful leisure time.

The research work carried out in this thesis was partially generated within the
framework of the Integrated Project @neurIST (IST-2004-027703), financed by the
European Commission, partially supported by CDTI CENIT-CDTEAM grant funded
by the Spanish Ministry of Industry, partly supported by the Spanish Ministry of
Science and Innovation (Ref. No. TIN2009-14536-C02-01), Plan E, and FEDER, and
also partially funded by Philips Healthcare (Best, The Netherlands). CISTIB is part
of ISCIII CIBER-BBN (CB06/01/0061).

I owe tremendously to my grandmother, whose simple and unconditional love has

xv



always kept me warm throughout my life. I am so deeply appreciative of my parents,
who have always supported every single decision or achievement that I have ever
made, and will remain so.

xvi



1
Introduction





C
hapter

1
—

Introduction

1.1 Cerebral aneurysms

1.1.1 Cerebral aneurysms: a cerebrovascular disease

Cardiovascular diseases (CVD) are currently the number one cause of death in the
world. Among CVD, cerebrovascular diseases (CeVD), such as stroke, are the second
most common cause. Fig. 1.1 shows a detailed list of the top ten leading causes
of death in the world, as published by the World Health Organization in 2008 [71].
This report estimated that 17 million people died from CVD in 2004, representing
about 30% of all global deaths. Of these deaths, 7.2 million were due to heart attacks
and 5.7 million due to CeVD. In addition, they are the cause of disability for several
millions more people. CVD prevalence and costs are projected to remain the same or
even increase substantially, as indicated by recent findings [31]. To limit this growing
burden, effective prevention strategies are needed.
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Figure 1.1: The 10 leading causes of death in the world, according to the estimates in
”The global burden of disease: 2004 update”, published in 2008 [71]. As a reference, the
estimated total number of deaths in the world in 2004 was 59 million.

Cerebral aneurysms, the main cause of hemorrhagic strokes, usually form in areas
where a blood vessel in the brain weakens, resulting in a bulging (or ballooning) of
this part of the vessel wall [14]. They are usually found at or near arterial bifurcations,
mostly at the Circle of Willis (Fig. 1.2), the vascular system that irrigates the basis
of the brain [14]. Although the prevalence of unruptured cerebral aneurysms is
unknown, it is estimated from autopsy studies to be between 1 and 5% in the adult
population [70] and as high as 6% [116]. The most serious complication of a cerebral
aneurysm is its rupture and the consequent aneurysmal subarachnoid hemorrhage
(SAH). This subset of strokes has an incidence of sudden death of 12.4% and a
fatality rate ranging from 32% to 67% after the hemorrhage [35, 40, 89, 120].

There are three options for treating intracranial aneurysms: pharmacological
therapy, surgical therapy with clip ligation (clipping), and endovascular occlusion
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Figure 1.2: The most frequent locations of cerebral aneurysms in the intracranial vascula-
ture. Reproduced with permission from [14]. (color version on page C1)

with the use of detachable coils (coiling) or a wire mesh tube either used as a scaffold
to support the coils (stenting) or to cut off the blood supply (flow diverter). Although
successful clipping is generally associated with definitive protection against rupture,
the morbidity and mortality rates associated with clipping an unruptured aneurysm
are relatively high [78]. In contrast, endovascular treatment of unruptured aneurysm
is safe with less than 1% of mortality rate [97], but they are not cost effective. Thus
the risks of aneurysm rupture with respect to its natural history against the risk of
morbidity and mortality from an endovascular or surgical repair need to be carefully
balanced. Although unresolved controversies remain as to the best treatment option
for an individual patient, the outcome for patients treated before an aneurysm rupture
is much better than for those treated afterwards.
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1.1.2 Imaging options and applications
At present, there are three methods of choice for identifying a cerebral aneurysm

and its morphologic features: computed tomography angiography (CTA) after a
venous injection, magnetic resonance angiography (MRA), and angiography by direct
intra-arterial catheterization (catheter angiography): either 3D rotational angiogra-
phy (3DRA) or digital subtraction angiography (DSA).

Depending on the stage within the cerebral aneurysm patient care cycle, these
imaging modalities play different roles. Catheter angiography presents the highest
spatial resolution [25] and is considered as the benchmark [14]. Therefore, it is usually
routinely performed during an endovascular treatment. Nevertheless, the requirement
of catheterization and contrast agent injection makes it invasive and ionizing to the
patient. Because of the less invasive nature of CTA and MRA, these two modalities
are used in standard clinical practice at early diagnostic stages as well as for patient
screening and monitoring [14].

In the recent years, imaging has also played an important role to enable the
personalization of risk assessment and treatment. Research efforts have been devoted
to the patient-specific virtual modeling and simulation of this disease. Aspects such as
vascular morphology, hemodynamics and structure have been evaluated and included
in complex image and simulation-based management pipelines [110, 111]. In this
context, the European project @neurIST [7, 110] catalyzed some of these efforts,
aiming at the transformation of the management of cerebral aneurysms by providing
new insights, personalized risk assessment, and methods for the design of improved
medical devices and treatment protocols.

1.1.3 Understanding aneurysm formation, growth and rupture
The clinical management of ruptured and unruptured cerebral aneurysms has not

been fully determined, as the exact mechanisms by which cerebral aneurysms initiate,
develop, grow, and rupture are unknown. Not all aneurysms rupture. Actually,
between a 50% and 80% of them never do [14]; however, the challenge is to discrim-
inate those at risk of rupture from those that will not rupture. Therefore, to gain a
better understanding of the natural history of unruptured intracranial aneurysms
(UIA), an epidemiological project was undertaken by the International Study of
Unruptured Intracranial Aneurysms (ISUIA) Study Group [69, 70]. As a conclusion,
size and location were identified to play an important role in predicting rupture
risk, especially in patients who did not previously have SAH. Also, to gain a better
understanding of the risks associated with aneurysm surgical or endovascular repair,
a multi-center, prospective randomized study was carried out in the International
Subarachnoid Aneurysm Trial (ISAT), where the safety and efficacy of endovascular
coil treatment and surgical clipping for the treatment of ruptured brain aneurysms
were compared [62]. The study found that, in patients equally suited for both
treatment options, endovascular coil treatment produces substantially better patient
outcomes than surgery in terms of survival free of disability at one year.

To date, the main factors that have been investigated are: morphological factors
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based on the aneurysm and vascular geometry [26, 28, 61, 79]; physical factors that
relate to physical exercise such as blood flow and contacts with the environment [21,
93]; biological factors that take into account biological processes involved in the various
stages of aneurysm growth and coagulation [55]; genetic factors based on patient
genetic phenotyping [90, 91, 125]; and other risk factors such as drugs abuse, smoking,
contraceptives, hypertension, alcohol intake, etc [34, 42, 99], which are related to the
pathogenesis and eventual rupture. Despite the intrinsic complexity of the problem
and given the many factors involved [70], an additional difficulty with these studies
is that they are usually based on selected patients population. For example, while
there are reports indicating that a larger aneurysm is associated with a higher risk of
rupture [69, 70, 83], in Japan it has been sporadically reported that small unruptured
aneurysms present higher rates of rupture risk [63]. The state of current clinical
research on aneurysm rupture risk is therefore rather primitive and controversial, as
there are no clinically proven measurements to predict how, when, where, and why a
particular type of aneurysm in a particular location of the body will rupture [22, 41].

1.2 Cerebral aneurysm wall motion

1.2.1 Importance of studying aneurysmal wall motion
Although little is known about the pathogenesis of cerebral aneurysms and the

subsequent aneurysmal SAH, it is believed to be dependent on the complex interac-
tions of multiple physiological and mechanical factors such as hemodynamics, wall
biomechanics and mechanobiology [95]. Unfortunately, patient-specific vessel wall
properties cannot be measured in vivo with current medical imaging techniques [49],
making it difficult to predict further remodeling and assess prognosis in an individual
patient. In many situations, an inverse problem approach based on a mathematical
model for the biomechanics of the vasculature is a valid surrogate to estimate material
and structural parameters [5, 46]. An example of such an approach consists in
determining these unknown parameters by applying known boundary conditions on
the vessel wall and analyzing its mechanical responses such as vascular wall motion.

Currently, only a few clinical studies are available to support the diagnostic
value of examining motion information [30, 37, 43, 45, 74, 106, 124]. Previous
studies have demonstrated that the aneurysm wall can vibrate or pulsate due to
the fluctuations of flow [98], and that decreased pulsatile aneurysmal wall movement
can cause a slight reduction in wall stress [103]. Both flow fluctuation and wall
stress are thought to play a role in aneurysm progression and eventual rupture.
On the other hand, a recently study [94] claims that the oscillatory rigid rotation
observed in vivo in cerebral vasculature does not have a major impact on intra-
aneurysmal hemodynamic variables, and that parent artery motion is unlikely to be
a risk factor for aneurysm rupture. Therefore, it remains relevant to further discuss
these controversial stand points. From a biomechanical point of view, recent research
has revealed that localized variations in the aneurysmal wall stiffness and thickness
are linked to local stress concentrations and changes in aneurysmal shape [17]. Such
inhomogeneous distribution of the material properties in the aneurysmal wall may
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translate into spatially inhomogeneous wall motion when exposed to the varying
dynamic pressures occurring during the cardiac cycle [5, 46]. Moreover, there are
studies suggesting that the direct visualization of wall motion abnormalities may be
helpful for identifying weak spots in the cerebral vasculature [37, 45]. Therefore, the
quantification of wall motion in cerebral aneurysms could be an effective surrogate
for vascular wall status and integrity, which could indicate vascular weak spots and
potentially aid the assessment of aneurysmal rupture risk. Additionally, it can be
of use for providing boundary conditions for computational simulations and as a
validation tool for biomechanical modeling of the vessel wall. All this information is
thought to be able to help in the selection of the best therapeutic option for patients
suffering from various vascular pathologies [111, 112].

However, the vast majority of current morphological risk factors for cerebral
aneurysm growth and rupture do not take into account the temporal changes oc-
curring during the cardiac cycle. Some examples of these factors are aneurysm size,
aspect ratio or neck angle [6, 26, 28, 40, 41, 53, 61, 65, 69, 70, 72, 79, 83, 86, 104, 105].
This is because these factors are derived from image modalities that do not pro-
vide sufficient temporal and spatial resolution to obtain dynamic information about
aneurysms, which is expected to fall in the sub-millimeter range (see in Table 1.1
a summary of currently reported motion amplitude ranges). Thus, it represents
a challenge in terms of the available image resolution of current clinical imaging
techniques. Consequently, for a human operator relying solely on qualitative visual
observations, performing an objective analysis of such small motion throughout the
cardiac cycle is difficult, if not impossible. As such, dedicated and objective tools in
motion assessment are needed.

1.2.2 Imaging techniques for wall motion
Over the past couple of decades, various imaging techniques have been used in wall

motion research, such as Doppler ultrasound [114], 2D cine phase contrast MRI [43,
60], 4D-CTA [30, 37, 44, 45], and DSA [18, 74]. Most of them focused on providing
qualitative observations and detecting aneurysm wall motion. Only recently a few
studies have intended to detect and further quantify motion [43, 45, 60, 67, 74, 106],
and even fewer have been able to quantify motion throughout the cardiac cycle [43,
67, 74, 106]. A list of such publications is summarized in Table 1.1. However, no
work has reported the use of 3DRA for this challenging research task.

Although 3DRA was not designed to provide dynamic 3D information, we will
show why it has the potential to do so. A picture of a commercial 3DRA imaging
suite (Allura Xper FD20/10, Philips Healthcare, Best, The Netherlands) is shown
in Fig. 1.3. A 3DRA acquisition provides a sequence of 2D X-ray angiograms ob-
tained from rotating views of the C-arm. A static and isotropic high-resolution 3D
volumetric image is reconstructed from them. In addition, a physiological signal such
as electrocardiogram (ECG) or blood pressure synchronized to the projections can
be recorded. Typically, more than 100 projections are obtained during a 4-second
scan, at constant time intervals and uniformly distributed over more than 200◦ along
a circular trajectory. Fig. 1.4 illustrates the principle of 3DRA described. Since

7



T
able

1.1:
Previous

w
ork

reporting
both

cerebralaneurysm
and

artery
m

otion
am

plitude.
M

.A
.=

M
ax.

am
plitude;M

.A
.P.=

M
ax.

am
plitude

in
percentage

ofthe
aneurysm

diam
eter;M

.V
.P.=

M
ax.

volum
e

change
in

percentage;n.a.=
not

available.

M
otion

R
ef./Year

M
odality

D
ata

#
C

ases
M

.A
.(m

m
)

M
.A

.P.
M

.V
.P.

aneurysm
M

eyer
etal.

[60]/1993
cine

PC
-M

R
I

in
vivo

16
0.2-3.3

4-20%
n.a.

Low
etal.

[52]/1993
-

sim
ulation

1
n.a.

6%
n.a.

Boecher-Schwarz
etal.

[11]/2000
laser

sensor
ex

vivo
8

0.1-0.25
1-2.5%

n.a.
U

eno
etal.

[103]/2002
laser

sensor
in

vitro
1

0.1
n.a.

n.a.
Toriietal.

[102]/2006
-

sim
ulation

1
0.7

14%
n.a.

Valencia
etal.

[108]/2006
-

sim
ulation

1
0.2-0.35

2-3%
n.a.

K
rings

etal.
[45]/2010

4D
-C

TA
in

vivo
1

2
13.3%

n.a.
K

arm
onik

etal.
[43]/2010

cine
PC

-M
R

I
in

vivo
7

0.16-1.6
n.a.

n.a.
O

ubeletal.
[74]/2010

D
SA

in
vivo

10
0.01-0.45

0.1-4.7%
n.a.

U
m

eda
etal.

[106]/2011
4D

-C
TA

in
vivo

4
0.7

n.a.
n.a.

artery
W

arriner
etal.

[117]/2008
-

sim
ulation

1
0.24-0.25

3.8-4.5%
n.a.

N
ishida

etal.
[67]/2011

4D
-C

TA
in

vivo
10

n.a.
n.a.

3%

8



C
hapter

1
—

Introduction

Figure 1.3: A picture of a flat panel 3DRA system Allura Xper FD20 (Philips Healthcare,
Best, The Netherlands). 1. X-ray source; 2. Image detector; 3. C-arm that rotates around
the patient; 4. Patient table. (color version on page C1)

the acquisition lasts for a few seconds, any vascular motion occurring during the
acquisition is captured in the 2D projections. Thus, in principle, 3D aneurysmal
motion could be derived from the combined image data obtained from a single
standard 3DRA acquisition. In addition, the employment of a single acquisition
has the merit of not exposing patient to additional radiation risk and facilitates its
clinical take-up.

1.2.3 Motion estimation algorithms
Various techniques have been proposed for estimating motion or reconstructing

dynamic 3D structures using projection images acquired from image modalities like
3DRA and cone beam computed tomography (CBCT). Unfortunately, they are not
directly suitable for aneurysm motion analysis.

Most of these techniques, e.g., the ones based on dynamic CT [13], use a subset
of projections belonging to the same motion state according to a time reference
signal, and use this subset to reconstruct the object at that motion state. ECG-
gated techniques [64, 80, 88] constitute the most typical approach, using iterative [10]
or analytical [20, 88] reconstruction methods. Other methods have employed im-
age registration based techniques to estimate the motion into projection motion-
compensated 3D reconstruction process [84] or through projection matching in 2D
spaces [9, 10, 109, 126] Recently, a technique [84] has been proposed to incorporate
a 4D motion estimation into a projection motion-compensated 3D reconstruction
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Figure 1.4: An illustration of the imaging principle of the 3DRA modality. More than 100
contrast-enhanced images are acquired by rotational angiography during a 4-second scan,
at constant time intervals and uniformly distributed over more than 200◦ along a circular
trajectory. A 3D volume automatically reconstructed from these image date can be viewed
with real-time volume rendering. During the rotational run, a physiological signal can be
synchronously recorded as well. (color version on page C1)

process by comparing the latter to an initial reference reconstruction. In other
works [109, 126], continuous respiratory motion during a CBCT acquisition has been
estimated by optimizing the similarity between the measured and the corresponding
views of a deforming reference volume obtained from CT.

1.3 Aim and objectives of this thesis

It is the main aim of this thesis to present technical solutions for objectively
estimating, quantifying and analyzing 3D cerebrovascular wall motion. Ultimately,
such techniques should be useful for identifying patients at risk of aneurysmal rupture
using their ability to identify weak spots in the vascular wall. These methods ideally
should be used in clinical practice without exposing patients to additional radiation,
i.e. employing the standard imaging protocol currently in place. In this case, 3DRA
is the most suitable existing imaging technique, since it has the best combination
of spatial and temporal resolutions and it is part of the clinical management care
cycle of patients with a cerebral aneurysm. However, this modality was not originally
designed for representing dynamic information of the imaged object. In this thesis,
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we aim at retrieving the dynamic 3D morphology of cerebral aneurysms from a single
3DRA acquisition, combined with the recording of a physiological signal. This aim
has been translated into the following specific objectives:

• To develop methodologies for the recovery of 3D plus time (3D+t) or 4D models
of cerebral aneurysms from 3DRA.

• To provide methods to objectively pursue the quantification and characteriza-
tion of the estimated motion.

• To evaluate the performance of the proposed techniques and to validate their
feasibility of analyzing in vivo aneurysmal wall motion.

1.4 Overview of this thesis

In this thesis, we propose two methodologies to estimate 3D aneurysmal wall
motion from 2D rotational angiography, and perform a validation study on clinical
patient data with the purpose of aneurysmal wall motion characterization. The core
contents of this thesis are structured in three chapters.

Chapter 2 describes the first proposed methodology to estimate and model patient-
specific cerebrovascular morphodynamics over one canonical cardiac cycle. As op-
posed to employing typical reconstruction algorithms from projections, 3D morphol-
ogy of the structure of interest at a given time instant is obtained by registering
a sparse set of forward projections of the deformed 3DRA volume to 2D measured
projections through a temporal weighting scheme. Motion over the cardiac cycle
is represented by a sequence of such deformed 3DRA volume images estimated at
multiple time instants in the cardiac cycle.

Chapter 3 aims to provide robust and efficient estimates of cerebrovascular wall
motion for a clinical evaluation and for the further biomechanical modeling of the cere-
brovascular wall. The algorithm framework described by the first proposed methodol-
ogy is extended by employing a single 4D B-spline transformation model for the whole
motion cycle to guarantee spatial as well as temporal consistency. The registration is
optimized by measuring a single similarity metric between the entire measured and
forward projection sequences. In the same chapter, a hybrid acceleration method is
proposed, using a combination of software and hardware strategies. This method also
results in a reduction of memory requirements. Furthermore, for characterizing vessel
wall properties, a geometrical measure of aneurysmal wall deformation is obtained
through the calculation of strain.

With the techniques proposed in these two chapters, we expect to be able to
deal with situations of either focusing on the morphology at specific time instants, or
to concentrate on the assessment of the whole motion pattern. Currently we are
more interested in understanding the entire motion over the cardiac cycle. The
next step would be to demonstrate the feasibility of applying this techniques to
patient data, which is presented in Chapter 4. The study estimates and quantifies
cerebral aneurysm and vascular wall motion from 3DRA and DSA images. The two
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image registration techniques used were the 3D+t technique in Chapter 4 and a
2D+t technique [74]. Wall motion estimates from both modalities are compared to
investigate the level of agreement between the motion estimations by the two methods
both in terms of their amplitude and their temporal evolution over the cardiac cycle.

Each chapter is self-contained as appeared in the journal publication or submission
under review; therefore, some of the basic concepts might appear in various chapters
of the thesis.
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This chapter presents a technique to estimate and model patient-specific pulsatility
of cerebral aneurysms over one cardiac cycle, using 3DRA acquisitions. Aneurysm
pulsation is modeled as a time varying B-spline tensor field representing the de-
formation applied to a reference volume image, thus producing the instantaneous
morphology at each time point in the cardiac cycle. The estimated deformation is
obtained by matching multiple simulated projections of the deforming volume to their
corresponding original projections. A weighting scheme is introduced to account for
the relevance of each original projection for the selected time point. The wide coverage
of the projections, together with the weighting scheme, ensures motion consistency
in all directions. The technique has been tested on digital and physical phantoms
that are realistic and clinically relevant in terms of geometry, pulsation and imaging
conditions. Results from digital phantom experiments demonstrate that the proposed
technique is able to recover subvoxel pulsation with an error lower than 10% of the
maximum pulsation in most cases. The experiments with the physical phantom
allowed demonstrating the feasibility of pulsation estimation as well as identifying
different pulsation regions under clinical conditions.

The content of this chapter is based on the publication:

Chong Zhang, Maria-Cruz Villa-Uriol, Mathieu De Craene, Jose-Maria Pozo, Ale-
jandro F. Frangi, Morphodynamic analysis of cerebral aneurysm pulsation from
time-resolved rotational angiography, IEEE Transactions on Medical Imaging,
28(7): 1105-1116, 2009.
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2.1 Introduction

Cerebral aneurysms are pathological enlargements of brain arteries commonly
located at the circle of Willis [14]. When they rupture, spontaneous subarachnoid
hemorrhage usually follows, causing high morbidity and mortality rates [14, 35].
Morphological characterization has been reported to provide indicators for monitoring
the growth of intracranial aneurysms, as well as for correlating it with rupture
events [26, 61, 79]. However, such techniques only consider static morphological
information such as size and aspect ratio. On the other hand, it has been observed
that aneurysms pulsate over the cardiac cycle [60, 114, 115] and rupture sites coincide
with the areas of pulsation [29, 30, 37, 44]. If such correlation exists, the availability
of a robust morphodynamic analysis tool has the potential of impacting treatment
selection and preoperative planning of cerebral aneurysms. Nonetheless, a small
motion range that can go below the image resolution makes the morphodynamic
analysis practically challenging. Dempere et al. [18] proposed a motion estimation
method from dynamic biplane DSA using 2D nonrigid image registration. Their
recent work [75] extended this approach by postprocessing the recovered motion
curve in the Fourier domain. Since DSA images are captured from a single point
of view, motion was only partially estimated. Various techniques have been proposed
for motion estimation and dynamic reconstruction. Most of them, e.g., dynamic
CT [13], use a subset of projections belonging to the same motion state according to
a time reference signal such as the ECG, and use this subset to reconstruct the object
at that motion state. However, they are not tailored to wall motion estimation in
cerebral aneurysms.

Movassaghi et al. [64] presented in-human 4D coronary artery reconstructions
using an ECG-gated 3D tomographic reconstruction from projection images [81]. The
promising results counterbalance the strong requirements in the imaging protocol and
preprocessing. Schäfer et al. [88] reconstructed moving coronary arteries by shifting
voxel positions according to a motion vector field. This method is only applicable to
voxel driven cone-beam filtered back-projection (FBP) reconstruction approaches [20,
23] with an a priori known motion model. To perform gated reconstruction, the
authors introduced a weighting factor into the FBP formulation according to the
cardiac phase of the projections. Unfortunately, streak artifacts associated to FBP
algorithms were not completely eliminated.

Blondel et al. [9, 10] computed a 4D B-spline deformation field of coronary arteries.
A static 3D centerline model reconstructed at one cardiac phase was used to fit all
projection images. Nonetheless, the centerline model is not suitable for aneurysm
geometries in providing local deformation. Zeng et al. [126] also estimated 4D thorax
respiratory motion during one CBCT acquisition using B-spline deformation. The
need for two acquisitions (the reference CT and the CBCT projections) does not only
increase patient exposure to radiation, but also might lead to misinterpret intrinsic
organ motion as respiratory motion.

Several approaches were proposed for performing 2D motion correction and then
reconstruct the 3D image from the motion-compensated 2D projections [27, 77]. They
have been successfully applied to coronary artery or stent reconstruction. However,
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we aim at recovering the 3D motion instead of removing it from the 2D projections.
Furthermore, neither constraining motion to be affine [77] nor using the centerline
model [27] are suitable options for the analysis of aneurysms. We therefore propose
to model the aneurysm pulsation in the 3D space rather than in the space of the
individual 2D projections.

In this chapter, the presented methodology models cerebral aneurysm pulsation
as a time varying B-spline tensor field. It is applied to a reference volumetric image
to estimate the instantaneous deformation at any time point in the cardiac cycle.
The optimal B-spline transformation is obtained by matching multiple simulated
projections of the deforming volume to the corresponding original projections. The
transformation continuity and smoothness not only preserves the image resolution
of the 3DRA reference volume, but also enables to recover subvoxel pulsation. A
weighting scheme is introduced to account for the relevance of each projection to
the estimated time point. The wide coverage of the projections, together with the
weighting scheme, ensures motion consistency in all directions. The use of only one
standard acquisition performed during an endovascular treatment does not expose
patient to additional radiation risk and facilitates its clinical take-up.

The subsequent sections are organized as follows: in Section 2.2, the proposed
methodology is explained in detail. Section 2.3 shows the experiments carried out on
various digital phantoms for the quantitative evaluation of our method. Section 2.4
reports the results obtained from physical phantoms, to demonstrate the feasibility
of our method. Discussion and conclusions are summarized in Section 2.5 and 2.6,
respectively.

2.2 Method

During a 3DRA acquisition, a rotational sequence of cone beam X-ray projections
are first obtained and then used to reconstruct a 3D volumetric image. In addition,
a physiological signal (e.g., ECG or blood pressure) synchronized to the projections
can be recorded. Typically, more than 100 projections are obtained during 4 seconds,
at constant time intervals and uniformly distributed over more than 200◦ along a
circular trajectory. Thus, the vascular motion occurring during the acquisition is
captured in the 2D projections. However, since only a single volume is reconstructed,
it does not provide the 3D dynamic morphology.

The objective of our work is to retrieve the time-resolved morphology of the imaged
region by combining the 3D volume, the projections and a synchronized physiological
signal. First, according to the cardiac cycles in the physiological signal, the projections
are reordered to build one normalized cardiac cycle containing all of them (original
projections). This step is detailed in Section 2.2.1 (Fig. 2.1). Then, at each time point
in the normalized cardiac cycle, a 3D-to-multiple-2D image registration procedure
is performed (Fig. 2.2). During this step, the 3D volume (reference volume) is
iteratively deformed (Section 2.2.2) to maximize the similarity (Section 2.2.4) between
the original projections and their corresponding simulated projections. The simulated
projections are calculated from the deformed volume through a ray casting process
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Figure 2.1: Creation of a canonical cardiac cycle according to the original rotational
projections and the synchronized physiological signal.

(Section 2.2.3). The contribution to the similarity from each pair of original and
simulated projections is weighted according to the temporal difference between the
original projection and the current estimation.

2.2.1 Creation of a canonical cardiac cycle
Initially, the original projection sequence O of size N is used to reconstruct the ref-

erence volume. As shown in Fig. 2.1, a physiological signal is recorded synchronously
with O. Since in practice, the waveform of the physiological signal can vary from
cycle to cycle, each cycle of this signal is extracted and its period is then linearly
normalized to a time interval [0,1). All images in O are sorted by their normalized
timestamps to build one canonical cardiac cycle as

I = {Ik(x) | k = 1 . . . N , x ∈ Sk ⊂ R3} ,

where the reordered image Ik(x) lies on the corresponding projection plane Sk, and
is located within the canonical cardiac cycle at time tk,

0 ≤ t1 ≤ · · · ≤ tk ≤ · · · ≤ tN < 1.
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Figure 2.2: The 3D-to-multiple-2D image registration procedure for the canonical cardiac
cycle. Two weighting windows are shown to illustrate the weighting scheme at two estimated
time points, t and t′.

2.2.2 Deformation model
The motion at a given instant of time t is represented as a deformed reference

volume V :
Ṽ (p; t) = V (T (p;ωt)),

where the transformation T : R3 7→R3 maps a point p in Ṽ (p) to the point q in V (q),
ωt denotes the time-varying transformation parameters at t. We have chosen a B-
spline based transformation [47, 85], because it is not only smooth and continuous
but also computationally efficient due to the local control of the basis functions. The
transformation for any set of parameters ω is given by

T (p;ω) = p +
∑

c
B

(
p − pc
∆c

)
ωc, (2.1)

where B(·) is the 3D tensor product of 1D cubic B-spline basis functions, defined on
a sparse grid of control points pc, being c the index of the control points, and ∆c the
width of the functions. Because of these short basis functions with limited support,
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Figure 2.3: Overview of the ray casting algorithm to compute the simulated projection
Ĩ(x).

the B-spline transformation can only represent a subset of all possible deformation
fields [47]. However, this limitation of the basis functions also provides an implicit
regularization of the transformation.

2.2.3 Generation of simulated projections
In this chapter, a simulated projection Ĩ(x) is calculated from Ṽ (p) through a

ray casting procedure [38, 96] in order to approximate the X-ray attenuation imaging
process [32]. Starting from each pixel x in the projection, a ray Ls,x is casted through
the volume to meet the X-ray source point s (Fig. 2.3). The pixel intensity of Ĩ(x)
is then defined as the integral of the volume intensities Ṽ (γ) for every point γ lying
on Ls,x:

Ĩ(x) =
∫
Ls,x

Ṽ (γ)dγ ≈
∑
ℓ

αℓ Ṽ (pℓ) (2.2)

where ℓ is the index of the sampled voxel points pℓ along Ls,x, and αℓ the sampling
weight, the distance between two consecutively sampled points pℓ and pℓ+1. On each
of the original projection planes Sk, such a simulated projection can be generated by
ray casting Ṽ (p; t). The sequence of simulated projections is denoted as:

Ĩ = {Ĩk(x) | k = 1 . . . N , x ∈ Sk ⊂ R3} .

Ĩ reflects the morphology at time t from various projection views. Note that for each
image Ĩk(x), a valid ray region Rk is defined so that only those rays intersecting the
volume are evaluated. For the rest of the pixels, their intensity value is set to zero.
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2.2.4 Similarity measures
During the registration process at an instant of time t in the canonical cardiac

cycle, the corresponding deformation parameters ωt are determined by matching the
simulated projections to the original projections:

ωt= argmin
ω

{
M(ω; t)=

∑
k

µ(t, tk)D
(
Ĩk(ω), Ik

)}
, (2.3)

where M(·) is the metric that sums up a weighted similarity measure between each
original and simulated projection pair, D

(
·) the similarity metric, and µ(·) the weight-

ing factor accounting for the temporal proximity between two projections.

2.2.4.1 Similarity measures between two images

As simulated projections are approximations of the original projections, the image
intensity ranges are different, therefore mutual information has been used in our work:

D
(
Ĩk(ω), Ik

)
= −

∑
u

∑
v

p(u, v) log p(u, v)

p(u)p(v)
, (2.4)

where p(u) and p(v) are respectively the marginal probability distributions of the
intensity values of Ik and Ĩk, and p(u, v) the joint probability distributions of these
two images. Here u, 0<u<H and v, 0<v<H̃ are the indices of uniformly sized
histogram bins along the respective dimensions of the joint histogram.

Histograms are approximated using Parzen windows for the probability calcula-
tion [58, 100]. Let β(0) and β(3) be a zero-order and a cubic B-spline Parzen windows.
The joint histogram is then given by

p(u, v)=α̂
∑

x∈Rk

β(0)
(
u− Ik(x)− i◦k

∆h

)
· β(3)

(
v − Ĩk(x;ω)− ĩ◦k

∆h̃

)
,

where α̂ is a normalization factor that ensures
∑

p(u, v)=1, i◦k and ĩ◦k the minimum
intensity values, and ∆h and ∆h̃ the intensity bin sizes. The marginal histogram of
Ĩk is computed as

p(v) =
∑
u

p(u, v).

As Ik is independent from the transformation, its marginal probability can be pre-
computed as:

p(u) = α̂
∑

x∈Rk

β(0)
(
u− Ik(x)− i◦k

∆h

)
.

2.2.4.2 Weighting temporal proximity

For the kth projection plane Sk, Ik is acquired at tk, whereas Ĩk(ω) represents
the estimated motion state at t. If tk is sufficiently close to t, the differences between
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the motion state at these two time points should be small, implying the two images
should be very similar. Otherwise, large differences should be expected. Hence, Ik
should have a reduced impact on determining ω. Thus, the weighting factor µ(t, tk)
is a symmetric operator centered at t and should satisfy:∣∣t− t1

∣∣ > ∣∣t− t2
∣∣ ⇒ µ(t, t1) < µ(t, t2).

In this chapter, a cosine power function is used [56]:

µ(t, tk) =

 cosλ
(
π
t− tk
δ

)
, if |tk − t| < δ

2
0 , otherwise.

This function can be shaped easily by the modification of the exponent. With 0<λ≤2,
very small values at the window boundaries are avoided. For our experiments, λ=2
was used. In addition, the finite support of this function window width δ reduces the
computation only to the projections within the time interval [t− δ/2, t+ δ/2].

By combining information from the projections at adjacent time points, motion
can be estimated at any time point within the cardiac cycle. Note that it also limits
the level of detail of the temporal evolution of the estimated motion due to the
smoothing effect introduced by interpolating the projections. Therefore, the value of
δ should be chosen as a trade-off between the local pulsation variation and the number
of projections available within this time interval. However, as pulsation is not known
a priori, a fixed window width can be chosen for all the selected time points over the
cardiac cycle. As shown by our experiments, the presented weighting scheme enforces
continuity of the recovered deformation in time, and adequately accommodates for
heart rate variations.

2.2.5 Optimization strategy
The success of image registration depends on the optimization of the image match-

ing metric. A wide range of optimization methods can be considered to minimize the
metric in (3.3). Since the number of parameters characterizing the transformation is
large, and the metric is explicitly differentiable, gradient-based methods are a natural
choice. The L-BFGS-B method [133] is used, which searches the optimum according
to the gradient and a low-rank approximation of the Hessian of the metric. The
analytical computation of the metric gradient is detailed in Appendix.

2.3 Digital phantom experiments

Before analyzing patient data, our method has been validated using digitally sim-
ulated aneurysm phantom models, allowing to study the influence of various factors
on its performance. Geometry, pulsation, and imaging conditions were simulated
to be realistic and clinically relevant. The modeling parameters are summarized in
Table 2.3.
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Table 2.1: Design parameters for digital phantom studies

Parameters Type I Type II
Dome shape Irregular Spherical
Dome diameter (mm) 8-12 10
Vessel shape Toroidal Cylindrical
Vessel diameter (mm) 4 4

Pulsation waveform Sinusoidal Physiological
Pulsation frequency (bpm) ∼90 ∼60
Pulsation amplitude range (mm) 0.08-0.48 0.41-0.69

Frame rate (Hz) 25 30
Projection pixel size (mm2) 0.162 or 0.312 0.162 or 0.312
Voxel size (mm3) 0.33 0.33

Depth

Width Length

(a) (b) (c) (d)

Figure 2.4: (a) An illustration of measures referred to as depth, width, and length.
Simulated projections of (b, c) Type I and (d) Type II phantoms. Arrows indicate bleb
regions.

2.3.1 Experimental design

2.3.1.1 Geometry

Two types of phantoms were created as smooth combinations of primitive geome-
tries such as spheres, cylinders, and tori of different sizes (Fig. 2.4). Type I phantoms
presented an emerging bleb on an irregularly shaped dome attached to a toroidal
vessel of 4 mm in diameter, whereas Type II phantoms consisted of a 10-mm diameter
spherical dome attached to a 4-mm diameter cylindrical vessel. For each phantom,
a sequence of geometries was generated to represent the ground-truth pulsation in
several cardiac cycles. The phantom geometry smoothly changed according to a
predefined pulsation waveform and was sampled at a finite number of time points.
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2.3.1.2 Pulsation

For Type I phantoms, periodic sinusoidal waveforms were used to create wall
displacements, e.g., Fig. 2.5(a). For Type II phantoms, pulsation was generated from
a parametric biomechanical model according to a pressure waveform, the mechanical
properties of the wall, and the geometry. In this model, the fluid-dynamic equations
describing the haemodynamics inside the vessel are coupled with the structural equa-
tions describing the surface pulsation. The equations were solved by finite element
analysis using COMSOL Multiphysics V3.4 (COMSOL Inc., Burlington, MA, USA).
Details of the modeling can be found in [4]. To the best of our knowledge, in vivo
measurements of such properties close to cerebral aneurysms are not available in the
literature. Therefore, literature values from arteries belonging to the circle of Willis
were set to the dome [3, 102]: a thickness of 0.050cm, a tissue elastic modulus of
0.8MPa, and a hypertensive blood pressure range of 100-170 mmHg. Bleb regions
(Fig. 2.4) were assigned to have a slightly higher pulsatility, whereas vessel regions
were set to be wall compliant. Pulsation amplitude range (0.08-0.69 mm) was less
than 7% of the dome diameter, consistent with literature studies: 6% in [52], 0.7 mm
(14%) in [102], 0.2-0.35 mm (2-3%) in [108] and 0.24-0.25 mm (3.8-4.5%) of arterial
wall motion in [117]. Periodic (WP1) and aperiodic (WP2) pulsation waveforms
were considered, and an example is shown in Fig. 2.5(b). For WP2, two cycles, CP1
and CP2, different in amplitude and period, are combined alternatively to create an
aperiodic waveform.

2.3.1.3 Simulated volume and projections

To recreate realistic 3DRA imaging, a flat panel system Allura Xper FD20 (Philips
Healthcare, Best, The Netherlands) was chosen as a reference. First, a sequence of
volume images was generated from the sequence of ground-truth geometries. Voxel
intensities were obtained as a function of the signed distance from the voxel to the
object surface, usually known as distance transform. The result is a binary image
with a constant value inside the object and another value outside, but with a blurred
band of 0.5 mm around the surface. Each image has approximately 503 cubic voxels
of 0.3 mm each side. Then, this volume sequence was used to simulate the original
projections as described in Section 2.2.3. The physical size of the projection images
is (160 mm)2, being the X-ray source to detector distance and source to isocenter
distance 1195 mm and 810 mm, respectively. The rotational acquisition captures
more than 100 projections uniformly distributed along a circular trajectory of over
200◦ at a frame rate of 25-30 Hz. They were simulated with two sets of image
resolutions: 10242 and 5122 pixels.

2.3.1.4 Simulated temporal information

The ground-truth volumes and the original projections had two types of temporal
relations. Under ideal conditions, the phantom pulsates periodically and is projected
at exactly the same pulsation states in every cycle. In Fig. 2.5(a), projections are
captured during a period comprising 7 cardiac cycles, e.g., the seventh projection
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WP1

WP2CP1 CP2

(a)

(b)

Figure 2.5: Pulsation waveforms expressed as maximum wall displacement. (a) Sinusoidal
waveform under ideal conditions, with pulsation amplitude range of 4% of the dome diameter
for a 10-mm Type I phantom. Images are captured and repeated at the same time for each
cycle, e.g., the seventh images correspond to exactly the same pulsation state (boxes); (b)
Physiological waveform under: ideal conditions, WP1, and realistic conditions, WP2 (two
cycle waveforms, CP1 and CP2, occurring alternatively).

(boxes) in each cardiac cycle always has the same timestamp in the canonical cardiac
cycle, and therefore reflects the same phantom pulsation state. As a result the ground-
truth pulsation in the canonical cardiac cycle is known, allowing to determine the
motion estimation errors. Under realistic conditions, the phantoms experience cardiac
cycle variations both in pulsation amplitude and frequency, such as in Fig. 2.5(b).
Such slight variations are likely to happen, limiting our method to recover an averaged
morphodynamic behavior due to the use of the weighting scheme.

2.3.2 Results
Once an aneurysm is located, physicians routinely perform manual measurements

to evaluate the lesion extent and to plan the most suitable treatment. Typically,
aneurysm dome diameters and volume are calculated. Hence, these two measures
were chosen to quantify the global pulsation in our studies as well. Fig. 2.6 shows
for both types of phantoms diameter and volume variations over time with respect to
the reference volumes. Three diameters were measured as the main axes dimensions
of the aneurysm, viz. dome depth, length and width, as shown in Fig. 2.4(a). Results
indicate that the estimated temporal evolution of the dome volume is more accurate
than that of the diameter. Such difference can be explained by a higher sensitivity of
diameters to local errors in motion estimation which are less critical in global volume
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Figure 2.6: Instantaneous changes in diameter (left) and volume (right) measured over
time: (a,d) Type I phantom; (b,e) Type II phantom with pulsation pattern WP1; (c,f) Type
II phantom with pulsation pattern WP2, composed of two cycle waveforms CP1 and CP2,
shown in Fig. 2.5(b).

estimates. Note that for Type II phantoms under realistic conditions (Fig. 2.6(c,f)),
our method obtains an averaged approximation of the motion during the whole
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Figure 2.7: Instantaneous estimated pulsation amplitude distribution at 8 (dots) time
points referenced to the ground truth pulsation curve. A 12-mm aneurysm with pulsation
of 4% (0.48 mm). Ground truth (top) is compared to the results from our method (bottom).
(color version on page C2)

acquisition.
In fact the pulsation amplitude is expected to change at different locations on the

aneurysmal wall [18, 75], indicating weaker regions, which could potentially become
rupture sites. In this chapter, the point-to-surface distance was used to approximate
local pulsation amplitude. The geodesic active contour [15] segmentation algorithm
was used to obtain the aneurysm surfaces. Fig. 2.7 shows for a Type I phantom with
4% pulsation of 12-mm dome (equivalent to a pulsation range of -0.24 to 0.24 mm),
the color-coded estimated pulsation amplitude distribution for 8 selected time points
in the canonical cycle. Ground-truth color maps indicate that the bleb experiences
the largest wall displacements, being in agreement with our estimates. Note that
in our experiments, the maximum pulsation amplitudes are smaller than the voxel
size. Nonetheless, our method was able to estimate and recover it, mainly due to the
transformation properties: continuity and smoothness.

The following experiment was performed to analyze the impact of the weighting
window width δ, and to find a criterion of choosing the optimal δ. First, with a large δ,
the blurring of larger pulsation variation regions is caused by the effect of averaging
more projections. Second, with a smaller δ, less pulsation variation is considered
resulting in a more precise estimation, but the less projections are provided, the
more probable the partial pulsation estimation. Results for Type II phantoms under
realistic conditions using various weighting window widths are reported in Fig. 2.8.
With δ≤10% in general our method is able to capture the pulsation. However, results
with δ≤5% better recover the two-peak pulsation waveform. Note that in our case,
even for δ=3.33% there are in average 4 projections per weighting window. Therefore,
in practice choosing the value of δ between 5-10% is a good choice, preserving the
balance between local pulsation variation and the number of projections available
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Figure 2.8: Instantaneous volume measured over time for Type II phantoms under realistic
conditions using weighting window width δ equal to: (a) 10%, (b) 5%, and (c) 3.33% of the
canonical cycle.

within this time interval. We chose δ=5% for the remaining experiments in this
chapter.

Although ground truth and the estimates are in good qualitative agreement, a
more comprehensively quantitative comparison is necessary. Thus, a relative estima-
tion error at time point t in the canonical cardiac cycle is defined as:

e(t) = 100×
∣∣∣∣mr(t)−mg(t)

m̂g

∣∣∣∣ , (2.5)

where mg and mr represent the pulsation measurements (e.g., volume), mg(t) the
ground-truth measurement at t, mr(t) the corresponding estimated measurement,
and m̂g the range of variation for mg(t) over the canonical cycle. As a result, the
error e expresses the estimation error as a percentage of the pulsation range.

Fig. 2.9 summarizes the relative error in volume changes, eV , in boxplots [59] to
represent the results for 12 cases of Type I phantoms with diameter 8, 10, and 12
mm, each having maximum pulsation amplitudes of 1, 2, 3, and 4%, respectively. In
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Figure 2.9: Boxplots of the relative volume error eV at 16 time points over the canonical
cardiac cycle under ideal conditions, for Type I phantoms with diameter 8, 10, and 12
mm, and pulsation amplitude range with 1, 2, 3, and 4% of the dome diameter. (a) B-spline
control points: 53, pixel size (mm2): 0.312. (b) B-spline control points: 83, pixel size (mm2):
0.312. (c) B-spline control points: 83, pixel size (mm2): 0.162.

all cases, our method was applied to 16 evenly sampled time points using projection
image resolutions of (0.31 mm)2 or (0.16 mm)2 and a number of B-spline grid control
points of 53 or 83 in a region of about (15 mm)3. In most cases, the error is less
than 10% of the pulsation range. And the larger and the more pulsating is the
aneurysm, the smaller the recovered relative volume error. Furthermore, Fig. 2.9(a)
and (b) illustrate that the benefit from having more control points is not significant.
A possible explanation is that, as the fine grid increases dramatically the number of
optimization parameters, the method becomes more sensitive to the noise present in
the data. In our studies, the optimization was not able to handle more than 10 control
points per axis, 6591 estimated parameters in total. On the other hand, because of
the sparse derivative matrix described in Appendix, the computational time does
not increase significantly with a larger number of control points. Fig. 2.9(b) and (c)
suggest that the resolution of the original and simulated projections can be reduced
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without significantly degrading the accuracy of the final estimation. Similar findings
have been mentioned in [118]. For this reason, for the remaining experiments with
digital phantoms, projection image resolution was fixed to (0.31 mm)2 and a number
of B-spline grid control points of 83 in a region of about (15 mm)3.

2.3.3 Discussion
As the expected cerebral aneurysmal motion range is very small, e.g., subvoxel,

accurately estimating such dynamic morphology is challenging. For this reason, in
this section we evaluate the impact of different factors that might affect the motion
estimation accuracy.

2.3.3.1 Effects of head movement

Although patients are usually sedated during the acquisition, slight head move-
ments might happen. In our work, head movements were simulated when acquiring
each original projection, by adding a 4-degree-of-freedom rigid movement, i.e., 3
translations and a rotation along the gantry trajectory. In the first set of experiments,
for each original projection, randomly generated translations within the range of the
maximum pulsation amplitude and a rotation within 0.1◦ were added to the reference
volume before projecting it. Fig. 2.10(a) shows the relative volume errors using the
same set of phantoms as used in Fig. 2.9. Results suggest that although slight head
movements degrade the performance, the accuracy of the method is still satisfactory as
most errors are bounded and below 10%. In [24], head movements are observed to be
less than 0.5 mm during the first 5 minutes. In the case of a 3DRA acquisition, patient
is positioned in same manner but for a shorter time, in a second set of movement
simulations, the randomly generated translations and rotation ranges were set to be
0.25 mm and 0.1◦, respectively. As shown in Fig. 2.10(b), the error raises dramatically
under this condition, since the introduced head movements can be even larger than
the pulsation. Therefore it is necessary to guarantee immobility of the patient.

2.3.3.2 Effects of scattering and noise

X-ray projections are measured from photon counts, which are always degraded by
scattered photons, and quantum noise dominated by the Poisson effect. In order to
study their influence, scattering and noise are simulated and added to the scattering-
noise-free projections. Scattering is modeled using convolution filtering to blur the
projections. A 2D Gaussian function with a full-width at half-maximum (FWHM) of
75 pixels (i.e., 23.4 mm) and a scatter-to-primary ratio (SPR) of 10% was convolved
with the projections [51]. Then quantum noise is simulated using a Box-Muller
approximation of a Gaussian distribution, which is representative as the number
of photons emitted is sufficiently high [119]. The resultant Gaussian noise has a zero
mean and standard deviation of 2.5% of the maximum value of the scattered image
signal [121]. In practice, the SPR and the amount of noise might be even larger.
Results are shown in Fig. 2.10(c). The performance is slightly degraded by scattering
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Figure 2.10: Boxplots of the relative volume error eV at 16 time points over the canonical
cardiac cycle for the same phantoms in Fig. 2.9 using: (a) randomly added translations
and rotation, within the maximum pulsation amplitude and 0.1◦, (b) randomly added
translations and rotation, within 0.25 mm and 0.1◦, and (c) SPR=10% plus a Gaussian
noise with zero mean and standard deviation of 2.5% of the maximum value of the scattered
image signal.

and noise, but the error is still less than 10% in most of the cases. Cases with higher
pulsation and larger size are less affected, thus providing a similar error range as
obtained from scattering-noise-free experiments shown in Fig. 2.9(b).

2.3.3.3 Effects of reference volume selection

In clinical practice, although 3DRA images are filtered to reduce the presence
of reconstruction artifacts, they are not completely removed, as shown in Fig. 2.11.
Meanwhile, when reconstructed from the projections with changing morphology, the
reference volume is expected to represent a smoothly averaged state. Three sets
of experiments were performed to study the possible influence by different choices
of the reference volume. In the first set, the ground-truth volume at the averaged
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Figure 2.11: (a) The ground-truth volume at the averaged state. (b) Volume reconstructed
using FBP reconstruction algorithm, showing some undesired artifacts. (c) Boxplots of the
relative volume error eV at 16 time points over the canonical cardiac cycle using three types
of reference volumes: FBP1, FBP2, and GT: Case A, diameter 8 mm with 1% pulsation;
Case B, 10 mm with 3%, and Case C, 12 mm with 3%.

state was used; in the second set, the reference volume was reconstructed from the
simulated projections of the pulsating phantom, using the FBP algorithm [23]; and in
the third set, the reference volume was obtained the same way as the second set, but
the phantom is not pulsating. We denote these three sets as GT, FBP1, and FBP2,
respectively, for the simplification of explanation. Three Type I phantom cases were
tested: diameter 8 mm with 1% pulsation (Case A), 10 mm with 3% pulsation (Case
B), and 12 mm with 3% pulsation (Case C). The estimated relative volume errors
are shown in Fig. 2.11(c). Larger errors were obtained when using reference volumes
from the FBP reconstruction, whereas results were not substantially different by
using FBP1 or FBP2. However, the error variations introduced by different sizes
and pulsation amplitudes are not significant, either. This suggests that the artifacts
present in the FBP reconstructions introduce a nonnegligible amount of error in our
estimation.

2.3.3.4 Effects of adding realistic background

Besides the studied aneurysm, patient images also contain other attenuated ves-
sels, air, bones, and soft tissues. In order to study their influence, we have blended
Type I digital pulsating phantoms into a real patient dataset. Once each phantom
was placed in the patient image, the voxels corresponding to aneurysm and vessel were
set to a representative vessel intensity value. An example of the blended projections
is shown in Fig. 2.12(a). Fig. 2.12(b) shows the relative volume errors using such
simulation dataset. Compared with Fig. 2.9(b), the errors are in general larger,
and the error variations introduced by sizes and pulsation amplitudes are smaller.
Nonetheless, the results indicate that adding the realistic background into the digital
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Figure 2.12: (a) A digital phantom blended with realistic background (white frame
indicating the aneurysm phantom). (b) Boxplots of the relative volume error eV at 16
time points over the canonical cardiac cycle for such dataset.
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Figure 2.13: Boxplots of the relative volume error eV at 16 time points over the canonical
cardiac cycle for the same phantoms as used in Fig. 2.9 but with the downsampling factor:
(a) df=2; (b) df=3.

phantom experiments does not significantly degrade the performance, as the errors
in most cases are below 10%.

2.3.3.5 Effects of angular resolution of the projections

It is found that the accuracy and robustness of a 3D-to-multiple-2D image regis-
tration method do not depend solely on the method itself but also on the number of
projections [101]. We have investigated this factor by downsampling the number of
original projections and using only the subsampled set. The downsampling factors (df)
used in our experiments were 2 and 3. As this factor indeed determines the density
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Table 2.2: Design parameters for physical phantom studies

Parameters Values
Dome shape Spherical
Dome diameter (mm) 10
Vessel shape Cylindrical
Vessel diameter (mm) 4

Pulsation waveform Pseudo physiological
Pulsation frequency (bpm) 90
Pulsation amplitude range (mm) unknown

Frame rate (Hz) 30
Projection pixel size (mm2) 0.1552
Voxel size (mm3) 0.2953

of the projections along the rotational gantry trajectory, we refer to it as angular
resolution of the projections. Fig. 2.13 summarizes the relative volume errors on
these experiments for 12 cases of Type I phantoms. As can be seen from Fig. 2.13(a)
and (b), reducing the number of projections by a factor of 2 slightly increases the
error. But it remains below 10% in most of the cases. Fig. 2.13(c) shows that the
errors are mostly below 20% when reducing the number of projections by a factor
of 3. These experiments indicate that the performance increases when the angular
resolution of the projections is higher.

2.4 Physical phantom experiments

The method has also been tested in a real clinical environment, using a nonrigid
silicone phantom under pulsatile flow conditions. One obstacle is to evaluate the
accuracy due to the absence of ground truth information. Results are evaluated
firstly by visual inspection comparing the simulated projections from the estimated
volumes to the corresponding original projections. And secondly, they are compared
to Doppler ultrasound flow waveforms obtained in the experimental setup.

2.4.1 Data acquisition
A silicone side-wall aneurysm phantom was used (Fig. 2.14). It has a 10-mm-

diameter spherical aneurysm dome and a 4-mm-diameter cylindrical vessel. The
phantom was water-filled and connected to a customized pulsatile pump, a continuous
flow pump (Elastrat, Geneva, Switzerland), and a liquid tank to create a continuous
and pulsatile fluid circulation. The box containing the phantom was also filled with
water to simulate realistic X-ray attenuation. The pulsatile pump produced a human-
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Figure 2.14: The silicone side-wall aneurysm phantom (left) and the Doppler ultrasound
velocity waveform at the parent vessel inlet (right).

like pulsatile flow, as shown in Fig. 2.14. As a result, the phantom presented visible
wall motion.

Experimental data were acquired using a flat panel system Allura Xper FD20
(Philips Healthcare, Best, The Netherlands). In total 121 rotational projection images
were captured with a frame rate of 30 Hz, over 200◦ along the gantry trajectory.
Constant injection of contrast agent Iomeron 400 (Bracco Imaging SpA, Milan, Italy)
was performed during the acquisition at a rate of 3 mL/s. X-ray source and detector
positions were recorded for each projection, allowing the spatial relationship between
the reconstructed reference volume and each projection to be known. The reference
volume has 2563 cubic voxels of 0.295 mm each side. The original projections have
a dimension of 10242 with pixel size of (0.155 mm)2. Table 2.2 summarizes the
parameters of the phantom geometry, pulsation, and imaging conditions.

2.4.2 Experiments and results
A number of B-spline control points (8×8×8) were set to a region of about (11

mm)3 in size, containing the aneurysm dome. The pulsatile pump signal frequency
was set to 90 bpm, and the acquisition frame rate was 30 Hz. Thus during each
pulsation cycle, projections were acquired at the same 20 instants of time within the
cycle, which means the experiments were performed under ideal conditions. This
allows validating the results at each ground-truth pulsation state by comparing the
projections of the estimated 3D volumes to the corresponding original ones.

Fig. 2.15(a) and (d) show from two viewpoints the X-ray projections of one
acquisition under pulsatile flow conditions. In (b) and (e), the regions of checkerboard
images presenting the aneurysm dome are shown, where each checkerboard image is
composed of the X-ray projection and its corresponding simulated projection of the
reference volume. A clear mismatch on both dome and vessel boundaries can be
observed. Whereas in (c) and (f), similar checkerboard images are shown from the
estimated volumes. Such checkerboard comparison shows that our method was able
to correct the misalignment caused by pulsation.

Fig. 2.16(a) shows the estimated volume variations. Similar results were ob-
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: (a,d) X-ray projection images, each with a white frame indicating the regions
shown in (b,c) and (e,f), respectively. Checkerboard comparisons of the original and
simulated projections: (b,e) before applying our method and (c,f) afterwards.

tained using two downsampling factors: df=1,2. This is in agreement with the
digital phantom experiments, as shown in Section 2.3.3.5. Differences at the peak
should be explained by the lack of information to constrain the deformation in
certain directions. Along with the volume variations, the Doppler ultrasound velocity
waveform measured at the aneurysm parent vessel inlet was also shown. It should
be noted that, apart from the phase delay due to the coupling between the fluid
flow and wall displacement [117], the velocity was not synchronized with the data
acquisition, thus a waveform shift possibly exists. Nonetheless, the volume variation
waveform qualitatively presents a similar pattern to the velocity waveform, which is
in agreement with the findings in [52, 117]. An advantage of measuring volume
is that, the global movements are not reflected in volume changes, resulting in
only the deformation of the aneurysm phantom. Fig. 2.16(b) shows at four out
of 20 estimated time points the instantaneous wall displacements with respect to the
reference geometry. It can be observed that wall displacements are larger at the flow
impingement area. In addition to dome expansion and contraction, the phantom
experiences a tilting movement towards the flow direction as well.

Fig. 2.17 plots for each point on the segmented surface of the reference volume
its color-coded pulsation amplitude range over the cardiac cycle, together with its
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Figure 2.16: (a) The obtained volume variations with two downsampling factors df=1,2,
along with the Doppler ultrasound velocity waveform. (b) Four (boxes) out of 20 (dots)
estimated time points presenting the instantaneous wall displacements with respect to the
reference geometry. (color version page C2)

Figure 2.17: Color-coded displacement range over the cardiac cycle for each point on the
surface, and the histogram of the displacement range. (color version page C2)

histogram of the deformed region. Only a small region has higher pulsatility, which
can be observed from the color-coded map. Note that the rest of the deformed region
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has an averaged pulsation range of around 0.3mm, part of which could be accounted
for a global rigid movement.

2.5 Discussion

To validate the proposed methodology, experiments with digital and physical
phantoms were performed. The phantoms presented aneurysms with pulsation ranges
consistent with literature values. The imaging conditions matched what standard
3DRA imaging suites offer nowadays.

Experiments with digital phantoms were performed under controlled conditions,
allowing to evaluate the sensitivity of our method to various factors. Results under
ideal conditions showed estimation errors below 10% of the maximum pulsation,
which in general presented subvoxel wall displacements not exceeding two voxels.
In terms of algorithm parameters such as control grid size and weighting window
width, similar results have been obtained. In terms of imaging conditions, differ-
ent projection image resolutions provided similar estimation results; scattering and
quantum noise degraded slightly the performance (maximum error of 20%) for smaller
pulsation and aneurysm size cases (e.g., 8 mm with 1% maximum pulsation); FBP
reconstruction artifacts decreased the performance, in general below the 10% except
for the smaller pulsation aneurysms; angular resolution of the projection data is
preferred to be higher. In case of disturbances from the imaged object such as head
movement, estimation error increased to 20% with small perturbations. The presence
of background objects raised slightly the estimation errors.

Experiments with the physical phantom allowed to demonstrate the feasibility
of pulsation estimation under clinical conditions using anthropomorphic aneurysm
replicas. The mismatches due to pulsation between the original projections and
the simulated projections of the reference volume were corrected in the estimated
volumes. In addition, the volume variation waveform presented a similar pattern
compared to measured Doppler ultrasound velocity waveforms. Further validation
could consider studying the mechanical relationship between the pressure/velocity
and dynamic aneurysmal wall compliance.

A challenge for the method to be applied in large population studies and routine
clinical practice is the computational cost. The high computational effort is partially
compensated for by the current implementation, as mentioned in Appendix. It
takes on average 10-15 minutes for one selected time point using a Pentium 4-3GHz
PC, which requires further speed-up. The computing bottleneck is generating the
simulated projections and computing the pixel-wise similarity metric. This could
be potentially solved by either implementing them into hardware or using parallel
computing.

Cerebral aneurysms could be more irregular in shape than the ones used in the
experiments and little is known about their exact pulsation pattern and behavior at
rupture. Therefore, the anatomical structure and pulsation waveforms used in these
experiments might represent a simplified approximation of reality. Quantification
of the accuracy of our method on patient data and large population studies must
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be performed in the future. Methodological improvements under realistic acquisition
settings might include the development of density-variable B-spline grids so that local
deformation in small blebs can be optimally captured.

2.6 Conclusion

The objective of this chapter was to develop a methodology able to characterize
patient-specific pulsatility of cerebral aneurysms over the cardiac cycle using 3DRA
acquisitions. As a result, a registration-based technique has been proposed to recover
motion from a reference 3D volumetric image and a set of 2D rotational projections
synchronously acquired with a cyclic physiological signal. A number of experiments
with digital and physical phantoms did illustrate the feasibility of estimating aneurys-
mal motion during the cardiac cycle.

Advantages of the presented technique can be detailed as follows: first, it does not
require exposing patients to additional radiation as it uses the standard acquisition
performed during an endovascular treatment. Second, compared to traditional algo-
rithms of reconstruction from projections, it preserves the high spatial resolution of
the 3DRA volume in spite of using a sparse set of projections because of the continuity
and smoothness of the deformation model. In addition, its general formulation could
be used to estimate motion of other organs.

2.7 Appendix: gradient of the registration metric

The gradient of the metric in (3.3) with respect to the parameters ω can be
expressed as:

∂

∂ω
M(ω; t) =

∑
k

µ(t, tk)
∂

∂ω
D
(
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)
.
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Nk is the number of pixels in the valid ray region Rk, and
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where ∇V denotes the spatial gradient of the volume.
Observing that, for B-spline transformations the Jacobian matrix ∂T (pℓ;ω) / ∂ω

is a sparse matrix related to the order of the B-spline function, allowing to significantly
speed up the computation. Furthermore, the evaluation of the metric and its gradient
can be speeded up by just computing it within the valid ray region Rk for each
projection.
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The objective of this study is to investigate the feasibility of detecting and quan-
tifying 3D cerebrovascular wall motion from a single 3DRA acquisition within a
clinically acceptable time, and computing from the estimated motion field for the
further biomechanical modeling of the cerebrovascular wall. The whole motion cycle
of the cerebral vasculature is modeled using a 4D B-spline transformation, which
is estimated from a 4D to 2D+t image registration framework. The registration is
performed by optimizing a single similarity metric between the entire 2D+t measured
projection sequence and the corresponding forward projections of the deformed vol-
ume at their exact time instants. The joint use of two acceleration strategies together
with their implementation on graphics processing units are also proposed so as to
reach computation times close to clinical requirements. For further characterizing
vessel wall properties, an approximation of the wall thickness changes is obtained
through a strain calculation. Evaluation on in silico and in vitro pulsating phantom
aneurysms demonstrated an accurate estimation of wall motion curves. In general, the
error was below 10% of the maximum pulsation, even in the situation when substantial
inhomogeneous intensity pattern was present. Experiments on in vivo data provided
realistic aneurysm and vessel wall motion estimates, whereas in regions where motion
was neither visible nor anatomically possible no motion was detected. The use of
the acceleration strategies enabled completing the estimation process for one entire
cycle in 5-10 minutes without degrading the overall performance. The strain map
extracted from our motion estimation provided a realistic deformation measure of
the vessel wall. Our technique has demonstrated that it can provide accurate and
robust 4D estimates of cerebrovascular wall motion within a clinically acceptable
time, although it has to be applied to a larger patient population prior to possible
wide application to routine endovascular procedures. In particular, for the first time,
this feasibility study has shown that in vivo cerebrovascular motion can be obtained
intra-procedurally from a 3DRA acquisition. Results have also shown the potential
of performing strain analysis using this imaging modality, making thus possible for
the future modeling of biomechanical properties of the vascular wall.

The content of this chapter is based on the publication:

Chong Zhang, Maria-Cruz Villa-Uriol, Mathieu De Craene, Jose-Maria Pozo, Juan
Macho, Alejandro F. Frangi, Dynamic estimation of three-dimensional cere-
brovascular deformation from rotational angiography, Medical Physics, 38(3):
1294-1306, 2011.
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3.1 Introduction

Cerebrovascular diseases in general cause changes to the architecture of blood
vessels in the brain by making them narrow, stiff, deformed, or uneven. The patho-
genesis of these diseases is believed to be dependent on the complex interactions
among multiple physiological and mechanical factors such as hemodynamics, wall
biomechanics and mechanobiology [95]. Unfortunately, patient-specific vessel wall
properties cannot be measured in vivo with current medical imaging techniques [49].
In many situations, an inverse problem approach based on a mathematical model
for the biomechanics of the vasculature is a valid surrogate to estimate material and
structural parameters [5, 46]. An example of such approach consists of determining
these unknown parameters by applying known boundary conditions on the vessel wall
and analyzing its mechanical responses such as vascular wall motion. Tracking this
motion should also allow embedding wall compliance as a boundary condition for
hemodynamic simulations [18]. Besides, other studies suggest that even the direct
visualization of wall motion abnormalities may be helpful for analyzing patholog-
ical features of the cerebral vasculature [37, 45]. Therefore, quantifying vascular
wall motion and deformation has the potential of impacting treatment selection and
preoperative planning of cerebrovascular diseases. However, since such motion is in
general expected to be in a sub-millimeter range [43, 45, 74], it represents a challenge
in terms of the available image resolution of current clinical imaging techniques.

Various techniques have been proposed for estimating motion or reconstructing
dynamic 3D structures using projection images acquired from image modalities like
3DRA and CBCT. ECG-gated techniques [64, 80, 88] constitute the most typical
approach, where a reduced set of projections linked to a particular cardiac phase is
used to reconstruct a volumetric image using iterative [10, 127] or analytical [20, 88]
reconstruction methods. Recently, a technique [84] has been proposed to incorporate
a 4D motion estimation into a projection motion-compensated 3D reconstruction
process by comparing the latter to an initial reference reconstruction. However, the
estimated motion could be limited by the 3D reconstruction error even before perform-
ing the 3D/3D registration. In other works [109, 126], continuous respiratory motion
during a CBCT acquisition has been estimated by optimizing the similarity between
the measured and the corresponding views of a deforming reference volume obtained
from CT. However, their techniques need additional motion constraints such as an
a priori motion model or a regularization term. Also, their need of two acquisitions
increases patient exposure to radiation, limiting their clinical applicability.

We aim to retrieve the dynamic 3D morphology of a structure of interest from a
single 3DRA acquisition (e.g. cerebral aneurysm or a vessel segment). 3DRA is rou-
tinely performed in clinical practice during endovascular interventions. One standard
acquisition provides a sequence of 2D rotational X-ray angiographies and an isotropic
high-resolution 3D volumetric image reconstructed from them. A physiological signal
synchronized with the projections can also be recorded. In a previous work [130], we
proposed a method to estimate the 3D morphology of the structure of interest at a
given time instant by registering forward projections of the deformed 3DRA volume
to a sparse set of 2D measured projections through a temporal weighting scheme.

44



C
hapter

3
—

D
ynam

ic
E

stim
ation

of
3D

C
erebrovascular

D
eform

ation
from

R
A

However, since this technique only represents the spatiotemporal motion through
independent 3D morphology estimation at discrete time points, it fails to address the
intrinsic temporal consistency or continuity of motion. In addition, the estimated
morphology can be compromised by the residual motion introduced by forcing the
forward projections at a specific time instant to match the measured projections in its
temporal vicinity. In general, this problem is also common for ECG-gated methods.

In this chapter, instead of representing the motion over time by independent 3D
transformations as proposed in [130], we employ a single 4D B-spline transforma-
tion model for the whole motion cycle. It is estimated from a 4D to 2D+t image
registration framework. The basic idea of the transformation model is to deform an
object by manipulating an underlying mesh of control points, resulting in a smooth
and continuous deformation of the reference image at any time of the motion cycle.
Thus, an estimate of arbitrarily small displacement or deformation can be achieved
through the interpolation from the movements of the control points. Meanwhile,
the registration is optimized by measuring a single similarity metric between the
entire measured projection sequence and the corresponding forward projections of
the deformed volume at their corresponding exact time instants. This improves
the temporal consistency without introducing blurring, as well as the robustness to
image noise and artifacts such as contrast agent induced intensity inhomogeneity.
Performing the motion estimation from the projection space improves the accuracy of
the motion estimate as the pixel resolution is higher in the 2D+t measured projections
than in the 3D image. On the other hand, computational cost is high for the
simultaneous processing of such high-resolution temporal sequences of 3D images,
2D measured and forward projections. We therefore introduce the joint use of two
acceleration strategies: a precomputation at the forward projection generation stage
and an object-adaptive region-of-interest (ROI) for the forward projection update
and the metric computation. Since less data have to be processed, these strategies
also result in a reduction of memory requirements. Preliminary results and the
overall registration framework were previously published as in [128]. Here a detailed
method description is presented, with the integration of the acceleration strategies
implemented on graphics processing units (GPU) [132]. An extended validation is
performed on in silico, in vitro phantoms, and for the first time, on in vivo patient
data. In this chapter, we also explore whether strain as estimated from the motion
field from imaging data can be applied to the personalization of modeling of the
vascular wall biomechanical properties.

3.2 Material and methods

3.2.1 Motion estimation algorithm
The motion estimation algorithm presented in this chapter consists of three steps.

First, in order to overcome the limited spatial coverage from each of the separate
motion cycles, the measured projections are reordered and built into one canonical
motion cycle, according to a synchronized physiological signal such as ECG. Second,
a 4D-to-2D+t image registration is performed to obtain a single spatiotemporal
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Figure 3.1: (a) Each motion cycle in the N measured projections sequence is normalized
to have a unitary duration, according to a physiological signal such as ECG. And the time
for each projection is normalized to the full length of its corresponding cardiac cycle. Thus
all projections fall within a [0,1) interval. A reordered measured projections sequence can
then be obtained based on this normalized time to form one canonical motion cycle. (b)
An overview of the 4D-to-2D+t image registration framework, where one metric measuring
the similarity between the measured and forward projection sequences, I and Ĩ, is used to
estimate a 4D continuous and smooth transformation model parameterized according to ω
over space and time.

transformation field over the whole canonical motion cycle. Third, after obtaining the
optimal transformation parameter, instantaneous 3D images of the analyzed morphol-
ogy at any desired time instant can be extracted by applying the 4D transformation
to the reference volume image.
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3.2.1.1 Canonical motion cycle

During the rotational run, the total angular coverage of the measured projections
for one cardiac or motion cycle is 40-50◦. Such viewing range may not be informative
about the 3D motion along certain directions. This drawback could be potentially
compensated for by providing an a priori motion model as in [109]. An alternative is
to add a pseudo-periodicity constraint term to the optimization function as in [126].
However, the optimization process is complicated by the need of determining empir-
ically the weight for such regularization. We overcome this limitation by reordering
all the projections (spanning 4-5 cardiac cycles) to build one canonical motion cycle.
This step is carried out as described in [130] and as illustrated in Fig. 3.1(a). We
first normalize the period of each cycle to have a unitary duration according to a
physiological signal such as ECG, which is recorded synchronously together with the
projections. The time for each of the N measured projections is normalized to the full
length of its corresponding cardiac cycle. Hence, all projections fall within the [0,1)
interval and are then sorted by this normalized time to build one canonical motion
cycle as I = {Itk(x) | k = 1 . . . N}, where Itk(x) represents the measured projection
and at the normalized time tk (0≤ tk ≤ tk+1 <1). In practice, images acquired at
similar cardiac phases in the canonical cycle are approximately separated by a 40-
50◦ angular shift per cycle. By the use of this compounding strategy, the projection
spatial viewing angle range is enriched at any temporal vicinity. In addition, the
temporal resolution can be considered to be approximately increased by a factor
corresponding to the number of cycles during the acquisition.

3.2.1.2 4D-to-2D+t image registration

The entire measured projection sequence is simultaneously processed to estimate
a 4D continuous and smooth transformation model parameterized over space and
time. A single metric captures the similarity between projection sequences instead of
considering separate similarities between individual projections.

As shown in Fig. 3.1(b), motion throughout the canonical cycle is represented by
a transformation T parameterized by ω. Thus, the 3D instantaneous motion at time
t is given by deforming a reference volumetric image V :

Ṽt(p) = V (T (ω,p, t)), (3.1)
where p is a point in Ṽt. In this chapter, a B-spline based transformation [85, 107] is
used. The displacement of p is represented by a 4D tensor product of cubic B-spline
functions (i.e. β(·) in the temporal dimension and B(·) the 3D tensor of β(·) in the
spatial dimensions), defined on a sparse control points grid (pc, tτ ):

T (ω,p, t) = p +
∑
τ,c

β

(
t− tτ
∆τ

)
B

(
p − pc
∆c

)
ωτ,c, (3.2)

where ω is an array of the control grid coefficients, acting as parameters of the B-
spline, c the spatial index and τ the temporal index, (∆c,∆τ ) the width of the

47



functions in each dimension. This transformation model ensures both temporal and
spatial consistency and smoothness without compromising the local motion recovery
due to its local control property. More importantly, an estimate of small displacement
or deformation can be achieved through the underlying interpolation between the
control points. Note that to keep the continuity at both ends of the cycle (tτmin=0
and tτmax=1), we need to impose a pseudo-cyclic condition ωτmin,c = ωτmax,c. A
simple implementation is to extend the range of the transformation model on the
temporal axis at both ends, as illustrated in Fig. 3.1(a).

For each Itk , a corresponding digitally reconstructed radiograph (DRR), Ĩtk , is
calculated to simulate the X-ray angiography through a ray casting process [96]. For
the rotational angiography (RA) sequence, their projection geometry is known for
each projection, including the X-ray source position, the projection detector position,
and the rotational orientation. We denote by Ĩ the entire DRR sequence, which
is iteratively modified to match the measured projection sequence I for an optimal
estimation of ω̂:

ω̂= argmin
ω

{
M(ω, I, Ĩ)

}
, (3.3)

where M is the similarity metric between two mapping regions. Mutual informa-
tion [54, 113] is used as the metric. Since the registration matches simultaneously
all the projections, sampled points from the entire sequence are considered as within
one region, forming a single histogram. Therefore, instead of having one independent
metric for each projection pair, M describes the similarity between the two sequences
I and Ĩ. Histograms are approximated using Parzen windows for the probability
calculation [58]. The use of one metric measuring the similarity between projection se-
quences makes the registration more robust against local intensity variations (e.g noise
and inhomogeneous contrast mixing) than considering similarities between individual
projections separately. Note that due to the higher spatial resolution in measured
projections compared to the volumetric image, performing the motion estimation from
the projection space improves spatial accuracy of the recovered motion field. In our
case, a displacement equivalent to one pixel translates into approximately 0.3 voxel.
The L-BFGS-B algorithm [133] is used as the optimizer, due to its ability in handling
a very large number of parameters.

3.2.2 An efficient implementation

Dealing simultaneously with such high-resolution 4D image, 2D measured pro-
jections and DRRs, requires excessive memory and long computation time. For the
method to be practically applicable, reducing both of them without degrading the
performance is desirable. Two strategies are jointly used in order to process the
data of interest at each iteration during the registration process. The fact that both
computation and memory costs scale with the amount of processed data makes these
strategies efficient. They are further implemented on GPU so as to facilitate the
clinical use of our technique at a reasonable execution time. The main idea of the GPU
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implementation method is summarized in Appendix3.7 and a detailed description can
be found in [132].

3.2.2.1 DRRs precomputation

In 3DRA images, the structure of interest (e.g. an aneurysm or a vessel segment)
is in the order of millimeters, occupying a reduced region in the image (see an example
in Fig. 3.2(a)). Thus, during the motion estimation process, the transformation can
be applied only to a volume of interest (VOI) while the rest of the volume remains
unmodified. Provided that the actual motion present outside the VOI is smaller than
or of the same magnitude as the motion in the VOI, it will not affect significantly
the estimated motion. The reason is that due to the use of a sparse B-spline control-
points grid, any motion outside may only influence one projection in a particular
direction while the motion of each control point is the result of several projections.
However, in order to simulate realistic X-ray projections, voxels of the entire volume
must be integrated at each iteration to update the DRRs. In order to avoid redundant
computation, for each pixel x, the corresponding ray is split into two parts: inside and
outside the VOI. The constant outside part is precomputed, and at each iteration only
the inside part is integrated and updated to the sum of both parts. An illustration
is shown in Fig. 3.2(a) for a VOI containing an aneurysm. The speedup factor using
such pre-computation is the ratio between the ray segment length crossing the entire
volume and that of the VOI. The memory reduction rate is also expected to scale
with this factor.

3.2.2.2 Object-adaptive region-of-interests

A common approach to accelerate the metric computation is to subsample the
images. Uniform subsampling is not the most efficient method, and special attention
should be paid to reduce the calculation of the metric and its derivatives by sampling,
for example the object of interest [87] or its edges [8]. We follow this strategy by
encouraging dense sampling of image regions that strongly influence the metric. Since
morphology changes of the aneurysm or vessel wall are reflected on the contrast
enhanced lumen boundaries, two object-adaptive sampling regions are introduced:
the projected object (SOR) and the projected boundary (SBR). Consequently, the
typical projected VOI, denoted as SVR, for the computation of the metric are replaced
by the sequences of pixels from the sampling regions SOR or SBR. An illustration of
these regions is shown in Fig. 3.2.

There are many techniques automatically delineate such regions. Note that the
accurate definition of the sampling regions in 2D is not crucial for our method, as
our interest is to quantify 3D morphological changes. And since a reference image
is available in 3D, we first obtain one approximated 3D shape of the region using a
threshold-based method, and then define the region by simply projecting it on each
projection. A unique property of a 3DRA volume is that, looking at the histogram
of this 3D image, there is a sharp differentiation of the contrast agent (CA) filled
regions (i.e. aneurysms and vessels) from the background. This results in clearly
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Figure 3.2: (a) An illustration of the DRRs computation process. For each pixel x, the
corresponding ray is split into two parts: inside and outside the VOI. The constant outside
part is precomputed, and at each iteration only the inside part is integrated and updated to
the sum of both parts. The sampling region SVR contains the projected VOI. We introduce
here two object-adaptive sampling regions: (b) the projected object region SOR and (c) the
projected boundary region SBR.

separated classes with the CA filled regions mapped to high voxel value range and
the background to low voxel value range [12, 80]. Meanwhile, on the contrast filled
boundaries in the projection images, in general a region of progressive intensity change
exists. This is mainly due to the changes in length of the X-ray traversing the contrast-
filled region on the boundaries, resulting in a continuous change of the accumulated
attenuation. Consequently, this results in a similar pattern in the 3D reconstructed
volume. Based on this observation, the SOR is calculated for each projection as follows.
First, a boundary value of the studied object is selected by identifying the CA filled
regions from the histogram. Second, on the corresponding ray for a specific pixel, as
long as there is one sampled point having larger intensity than this boundary value,
the pixel is considered to be part of the SOR. The obtained region is comparable
to the projected “shadow” of a 3D object from thresholding. Similarly for the SBR,
we first obtain two of these regions from different threshold values, by repeating the
process of the SOR region for two thresholds. One overestimates (i.e. higher threshold)
and the other underestimates (i.e. lower thresholds) the contrast filling region. The
SBR region is obtained by subtraction of the two resulting regions. These boundary
identifying values or thresholds in the histogram can be obtained empirically or using
e.g. Otsu’s method [73]. Note that this gradually changing intensity pattern on
the boundaries between the contrast-filled region and the background also helps
the recovery of a subvoxel displacement estimated through the deformation of the
reference image. The reason is that such an intensity function follows a smooth
transition that gives information on the boundaries at a finer scale than the voxel
grid, i.e. subvoxel resolution.
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3.2.3 Strain map computation
A number of mechanical and anatomical parameters can be used to characterize

the morphological and dynamic wall properties of the vasculature. We consider the
strain map extracted from the non-rigid wall motion estimation as a simplified but
adequate way towards characterizing the vascular wall tissue. Such quantities provide
a measure of the relative deformation to which the arterial wall is exposed.

We study the distension of the vascular wall, which is related to the changes in
wall thickness. This relationship is more evident, for instance, under the volume-
preserving assumption as in [5], where the radial Cauchy strain is used. Specifically,
it is computed from triangular meshes that are extracted from the estimated volume
images. Assuming the volume of the material is preserved, the changes of the area
Atr for each triangle are inversely proportional to the changes in wall thickness Lw:
Atr × Lw = A

′

tr × L
′

w. Thus the radial Cauchy strain εc is calculated as:

εc =
∆Lw

Lw
=

−∆Atr

A
′
tr

where ∆Lw = L
′

w − Lw and ∆Atr = A
′

tr − Atr. This means that the strain value is
positive if the material is stretched, or negative if it is compressed.

3.3 Validation

3.3.1 Experimental data
Our method has been currently applied to cerebrovascular wall motion with a

particular emphasis on cerebral aneurysm pulsation. We present here experiments on
in silico and in vitro aneurysm models, and also in vivo patient data.

In silico: Twelve cases of digital aneurysm phantom models were created with
dome diameters of 8, 10, and 12 mm and parent vessel diameter of 4 mm. They also
have an emerging bleb on the dome. The phantom motion was modeled as smooth
geometry changes according to a sinusoidal pulsation waveform and was sampled at
a finite number of time points. According to the values on in vivo data presented in
recent studies [43, 45, 74], maximum pulsation amplitudes were set to be 1%-4% of the
dome diameter (i.e. 0.08-0.48 mm). A sequence of volume images with an isotropic
spacing of 0.3 mm was generated from the sequence of ground-truth geometries. Voxel
intensities were obtained as a function of the signed distance from the voxel to the
object surface. The result is an image with a constant value inside the object and
another value outside, but with a blurred band of 0.5 mm around the object boundary.
Afterwards, this ground-truth volume sequence was used to generate the synthetic
measured projections with 0.16 mm spacing. In order to simulate other attenuated
vessels, air, bones, and soft tissues, we embedded the phantom images into a 3DRA
patient image that serves as background. An illustration is shown in Fig. 3.3(a).
Once each phantom was placed within the patient image, the voxels corresponding
to aneurysm and vessel were set to a typical intensity value of the CA filled regions.
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(a) (b)

Figure 3.3: (a) An example of an in silico phantom image, where the phantom model
is embedded into a 3DRA patient image. (b) Projections with contrast inhomogeneity
synthesized based on a RA patient data with strong blood turbulence.

In addition, in this chapter we simulated spurious projection intensity variations
in order to analyze the sensitivity of our method and compare with other techniques.
Such intensity inhomogeneity is in general caused by the contrast filling following
the blood flow. However, the instantaneous local inhomogeneity might be caused by
multiple factors. In order to simulate realistic intensity variations, we sampled the RA
image intensities from a patient data where the aneurysm dome presented substantial
nonuniform intensities including strong blood turbulence. For the phantom dome
region in each measured projection, an image patch of the same shape was taken from
the dome of the patient case and mapped directly to the phantom image (Fig. 3.3(b)).

In vitro: A silicone side-wall aneurysm phantom model (Elastrat, Geneva, Switzer-
land) was used. The model has a spherical dome with 10 mm diameter and a straight
cylindrical parent vessel with 4 mm diameter. It was placed in a rectangular container
with dimensions comparable to a human head. The container was water-filled to
mimic the attenuation of head tissue. In addition, two other phantoms with straight
tubes were also placed in the container to simulate background. The phantom was
water-filled and connected to a customized pulsatile pump, a continuous flow pump
(Elastrat, Geneva, Switzerland), and a liquid tank to create a continuous and pulsatile
flow circuit (Fig. 3.4(a)).

The image acquisitions were performed using an Allura Xper FD20 scanner (Philips
Healthcare, Best, The Netherlands) equipped with a 220 mm detector field of view
(diagonal dimension) allowing a coverage of 75 mm of a cubic volume during a single
rotation. For these acquisitions, the injection protocol consisted of 18 mL of iodinated
contrast material (Iomeron 400, Bracco Imaging SpA, Milan, Italy) with a flow rate of
3 mL/s. RA imaging was performed at a frame rate of 30 Hz during contrast injection,
with a 2 s delay. These settings of the model and the imaging conditions give a realistic
amount of scattering, beam hardening and noise. An example RA image of the in
vitro phantom is shown in Fig. 3.4(b). In total, 121 images were acquired (10242
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Figure 3.4: (a) In vitro phantom experiments setup: 1. the silicone side-wall aneurysm; 2.
the customized pulsatile pump; 3. the liquid tank; 4. the pulsatile signal generator; 5. the
continuous flow pump. (b) An example X-ray angiography of the in vitro phantom. The
phantom was placed in a water-filled rectangular container (arrow head) with dimensions
comparable to a human head. Two additional aneurysm phantoms with straight tubes
(arrows) were also placed in the container, to act as background.

pixels with (0.154 mm)2/pixel) spanning ∼210◦ along the gantry trajectory, from
which a 3D volume of 2563 voxels ((0.3 mm)3 per voxel) was reconstructed. X-ray
source and detector positions were recorded for each projection, allowing the spatial
relationship between the reconstructed reference volume and each projection to be
known. The scanning procedure and the imaging parameters of the system followed a
standard clinical protocol, which were also used for the in vivo cases presented below.
Detailed values are summarized in Table. 3.1.

Three acquisitions were performed at different pump piston movement settings,
resulting in three phantom pulsation states: large pulsation (LP), small pulsation
(SP), and non-pulsation (NP). Although exact aneurysm pulsation amplitudes were
unknown, the pulsation range was in accordance with the expected range from visual
inspection.

In vivo: 3DRA acquisitions from two patients with cerebral aneurysms were
analyzed in this chapter. Both examinations were collected at Rothschild Foun-
dation Paris, using an Allura Xper FD20 scanner (Philips Healthcare, Best, The
Netherlands). For these examinations, the injection protocol consisted of 24 mL of
contrast agent (Iomeron 350, Bracco Imaging SpA, Milan, Italy) with a flow rate of
4 mL/s, with a 2 s delay. Patients were under general anesthesia during the whole
examination. We have estimated motion at various locations as indicated in Fig. 3.5.
Three types of motion were visually observed from these regions: aneurysm wall
motion, vessel wall motion, and catheter tip displacement. For patient #1, aneurysm
motion could not be confirmed from the RA sequence, but we observed it from an
available DSA sequence. For patient #2, aneurysm motion was not visible in the
RA sequence, but we did observe vessel motion and longitudinal displacements of the
catheter.

For all the experiments tested on these data, we chose a VOI of approximately
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Table 3.1: 3DRA imaging settings for the in vitro and in vivo data, using the Allura FD20
imaging system.

Parameters Unit Value
Tube Voltage KV 78-89
Tube Current mA 180-280
Exposure Time ms 6-8
Detector Dose nGy/fr ∼200
Detector Format cm 22, 27
Focal Spot Size mm 0.4
Source-To-Isocenter Distance mm ∼810
Source-To-Detector Distance mm ∼1195
Geometric Magnification - ∼1.475
Rotation Range ◦ ∼210
Number of Projections - 121
Frame Rate fps 30
Pixel Spacing mm 0.154
Voxel Spacing mm 0.3
Contrast Injection Time s 6
Contrast Injection Rate mL/s 3-4
Iodine Density mg/mL 350-400
Collimator Filter (Alu) mm 1.0
Collimator Filter (Cu) mm 0.1
Anti-Scatter Grid lp/cm 80

503 voxels. The number of sampled pixels in the sampling regions SVR, SOR and SBR
at each projection view were in the order of 5000, 3000 and 500, respectively. The
B-spline control point grid spacing was about 1.5 mm for the spatial dimension, and
10-12.5% of the canonical motion cycle for the temporal dimension.

3.3.2 Accuracy evaluation

In order to quantitatively evaluate the accuracy of the estimated motion, a set of
deformed 3D volume images at discrete time points was extracted according to the
estimated 4D transformation. A relative error was measured at each time point t as
a percentage of the pulsation range,

e(t) =
(
mr(t)−mg(t)

)
/m̂g × 100%, (3.4)

where mg(t) is the ground-truth pulsation measurement (e.g., volume changes) at
t, mr(t) the corresponding estimated measurement, and m̂g the variation range of
mg(t) over the canonical cycle.

54



C
hapter

3
—

D
ynam

ic
E

stim
ation

of
3D

C
erebrovascular

D
eform

ation
from

R
A

Patient #1

A

BA

Patient #2

B

C

C

Catheter tip

Figure 3.5: Details of in vivo datasets, indicating with arrows the aneurysms and with
an arrow head the catheter tip. Data from two patients were used in this work, where
our method has been applied to different regions: (A) aneurysm with visible motion; (B)
aneurysm without visible motion; (C) vessel segment with visible motion, and the imaged
catheter (lower part) with longitudinal displacement.

In terms of volume change measurements, they were calculated using a method
similar to the one as in [33], by transforming a binary mask image using the defor-
mation field and subsequently summing up the intensities. The partial volume of the
boundary voxels was calculated by dividing the sum of the interpolated intensities by
the interval length.

3.4 Results

3.4.1 In silico aneurysm wall motion
For each case, we extracted 16 volume images at equally distributed time points

along the canonical motion cycle. As the ground-truth is known for these phantom
data, a quantitative accuracy evaluation is possible. In the presented experiments,
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Figure 3.6: Boxplots of eV at 16 equally distributed time points for 12 in silico phantom
cases of different diameter (8, 10, and 12 mm) and maximum pulsation range (1%-4%).

we used the relative error in volume changes, eV , calculated according to Eq. 3.4.
Except for two cases in which the maximum pulsation was below 0.1mm (being the
8mm and the 10 mm dome with 1% maximum pulsation), the relative error in volume
changes, eV , was below 10%, as can be seen in Fig. 3.6.

In the example shown in Fig. 3.7, eV and the computational time are plotted for
the same number of registration iterations. In this experiment, we investigated the
effects of using a combination of three different schemes: sampling region, angular
resolution along the C-arm gantry trajectory, and the GPU implementation. The
angular resolution of the measured projection sequence was downsampled by a factor
of 1 to 4. Results show similar accuracy (eV <5% up to three quartiles) achieved
from the three sampling regions combined with an angular resolution downsampling
factor up to 3. Therefore, given the fact that less projections can be used, it can be
speculated that this also enables discarding the use of a few undesirable projections,
e.g. the ones with severe artifacts. No significant differences were obtained when
DRRs were generated using either the CPU or GPU implementation. The slight
GPU/CPU discrepancies can be attributed to the difference in data type specifications
between the processors [36]. Due to the speedup introduced at the GPU-based DRR
generation stage, the image registration process can be reduced by an additional factor
of up to 2x with respect to the corresponding CPU-based implementation. Therefore,
the estimation results for the complete motion cycle can be obtained in 5-10 minutes
when using SBR on the GPU DRR implementation using a downsampling factor of 3.

Fig. 3.8 shows the color maps of the wall displacements and the radial Cauchy
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Figure 3.7: Performance evaluation on the use of a combination of three different
schemes in terms of estimation error eV and computational time. The three schemes are:
sampling regions (SVR, SOR, SBR), angular resolutions along the C-arm gantry trajectory
(downsampling factor being 1-4), and the GPU implementation. Results were obtained from
an in silico phantom with 12 mm diameter and 3% pulsation (i.e. maximum amplitude of
0.36 mm).

strain estimated at the maximum and minimum pulsation states of an in silico
phantom with diameter of 12 mm and pulsation of 3% (i.e. maximum amplitude
of 0.36 mm). In regions with similar surface curvatures like the dome, the strain field
presents a similar pattern to the displacement field, whereas in regions with higher
curvatures, such as the bleb and the neck, the strain scales faster. This suggests that
the strain field might enhance more efficiently regions having a different deformation
pattern as strain is less insensitive to passive motion but focuses on differential motion.

3.4.2 In vitro aneurysm wall motion
For the three pulsation states under evaluation, we obtained larger motion in

the LP case, smaller motion but with a similar pattern in the case of SP, and no
motion for the NP case. We show here the results of the LP case in Fig. 3.9. As
the ground-truth is unknown, the results are qualitatively presented. In Fig. 3.9(a-
b), a measured projection is compared with its corresponding DRR calculated from
the reference volume and from our estimated volume. From the visual inspection
in the projection space, our technique demonstrates its ability in correcting the
misalignment between the measured projection and the DRR. In Fig. 3.9(c-d), color
maps show the wall displacement amplitude and the strain at the time point with the
largest motion. An inhomogeneous wall displacement distribution is observed and is
especially concentrated on a lateral side of the aneurysm dome. This is caused by
a slight axial tilting of the phantom tube position during the acquisition. This is
in agreement with the reduced effect in terms of strain distribution observed at the
same location, since part of the displacements came from a global movement.

57



Figure 3.8: Wall displacement amplitude and radial Cauchy strain at the maximum (top)
and minimum (bottom) deformation states for an in silico phantom with diameter of 12 mm
and pulsation of 3% (i.e. maximum amplitude of 0.36 mm). (color version page C3)

3.4.3 In vivo cerebrovascular motion

Our estimation recovered the visually observed aneurysm motion from patient #1
and vessel motion from patient #2. For patient #2, aneurysm motion was neither
observed nor recovered. Fig. 3.10 and Fig. 3.11 summarize the recovered motion from
patients #1 and #2, respectively. The color maps show the displacements and the
radial Cauchy strain at the end-systolic (ES) phase, which coincided with the cardiac
time of the measured projections where maximum motion was visually observed.
This phase represented also the time of the maximum motion estimated from our
technique, as can be seen in the displacement curves over time in both figures. These
curves show that the aneurysm in patient #1 and the vessel motion in patient #2
presented a similar pattern with respect to the cardiac phases indicated by the ECG
signal. Spatially, for instance in Fig. 3.10, the motion was clearly observed in the
projections only in a small area of the aneurysm dome, which coincides with the
maximum estimated wall displacement region using our technique. Also, we observed
that, in Fig. 3.11 the upper part of the vessel (i.e. internal carotid artery) did not
show any visible motion. This is consistent with the fact that this particular vessel
segment, i.e. the petrous segment, is surrounded by stiff bony structures preventing
any motion at this location.
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Figure 3.9: Results from in vitro LP phantom: (a,b) Example of checkerboard images for
the in vitro phantom comparing respectively the measured projection with the equivalent
DRR computed from the reference volume and our estimation. The color maps of the wall
displacement amplitude (c) and the radial Cauchy strain (d) for the frontal and lateral views
at the instant presenting the largest displacement. (color version on page C3)

3.4.4 Catheter displacement
From the measured projections for patient #2, we observed substantial longitudi-

nal displacement of the catheter, corresponding to the catheter tip moving vertically
along the direction of the vessel and following the blood flow. To further verify
the feasibility of our method in recovering general motion other than vascular wall
motion from a rotational angiography acquisition, we have applied it to the imaged
catheter region and recovered the displacement of the catheter tip. Results are shown
in Fig. 3.12. The color maps show respectively the displacements (Fig. 3.12(a))
at 10 equally sampled time instants over the cardiac cycle. And the catheter tip
displacement (along the vessel longitudinal direction) is plotted with the ECG signal
in Fig. 3.12(c). The cardiac phase when the maximum value of this movement
occurred was similar to the maximum vessel motion phase (Fig. 3.11(d)). This
confirms that the catheter moved back and forth according to the pulse of the blood
flow. We have also plotted the calculated strain maps at the catheter surface in
Fig. 3.12(b). As the strain represents deformation instead of rigid movement, it
should be ideally zero everywhere and for all time instants. As expected, at the
lower and homogeneous part of the catheter, zero radial displacements and strain
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Figure 3.10: Results of aneurysm wall motion in patient #1. (a) A close view indicating
the region where our motion estimation method has been applied (dashed frame) in an
X-ray angiography. (b) The color map (line in (a) indicating the viewing plane) of the
displacements around the end-systolic (ES) phase (indicated by the arrow in (d)). (c) The
radial Cauchy strain at the same phase as in (b). (d) Aneurysm wall displacement amplitude
over the cardiac cycle at the location indicated by the arrow head in (a) and the circles in
(b,c). (color version page C3)

values were obtained. However, they were not zero everywhere at the catheter tip.
A first explanation for such behavior of the results is that the catheter used during
the intervention had a flexible tip and therefore was prone to deformation. Second,
the estimated vessel motion was “propagated” to its immediate vicinity, the catheter
tip, since the B-spline transformation provides a spatially smooth estimate of the
displacement field. And third, at the catheter tip, larger inhomogeneity of the contrast
agent mixing are expected, which in turn might affect our intensity-based registration
method.

3.5 Discussion

In silico pulsatile aneurysm phantom results have demonstrated that the estima-
tion error was below 10% in recovering motion in the sub-millimeter range, e.g. in
the order of a voxel, even from images with substantial intensity inhomogeneity.
In vitro aneurysm phantom experiments have allowed verifying that our method
is able to detect whether an aneurysm pulsates or not. However, in a clinical
environment, due to the lack of ground-truth motion information, we were not able to
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Figure 3.11: Results of vessel wall motion in patient #2. (a) A close view indicating the
region where our motion estimation method has been applied (dashed frame) in an X-ray
angiography. (b) The color map of the displacements around the end-systolic (ES) phase
(indicated by the arrow in (d)). (c) The radial Cauchy strain at the same phase as in (b).
(d) The vessel diameter change over the cardiac cycle at the location as indicated by the
arrow head in (a). (color version on page C4)

validate quantitatively the performance of the method. Nonetheless and for the first
time, experiments carried out on in vivo patient data presenting visible aneurysm
and vascular wall motion as well as catheter tip movement, have demonstrated the
feasibility of our method for motion detection and recovery from RA. In regions where
motion or deformation is impossible from an anatomical point of view, such as the
petrous segment and the catheter, the results were consistent with the expected zero
motion. In summary, although ground-truth was unknown for the in vitro and the
in vivo data, our results were qualitatively accurate. Given the realistic modeling of
spatial and temporal imaging conditions as well as the morphology and motion range,
the performance of our method on in silico data can be expected, to a certain extent,
to be translatable to patient data acquired in a clinical situation.

To facilitate the translation of this technique into clinical practice, we proposed
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Figure 3.12: Results of catheter tip movements in patient #2. (a) A close view indicating
the region where our motion estimation method has been applied (dashed frame) in an X-ray
angiography. The color maps of the estimated catheter movements (b) and the strain (c) at
ten selected time points. (d) The catheter tip (arrow head in (a)) longitudinal displacement
plotted together with the ECG signal. (color version on page C4)

the joint use of two acceleration strategies together with their implementation on
graphics processing units. This has demonstrated a successful memory management
and speedup for processing large 3D and 2D datasets from 3DRA acquisitions. These
improvements allowed completing the motion estimation process for one entire cycle
in 5-10 minutes without degrading the overall performance. More specifically, we
obtained a 3-4x speedup from the precomputation of surrounding vascular structures
outside the VOI, and a 10x from the use of SBR. With respect to the CPU imple-
mentation, an additional speed improvement of up to 2x was achieved by integrating
the GPU generated DRRs in the motion estimation framework.

Since the object-adaptive ROIs are calculated based on two selected voxel values
as described in Section 3.2.2.2, the potential influence of these intensity values on the
estimation is discussed here. Experiments were performed on an in silico phantom
(dome diameter of 12 mm and maximum pulsation of 3%) embedded in a 3DRA
patient image. Voxel intensities of the phantom dome were set to be constant inside
(i.e. a value belonging to the CA filled region), and to be smoothly changing on the
boundary, depending on the distance from the voxel to the ideal wall surface. Results
are demonstrated on four SBR regions (denoted as R1-R4), chosen from different
combinations of four sub-ranges equally spanning the intensity range of the phantom.
The lower boundary intensity value of R1 was chosen to be higher than the actual
boundary and thus was inside the phantom. That means, in R1 the aneurysm wall
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Figure 3.13: Comparison of the accuracy using four different SBR regions (denoted as R1-
R4), chosen from different combinations of four sub-ranges equally spanning the intensity
range of the phantom. Results in this figure were obtained from an in silico phantom
embedded in a 3DRA patient image (see an illustration in Fig. 3.3(a)). The phantom has
a diameter of 12 mm and the maximum pulsation of 3% (i.e. maximum amplitude of 0.36
mm).

was not included, while in R2 to R4 the actual aneurysm wall was always included but
with the inner boundary identified by three different values spanning the aneurysm
intensity range. Detailed distributions of these four regions are illustrated on the
histogram of the reference volume image, as shown in Fig. 3.13. Their corresponding
relative estimation error eV values are also plotted in the figure. Results suggest that
the choice of the voxel intensity values for the boundary region does not affect much
the estimation accuracy, when the expected wall motion region is within the chosen
SBR. In the case of R1, larger errors were obtained because this region excludes the
intensity range of the aneurysm wall by focusing on too high intensities.

In the following, we discuss the performance comparison between a previous
technique [130] for 3D independent motion estimation at specific time points (denoted
as ALG1) and our proposed 4D motion cycle estimation technique (denoted as ALG2).
In general, similar accuracy values could be expected using both techniques, since the
plot shown in Fig. 3.7 presented comparable error values as reported in [130]. In terms
of computational efficiency, the time spent for a full 4D motion estimation in this
chapter is comparable to what is needed for computing only one 3D estimation at
a specific time point using ALG1. In the situation with large intensity variations
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in the contrast-enhanced regions in the projection images, such as inhomogeneous
contrast mixing, our method or ALG2 is however expected to be more robust than
ALG1. Results shown in Fig. 3.14 were obtained from the simulated inhomogeneous
contrast-filled images, as described in Section 3.3.1. The relative volume error eV was
below 10% using ALG2, whereas using ALG1 it was on average 50% or even larger.
This large difference is due to the fact that ALG1 failed to recover the motion from
such input images. This can be visually observed in Fig. 3.14 from the surface of
the ground-truth shapes at two example time instants overlaid with the estimations
(i.e. maximum and minimum shape extension). Constrast inhomogeneity in this
case induces an overestimation of the phantom motion using ALG1 in comparison
with ALG2. This suggests that our 4D estimation is more robust to large image
intensity inhomogeneity, both temporally and spatially. Additionally, a slightly
higher accuracy was obtained using the projected boundary region SBR. This could
be possibly due to the exclusion of inner regions with inhomogeneous intensities,
reducing the noise influence to the registration.

As the expected cerebral aneurysm wall motion range is very small, the impact of
other possible physiological motion that might affect the motion estimation needs to
be discussed. The most intuitive one is respiratory motion, however in our application
its impact is negligible. First, from the clinical examination protocol point of view,
the respiratory induced motion in the head is not likely to happen, given that the
patient lies still, either under general anesthesia or when instructed to hold their
breath for a few seconds during the 3DRA acquisition (in our case 4 s), with the
head in an immobilizing headrest. Second, from our methodology point of view, we
use projections from one canonical cardiac cycle that are built from multiple cardiac
cycles, and we model this cycle by a 4D smooth and continuous transformation.
The method assumes pseudo-periodicity in such a way that acts as a filter forcing
the reconstructed motion to be just one canonical cycle. This, in effect, helps to
reinforce motion induced by blood pressure changes occurring over the cardiac cycle,
and meanwhile, produces an averaging of other physiological motion that does not
occur with the cardiac cycle, such as respiratory motion. In fact, it works in a
similar way as how standard 3DRA reconstructions ignore the existence of any kind of
motion. This reference reconstruction is reliable because the potential motion is small
in comparison with the size of the reconstructed objects. In our case, the estimated
pseudo-periodic vascular motion should be reliable while the spontaneous irregular
non-periodic motion is small in comparison with the periodic motion. These reasons
can also justify the ignorance to the possible irregular variation (or large deviations) of
the cardiac cycles. Recently, after following over 30 cerebral aneurysm embolization
interventions we have found an intrascan heart beat variability below 1.5% on average
and not exceeding 4%. This variability is small enough to be averaged or compensated
by our method. Other movements throughout the rotational run that might also have
an influence is related to highly attenuated structures, e.g. bones or the skull. In this
case, the possibility and the amount of this motion variation are negligible, as the
bone movement can be considered to be global and very small. Specifically because
the skull is covering all the imaged region, its material and motion can be assumed
to be homogeneous. Furthermore, this effect is minimal under our methodology
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Figure 3.14: Results comparing the influence of inhomogeneous contrast filling on the
method in [130] (denoted as ALG1) and our present technique (denoted as ALG2), using an
in silico phantom with diameter of 10 mm and pulsation of 4% (i.e. maximum amplitude
of 0.4 mm). Results at two instants are shown graphically: (a,c,e) minimum pulsation
and (b,d,f) maximum pulsation. The ground-truth shape (wireframe) at each time instant is
overlaid with: (a,b) the reference, (c,d) the estimation using ALG1, and (e,d) the estimation
using ALG2. (g) Comparison of eV between ALG1 and ALG2 with the three sampling
regions: SVR, SOR, and SBR. (color version on page C4)

framework, since the ray traverses through a highly contrast-enhanced object, and
the projection intensity is mostly determined by the accumulated attenuation of the
contrast-enhanced vessels. Therefore, the potential projection intensity variation
caused by the movement of bones for a specific projection pixel can be ignored in
principle. This also confirms that our acceleration strategy, the precomputation
outside the region of interest is a reliable approximation. However, in the case that a
substantial amount of any of the aforementioned motion occurs during the acquisition,
the reliability of the estimated vascular motion could be decreased.

In general for X-ray imaging applications, the variations of intrinsic detector
performance parameters could probably play a role in the image quality, as has
been studied intensively in [39, 48, 76, 82, 122, 123]. These parameters can provide
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characteristics that consider the complete imaging system performance, including the
effect of focal spot blurring, magnification and scatter. They have more pronounced
effects for general applications with less image contrast [82] or small structures like
stent struts (e.g. 0.1 mm or lower) [48, 76] using a microangiographic fluoroscopic
imaging system [76, 123]. In our case, the studied objects like selective CA enhanced
vascular structures are imaged with high dose and are highly contrasted. Also object
size is expected to be in a larger magnitude. Admittedly, the intrinsic spatial extent
of the detector limits the motion recovering of our technique to a certain range. But
the use of a sparse set of B-spline control points means that the estimated motion
of each control point is determined by many points along the object surface and
boundary. This enables us to obtain a realistic estimation of the wall motion whose
magnitude is equivalent to small fractions of the total system mean imaging aperture
or unsharpness. Meanwhile, note that this limited resolution of currently existing
systems is expected to be improved in the future, which will enable our method to
estimate even smaller motion. This factor is reflected in the results shown in Fig. 3.6
on in silico phantom experiments. In this figure, at least for two phantom cases
(8mm and 10 mm with 1% motion for both), we were not able to recover correctly
the motion. Further resolution improvements and thus motion estimation with small
magnitude could be expected when geometric unsharpness effects can be minimized
either through a reduction of the focal spot size or a reduction of the magnification.
However, the options for a reduction of the aforementioned two factors are limited.
As this study serves to show the feasibility of 4D aneurysm wall motion estimation
from rotational angiography, a more detailed analysis of the impact of these factors
on the estimation accuracy and robustness will be addressed in future work and is
beyond the scope of this chapter.

The experimental results also emphasize the feasibility of performing strain anal-
ysis from the estimated motion, making thus possible the use of this information
for further estimating elastic properties of the vascular wall, using for example an
inverse problem approach [5]. Note that the strain map was not obtained through
tracking individual points or tissue on the vascular wall. Thus, our approach for
strain calculation through quantifying apparent motion from images implies that the
correspondences over time are approximations of the same physical point.

3.6 Conclusions

This chapter has presented a technique to recover 4D cerebrovascular wall motion
that is in the order of sub-millimeter, from a single 3DRA acquisition within a
clinically acceptable computation time. Using this technique, the recovered motion is
temporally and spatially smooth, which also improves the robustness of the estimation
to noise and intensity inhomogeneity. The subsequent strain calculation based on our
motion estimation provides further progress towards the biomechanical modeling of
the cerebrovascular wall. Our technique also provides the possibility of detecting
vascular wall abnormalities through direct visualization of motion over time. It is
highly desirable to have a technique that offers accurate and robust in vivo estimates
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2D texture that stores the first intersection point (channels RGB) 
and the number of samples (channel A)
2D texture that stores the increment size (channels RGB) 
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Figure 3.15: An illustration of how information is repacked for the final DRRs computation
for the proposed three structures of interest (SVR, SOR and SBR) into 2D textures of
decreasing sizes.

of such motion. In order to translate our method into a clinical setting, future research
efforts should be paid to validate our method on a larger number of patient data sets.

3.7 Appendix: GPU implementation of DRRs generation

To further speedup the method, the DRRs generation combined with the acceler-
ation strategies is implemented on GPU and is integrated into the image registration
process. We briefly describe the main idea of the method here. Unlike traditional
GPU-based DRR generation methods [19], our implementation also integrates the two
previously introduced strategies, thus benefits from both the GPU parallelization and
the resultant memory reduction from these strategies.

The method was implemented using the Cg (C for graphics) toolkit [57] and on
the pixel shader units of a NVIDIA GeForce 8600 GT graphics card with 512 MB
of memory, hosted by an Intel rCoreTM2 Quad CPU Q6600 2.40 GHz with 4 GB
of memory. DRR pixel data are stored as stream data in the format of textures,
and fed to the GPU fragment units so that each fragment works in parallel on a
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single pixel. Each texture element can store up to four components, or the RGBA
channels, as they are originally used to represent the red, green, blue, and alpha
intensities of a color for rendering. In order to reduce redundant calculations, we
compute first a number of parameters that are constant when updating the DRRs
during each iteration. As we equidistantly sample points on the ray (Fig. 3.2(a)), only
the first intersection point on the volume and the sampling step vector are needed, the
remaining points can be derived in a straightforward manner. In total, eight constant
parameters are needed for each pixel to calculate the DRRs: the first intersection
point, the sampling step, the number of sampled points and the pre-computed DRR
value. Since we only calculate the pixel values within the ROIs (SVR, SOR, or SBR),
these eight constant parameters to calculate the pixel values in the ROI are re-packed
into two 2D rectangular textures of smaller sizes than the original projections (see an
illustration in Fig. 3.15). They are used in a GPU procedure that only performs the
main loop over the VOI at every registration iteration. This way, the GPU fragment
code remains short to maintain the stream processing advantage with respect to its
equivalent CPU calculations.
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The investigation of cerebral aneurysm pulsation and vascular motion is currently
challenging due to the intrinsically small motion range evaluated. This study aims
at quantifying and comparing in vivo vascular motion estimated from 3DRA and
DSA. Standard 3DRA and 30fps-DSA (with projection image resolution of 0.1mm
in physical space) were used for estimating and quantifying cerebrovascular wall
motion using two techniques based on image registration. Of the thirteen patients
studied with saccular aneurysms, eight showed visible motion on DSA images. Wall
displacements were measured at various corresponding locations on the 2D and 3D
estimates. These measurements from both modalities were compared in terms of
spatial range and temporal pattern. Average aneurysmal or vessel wall displacements
ranges were 0.043 to 0.26 mm (3DRA) and 0.069 to 0.25 mm (DSA), respectively.
There was a linear relationship (R2=0.81) between the average estimated motion
range over the cardiac cycle from these two modalities. A statistically significant
correlation between both estimations on the average displacement curves over the
cardiac cycle were found in 8 of the 14 measured regions. Generally, peak wall
motion took place towards the end-systole and beginning of diastole. It is feasible
to measure in vivo vascular motion with small amplitude from 3DRA and DSA
using our registration-based techniques. A good spatial and temporal agreement
was found between them. Such consistency suggests that the applied techniques on
these modalities may be useful for quantifying cerebrovascular wall motion.

The content of this chapter is based on the publication:

Chong Zhang, Maria-Cruz Villa-Uriol, Ruben Cardenes, Vincent Costalat, Alain
Bonafé, Alejandro F. Frangi, In-vivo quantification of cerebral aneurysm wall
motion from 3DRA and DSA, submitted, 2011.
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4.1 Introduction

The vast majority of current morphological indices used in the literature to predict
growth and rupture in cerebral aneurysms [53, 69, 79, 104] such as aneurysm size,
aspect ratio, neck angle, etc, do not take into account the dynamics of the vascular
wall that occur during the cardiac cycle. This is because the recovery of 3D cerebral
aneurysmal and vascular motion is challenging as they fall into the submillimiter
range [11, 43, 45, 60, 67, 74, 106, 131]; current imaging protocols are not ready to
quantify such small motion with the required spatio-temporal resolution.

While there are only limited clinical studies supporting the diagnostic value of mo-
tion data, early observations in patients have suggested the importance of examining
motion information. In Steiger et al. [98], an in vivo hemodynamic stress study in
saccular aneurysms has demonstrated that the aneurysmal wall can vibrate or pulsate,
induced by the fluctuations of flow which, in a long term, contribute to aneurysm pro-
gression and eventual rupture. It has been also suggested in an in vitro study by Ueno
et al. [103] that a decreased pulsatile aneurysmal wall movement can cause a slight
reduction of the wall stress, which in turn might prevent the rupture. Meanwhile,
recently in Sforza et al. [94] the authors claim that the in vivo oscillatory rigid rotation
observed in cerebral vasculature does not have a major impact on intra-aneurysmal
hemodynamic variables, and that the rigid motion of the parent arteries is unlikely
to be a risk factor for aneurysm rupture. However, their simplified computational
fluid dynamics simulation conditions used for this study should be taken into account
when interpreting these results and the derived conclusions. Therefore, this topic
remains relevant to be further studied. From a biomechanical point of view, recent
research has demonstrated that localized variations in the aneurysmal wall stiffness
and thickness are linked to local stress concentrations and changes in aneurysmal
shape [17]. Such inhomogeneous distribution of aneurysmal wall properties may
translate into inhomogeneous wall motion when exposed to varying dynamic pressures
occurring during the cardiac cycle [5, 46]. Moreover, there are also studies suggesting
that the direct visualization of wall motion may be helpful for analyzing pathological
features of the cerebral vasculature [37, 45]. Therefore, quantitative aneurysmal wall
motion could become a surrogate of vascular wall status and integrity, which could
indicate vascular weakness and potentially aid the assessment of aneurysmal rupture
risk.

Recent advances in imaging technologies have enabled observing aneurysmal mo-
tion with a relatively large amplitude has been observed on in vivo patient data using
various modalities [30, 37, 43, 45, 74, 106, 124, 131]. Among them, 3DRA and DSA
provide the highest spatial resolution resolution [25] and can be used intraoperatively.
However, for a human operator relying solely on qualitative visual assessment, per-
forming an objective analysis of such small motion throughout the cardiac cycle is
difficult, if not impossible. As such dedicated tools in motion assessement are needed.
The aim of this study was two-fold. First, to demonstrate the feasibility of quantifying
wall motion, from in vivo data, using 3DRA through our previous 3D method [131]
and using DSA through Oubel et al.’s [74] 2D method. Second, to evaluate between
the estimated motion from both modalities.To the authors’ knowledge, there are no
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reports that quantify and correlate intracranial aneurysm and vessel motion during
a cardiac cycle from 3DRA and DSA images.

4.2 Materials and methods

4.2.1 Patient selection
All patient data were collected in Neuroradiologie GDC - CHU Montpellier, France,

between August and November 2010. The institutional review board gave approval
for this retrospective patient study. During this period, in total 56 saccular aneurysms
from 55 patients were scheduled for an aneurysm embolization. Those who underwent
pretreatment 3DRA and 30fps-DSA acquisitions were of interest to us. In addition,
the ECG was also recorded synchronously with these acquisitions. Therefore, the
number of cases that had all the three types of data properly recorded was 13, which
were included in this study. A first direct visualization of the DSA sequences was per-
formed by three trained engineers (CZ, MV and RC) and two neuroradiologists (VC
and AB). According to the majority of the observers, 10 of these patients presented
visible aneurysm wall motion (AWM), parent vessel wall motion (VWM), or both.
The wall motion analysis was performed on eight of these patients, excluding those
not presenting visual motion, with irregular heart rate (patient #4) or overlapping
with other high-contrasted objects (patient #1). Detailed information for all patients
is summarized in Table 4.1. And the analyzed 3DRA and DSA images of the eight
patients are shown in Fig. 4.1 and 4.2.

4.2.2 Acquisition protocol
All the acquisition procedures of the presented data were performed when the

patient were under general anesthesia on a biplane angiographic unit (Allura Xper
FD20/10; Philips Healthcare, Best, the Netherlands), following an institutional pro-
tocol. Patients were also intubated and mechanically ventilated. After surgical
preparation of the femoral artery to gain access for the catheter and its subsequent
insertion, a 3DRA scan was firstly acquired. Afterwards, the interventional neurora-
diologist examined the 3D reconstruction from various angles and decided one or two
view(s), where the morphology could be best visualized for planning the treatment,
i.e. an ideal separation between the neck and parent artery. A 30fps-DSA acquisition
was then obtained from the selected view, called the working projection view. Both
recordings also included the ECG synchronized with the projections. The time lapse
between these two acquisitions was in general within 5 minutes. The heart rate of the
patients varied between 47 bpm and 90 bpm with an average intrascan and interscan
variability below 2% (except for patient #4).

Both rotational and DSA projection images were obtained with a high frame rate
of 30 fps. The active imaging field of the detector was set to 22 cm, which gave a
possible combination of the largest field of view and highest pixel resolution, being
0.154 mm per side. An iodinated contrast agent (CA) was continuously injected
(Ioméron 350, Bracco Imaging, France) to flow rates of up to 5 mL/s during the data
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Figure 4.1: Patients #2,5,6,8: (from left to right) 3DRA data with the studied region
of interest highlighted in different colors: aneurysm region (AR), vessel region (VR) and
bifurcation region (BiR); one DSA image; measurement regions on 2D contour delineations
(crosses indicate the region on the contour); measurement regions on 3D surface. (color
version on page C5)

acquisitions. For all the patients in this study, the tip of the catheter was placed in
the internal carotid artery. For the 3DRA imaging, 2D projections of the CA filled
vessels were acquired during a continuous rotation of the C-arm over an angular span
of 200◦ in the axial plane. To ensure proper filling of the entire vascular tree, the CA
injection was started 2 or 3 s before the actual scan. The overall amount of CA used
for a single rotational acquisition was 24 mL (for 2 s delay) or 35 mL (for 3 s delay).
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Figure 4.2: Patients #9,10,11,12: (from left to right) 3DRA data with the studied region
of interest highlighted in different colors: aneurysm region (AR), vessel region (VR) and
bifurcation region (BiR); one DSA image; measurement regions on 2D contour delineations
(crosses indicate the region on the contour); measurement regions on 3D surface. (color
version on page C5)

The average tube current and voltage were 261 mA and 99 kV, respectively. As for
the DSA imaging, the C-arm of either the FD20 or the FD10 detector was fixed to the
working projection view. The overall amount of CA used for a single DSA acquisition
was 10 mL for 2 s without delay. The average tube current and voltage were 160 mA
and 90 kV, respectively.
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4.2.3 Wall motion estimation
For DSA images, 2D aneurysm wall motion was estimated using the technique

presented in [74]. This 2D/2D registration method uses free-form deformations with
B-spline interpolation functions and mutual information as metric. For each DSA
sequence, depending on the heart rate, at least images from one full cycle were contrast
enhanced. Thus, we selected one cycle that was at the middle of the acquisition,
avoiding the contrast wash-in and wash-out effects. For the image frames from the
selected cycle (ranging between 23 and 38 frames), a reference frame, i.e. closest
to the R-peak of the ECG signal, was selected and registered to the other frames,
obtaining a deformation field for each of the other frames.

For 3DRA images, 3D aneurysm wall motion was estimated using the technique
presented in [131]. Detailed description of this technique is beyond the scope of this
article. Briefly, motion of one canonical cardiac cycle of the cerebral vasculature was
modeled using a 4D B-spline transformation, which was estimated from a 4D to 2D
+t image registration framework. The registration was performed by optimizing a
single similarity metric between the entire 2D+t measured projection sequence and
the corresponding forward projections of the deformed volume at their exact time
instants. At each selected time point of the cardiac cycle, a 3D volume could be
obtained by deforming the reference 3DRA volume. A sequence of such estimated 3D
volumes at different time instants thus can provide the 3D wall motion information.

4.2.4 Wall motion quantification
4.2.4.1 3DRA vs DSA estimation on individual patients

The aneurysmal wall in the reference DSA frame was manually delineated on the
CA enhanced boundaries. Such delineation was performed on an in-house software
GIMIAS (v1.3.0) [1]. For each 2D sequence, first, several landmarks were put in the
reference frame along the boundaries of the studied object, i.e. aneurysm dome or
vessels. These landmarks were further fitted into a spline line for the delineation.
This reference contour was then propagated to the rest of the frames in the sequence
by applying the estimated deformation field to it. The displacement for a boundary
point was calculated by a point-to-line distance from the point at reference frame
time to the contour at the selected time point.

For each volume in the 3D+t estimated sequence, a 3D surface was further
extracted by thresholding using the Marching Cubes algorithm [50]. 3D displacements
on the wall were calculated by a point-to-surface distance from each point on the
reference surface to the one at the selected time instant.

In order to provide a fair comparison for the wall motion quantified from the
estimation using the two techniques, spatial and temporal correspondences should
be established between 2D+t DSA and 3D+t 3DRA images. That means, motion
measurements, in our case, the wall displacement, should be taken at the same spatial
locations and the same cardiac cycle time instants. Since the technique for 3DRA
images is able to provide 3D instantaneous volume at any time of the cardiac cycle, the
time instants for extracting the volume sequence were chosen to match the DSA frame
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times at the selected cycle. The measuring locations on the 3D surface were chosen
to be also projected on the boundaries in the DSA views. In order to examine local
motion behavior, different regions on the wall were measured: aneurysm region (AR),
adjacent vessel region (VR), and internal carotid artery (ICA) bifurcation region
(BiR). The criterion for the selection of regions was to only use locations around
the aneurysm where motion was more pronounced and clearly identified on both 2D
contours and 3D surfaces. For example, boundaries that had overlapped vessels in 2D
were discarded due to the uncertainty on the 3D surface. Therefore, not all regions
were available for every patient. Fig. 4.1 and 4.2 show the selected measuring regions
for each patient. In order to eliminate the difference in the measured magnitude
between the two imaged space, the displacement measurements on DSA images were
corrected by a geometrical magnification factor to a comparable magnitude as 3D
measurements, which represents the physical size. The temporal correlation of the
measurements on each region between DSA and 3DRA was calculated using the
Pearson correlation coefficient (statistical significance was established with p-value<
0.05).

4.2.4.2 Statistical analysis on motion pattern

To assess the correlation between measurements on different modalities, a linear
regression analysis was performed between average displacements over the cardiac
cycle for each region from 3DRA and DSA estimations. Bland-Altman plots were
performed to assess the agreement between measurements on these two modalities.
In a Bland-Altman analysis, the difference between two measurements is plotted
against their average for each patient. Calculating the mean difference and the
standard deviation (SD) of difference allows one to quantitatively assess how close
the measurements from two different methods are to each other and how scattered
they are collectively. Mean values are presented with 95% confidence intervals that
were calculated for each mean SD difference value.

In [11, 68], animal or ex vivo experiments have shown that aneurysm pulsation
follows variations in intra-aneurysmal pressure, potentially with some delay. The wall
motion pattern over the cardiac cycle was also studied with our in vivo data. In order
to establish correspondences between the motion and the cardiac events, a temporal
synchronization was needed, because of the heart rate variability between patients as
well as the desynchronization of the different phases of the cycle. In our case, since
ECG was the only available type of physiological signal, a landmark-based piecewise
linear warping was applied to ECG. After the temporal synchronization, motion
curves of all the patients were mapped accordingly to the normalized timescale.

4.3 Results

4.3.1 3DRA vs DSA estimation on individual patients
The mean and SD of wall displacements measured at AR, VR and BiR over

the cardiac cycle were shown as error bar plots in Fig. 4.3 and 4.4. Regions where
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Table 4.2: Pearson correlation coefficient of the temporal average displacement estimates
between 3DRA and DSA. Statistical significant correlation is marked in bold (p-value< 0.05).

# Aneurysm (AR) Vessel (VR) Bifurcation (BiR)
2 0.836 0.652 n.a.
5 n.a. n.a. 0.676
6 0.265 0.841 n.a.
8 0.142 0.0270 n.a.
9 0.471 0.145 n.a.
10 n.a. n.a. 0.331
12 0.545 n.a n.a.
13 0.644 0.616 0.247

no motion was visually observed are highlighted with a black frame. Those with a
dark grey background had a statistically significant correlation between the DSA and
3DRA estimation curves. The correlation was evaluated on the temporal curve of
the average displacement in each region using the Pearson correlation coefficient, as
summarized in Table 4.3.1. For patient #5, the 3DRA estimation did not show any
motion in AR and VR, although motion was visually detected in these regions. For
patient #10, we were not able to properly delineate the contours in AR and VR from
the DSA views due to vessel overlapping and inhomogeneous CA filling. In these
cases, the measurements were also discarded for the correlation analysis. Thus, from
the 8 patients presenting visible motion, we were able to measure estimated motion
from both modalities in 14 regions. From these, 8 regions showed a statistically
significant correlation between the two estimations on the average aneurysm/vessel
displacement curves over the cardiac cycle.

For the presented cases, the average aneurysmal/vessel wall displacement over the
cardiac cycle ranged from 0.043 mm to 0.26 mm and from 0.069 mm to 0.25 mm
in 3DRA and DSA estimations, respectively. Table 4.3 lists the average and SD of
motion range of each region from the 3DRA and DSA estimations. We have observed
that, in general, a statistical significant correlation can be found for regions showing
larger motion. And their values were similar to or larger than 0.1 mm. This value was
in accordance with the projection pixel resolution (0.154 mm) after the correction of
geometrical magnification (in our case about 1.5), that is, one pixel value represents
about 0.1 mm in the physical space. When the motion was smaller than the imaging
resolution, the correlation between the estimations from 3DRA and DSA was not
clear.

4.3.2 Statistical analysis on motion pattern
The correlation between the 3DRA and DSA estimated average displacements

over the cardiac cycle in all regions for all patients was analyzed by linear regression
(Fig. 4.5), and there was a linear relationship (R2 = 0.81). In the Bland-Altman
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plot, mean values are presented with 95% confidence intervals calculated for each
mean SD difference value. The mean difference between both measurements was -
0.03 mm (SD, 0.037 mm). Therefore, 3DRA measurements were smaller than the
DSA measurements by 0.03 mm on average. This suggested a close agreement, but
there was also a relatively large variability in measurements indicated by the SD of
0.037 mm. These differences are at most one order of magnitude lower than the pixel
resolution, being about 0.1 mm (indicated as thinner dashed line in Fig. 4.5).

Fig. 4.6 plots for each region, in all patients, the curves of average 3DRA estimated
wall displacements after the application of temporal synchronization. The landmarks
used were: R-peak, end S-wave, peak T-wave, end T-wave, beginning of P-wave,
beginning of the QRS complex, and R-peak. Measurements from DSA estimation
are not presented because they had an expected direct relationship with the 3DRA
ones and lacked the temporal continuity caused by the independent registrations from
one frame to another. In this figure, the motion curves were divided into two groups
according to the measuring locations: right before, or at and after the ICA bifurcation,
considering the potential phase delay due to the coupling between the fluid flow and
wall displacement. The motion amplitude ranges were similar in both groups. Most
of the peak motion occurred towards the end-systole and beginning of diastole, as
indicated by ECG. It seems that for the regions measured right before or at the ICA
bifurcation (Fig. 4.6 (b)), the peak motion occurred between the peak T-wave and
the end T-wave. For the regions after the ICA bifurcation such as anterior and middle
cerebral arteries (Fig. 4.6 (c)), it occurred at the beginning of diastole between the
peak T-wave and the beginning of P-wave. This motion peak shift was in general
in agreement with the order of the flow arrival time at these locations. However,
there was a variability in the peak motion phases. One possible explanation for this
is that, because the motion waveform is expected to follow the pattern of the intra-
aneurysmal pressure waveform, which does not have a direct relationship with the
ECG waveform, especially in patients with hypertension.

4.4 Discussion

We have recovered and quantified cerebral aneurysm and vascular wall motion
using two image registration techniques for 3DRA and DSA images, respectively. Wall
motion estimated from these two modalities has been compared in terms of spatial
range and temporal pattern. Results have demonstrated the feasibility of quantifying
wall motion with both 3DRA and DSA imaging (ranged between 0.04 mm to 0.26
mm) on 8 out of the 13 studied patients. This small range made the visual observation
difficult and thus explains the existence of large inter-observer variability. The fact
that there was no consensus among the five observers in their visual assessment
of motion/no motion demonstrates the underlying challenge if motion analysis and
points to the need of dedicated tools in motion assessment.

There was a linear relationship (R2=0.81) in estimated wall displacement range
between 3DRA and DSA in the presented patient data. Significant correlation on
the average displacement curve was found in 8 of the 14 measured regions, and in
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Figure 4.5: (Top) Linear correlation between average spatial motion range from 3DRA and
DSA estimations (R2 = 0.81). (Bottom) Bland-Altman plot showing the agreement between
these measurements.

general their spatially-averaged motion ranges were similar to or larger than 0.1 mm,
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i.e. similar to the image resolution. Remarkably, most of the peak motion occurred
towards the end-systole and the beginning of diastole.

The intrinsically small motion range makes goal challenging and thus this study
has several limitations. First, since the 2D technique for DSA images does not
guarantee temporal consistency or continuity, the estimated motion was in general
noisier than the estimation from the 3D+t technique for 3DRA images. This intro-
duced a systematic error when analyzing the correlation between the motion obtained
from both techniques. Second, the displacement measurements required a subjective
selection of the measuring locations from 2D and 3D views, introducing possible
sources of bias into both measurements. Third, the current imaging resolution limited
the collection of patient data with wall motion. Apart from the imaging difficulties,
another limiting condition was that, under general anesthesia the biomechanical
behavior of the vascular wall must have been certainly lower compared to a conscious
state and less prone to pulsation. This limits the number of patients with visible
motion. Therefore, although we managed to collect a small amount of patient data,
this number in the current study was not sufficient for rendering descriptive statistics
of general motion patterns.

4.5 Conclusion

Our findings demonstrate a good spatial and temporal agreement between the wall
displacements estimated from 3DRA and DSA. This consistency suggests that both
motion recovery techniques may be useful for quantifying cerebrovascular wall motion.
Comparably, motion estimated by the registration technique applied to 3DRA images
is expected to provide more comprehensive information owing to its 3D nature as
opposed to the 2D projective nature of DSA and the temporal continuity of the
motion recovery algorithm. Also, it uses routinely acquired images, making it more
practical for clinical application. On the other hand, the technique applied to DSA
images could be beneficial for a quick analysis or for online inspection of motion
during several cycles.

To our knowledge, this is the first study demonstrating the feasibility of quan-
tification of cerebrovascular and aneurysmal wall motion in vivo from 3DRA and
DSA. This study has also provided a first evaluation of regional wall motion in vivo
with submillimiter precision and dynamic resolution. Characterization of aneurysmal
wall motion in a larger patient series to understand its relationship with shape,
bleb location, flow pattern and rupture events, etc., remains the subject of further
investigation. Additionally, the combination of wall motion recovery with pressure
measurements may be used for estimating the mechanical properties of the vascular
wall in vivo.
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Figure 4.6: (a) Original ECG waveforms (R-R peak) of the eight patients and the resulting
temporally synchronized ECG (TS-ECG). Synchronization landmarks are also indicated.
(b,c) Motion curves of average 3DRA estimated wall displacements after applying the
temporal synchronization (TS-Displacement) at regions: right before, or at and after the
ICA bifurcation. Triangles indicate the peak motion. (color version on page C6)
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It was the aim of this thesis to investigate technical solutions to objectively
estimate, quantify and analyze the 3D cerebral aneurysm and vascular wall motion
of individual patients throughout the cardiac cycle.

This goal has been fulfilled, in the form of the following contributions:

• The development of two motion estimation methodologies for the recovery of
morphodynamic information from a single 3DRA acquisition within a registration-
based framework. This contribution is reported in [130, 131].

• The development of a validation framework using in silico and in vitro data,
able to demonstrate performance in terms of geometry, pulsation and imaging
conditions. This contribution is reported in [130, 131].

• The presentation of the first patient study that quantifies and correlates 3DRA
and DSA images of in vivo cerebral aneurysm and vessel motion during a cardiac
cycle. This contribution is reported in [129].

5.1 Conclusions

Motion estimation methodologies. In this thesis, two registration-based method-
ologies were proposed, both modeling wall motion through a B-spline tensor field
that represented the deformation applied to the reference 3DRA volume. Our first
methodology (Chapter 2) was able to estimate the aneurysm morphology at a given
time instant from its temporal vicinity by matching projections of the deformed 3D
reference volume to a sparse set of 2D measured projections in a weighted scheme.
This approach approximated the spatiotemporal motion independently from one
discrete time point to another, instead of fully addressing the intrinsic temporal
consistency or continuity of motion. In addition, the estimated morphology might be
compromised by the residual motion introduced by forcing the forward projections
at a specific time instant to match the measured projections in its temporal vicin-
ity. Therefore, the second methodology (Chapter 3) employed a single 4D B-spline
transformation model for the whole motion cycle. The registration was optimized
by measuring a single similarity metric between the entire measured projection se-
quence and the corresponding forward projections of the deformed volume at their
corresponding exact time instants. As a result, this method improved the temporal
consistency without introducing blurring, and also improved robustness to image
noise and artifacts such as contrast agent induced intensity inhomogeneity.

If we compare both methodologies, while the second one is advantageous for the
purpose of analyzing the whole motion pattern, the first could be equally useful when
dealing with situations that focus on the morphology at specific time instants. Both
techniques were tested on in silico and in vitro pulsating aneurysm phantoms that
were realistic and clinically relevant in terms of geometry, pulsation and imaging
conditions. In general, similar accuracy was obtained using both techniques. In
the situation with large intensity variations in the contrast-enhanced regions of the
projection images, such as inhomogeneous contrast mixing, the second method was
more robust than the first one.
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GPU-based acceleration. Computationally, both methodologies were quite ex-
pensive. This was especially relevant for the second one, where high-resolution
temporal sequences of 3D images, 2D measured and forward projections had to be si-
multaneously processed. Therefore, during the development of the second method, the
need for an acceleration algorithm became prominent. Consequently, we proposed a
strategy that jointly employed precomputation and object-adaptive regions-of-interest
during the DRR generation, for the sampling region of the metric computation
(Chapter 3). This strategy also resulted in a reduction of memory requirements.
To further speed-up the computation, it was implemented on GPU. This enabled the
complete estimation of an entire motion cycle in 5-10 minutes on a standard personal
computer.

Wall thickness change estimation. In Chapter 3, a geometrical measure of
aneurysmal wall deformation was estimated through strain calculations. This first
attempt provided a measure of the relative deformation to which the arterial wall
is exposed. Such calculations could be useful to further characterize and estimate
vascular wall properties such as elasticity. Note that in our approach individual
tissue points on the vascular wall were not tracked, but rather apparent motion from
image correspondences were quantified over time, and these were approximations of
the same physical point. Thus, whether an image-based approach is adequate to
characterize the vascular wall tissue remains to be investigated.

In vivo wall motion quantification. Chapter 4 concluded this thesis with some
examples from clinical data. These real-life examples clearly showed that this thesis
work can be translated into a clinical setting. 3DRA and 30-fps DSA were used for
the estimation and quantification of cerebrovascular wall motion through our second
3D+t methodology and a 2D/2D image registration techniques, respectively. From
the 14 regions quantified in 8 patients, we were able to obtain average aneurysmal or
vessel wall displacements below the projection image resolution. In addition, a good
spatial and temporal agreement was found between them. Generally, peak motion
took place towards the endsystole and beginning of diastole. To our knowledge, this
is the first study able to quantify and positively correlate 3DRA and DSA images of
cerebral aneurysm and vessel motion during the cardiac cycle.

To summarize, this thesis focused on the development of new methodologies to
recover and quantify 3D+t wall motion from rotational projection images. To this
end, the thesis work relied on the most widely used interventional technique, 3DRA,
which has the highest resolution and is preferred in routine endovascular interven-
tions. The general formulation of these techniques could potentially be adapted
to other modalities as well as to estimate motion of other organs. In order to
facilitate the possibility of usage in clinical practice, these techniques did not need
to expose patients to additional radiation, or employing special imaging protocols.
Furthermore, acceleration methods were developed to perform the motion estimation
within clinically acceptable times. Despite the difficulties in collecting patient data
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for evaluating and analyzing in vivo motion, we managed to obtain a small population
of patients where the vascular wall motion was captured in the acquisitions. We were
able to carry out a study to support the feasibility of our techniques to real data.
And finally, we expect that the present thesis has contributed to obtaining in vivo
wall motion in a seamlessly and user-friendly manner in the near future, especially
benefiting from the expected advances in image acquisition techniques which would
facilitate the capture of small motion. Consequently, we expect that the work done
in this thesis will definitely contribute to further progress in this direction.

5.2 Outlook and future work

The ultimate aim of our aneurysm wall motion research is to investigate its
potential correlation to growth and possible risk of rupture. The work carried out in
this thesis constitutes a first step towards this aim and it has enabled extracting and
quantifying motion information in the cardiac cycle from 3DRA. There still remain
several unresolved issues before fulfilling this aim.

Motion pattern characterization. Wall motion pattern over the cardiac cycle
has been studied on our in vivo data presented in Chapter 4. As has been discussed
earlier, the small amount of patient data that we managed to collect in this thesis
is not sufficient for rendering descriptive statistics of general motion patterns. It is
therefore necessary to conduct such a prospective study on a larger series of patient
data. Our hypothesis is, that the dynamic pattern of the vessel wall is influenced
by anatomical position and shape; and it is also related to the hemodynamics,
which is supported by previous studies. In [11, 68], animal or ex vivo experiments
have shown that aneurysm pulsation follows variations in intra-aneurysmal pressure,
potentially with some delay. Therefore, performing such a study in the future could
increase the understanding of vascular mechanics and the possibility of detecting early
disturbances in the vessel wall.

Estimation of mechanical properties of the vascular wall. Further studies
about the biomechanical properties of cerebral aneurysms can help to elucidate the
biomechanical conditions preceding rupture. With the progress in in vivo aneurysmal
wall motion estimation we might soon expect to be able to estimate in vivo mechanical
material properties of cerebral aneurysms [5]. Such biomechanical parameters might
themselves be good predictors of vascular integrity or aneurysm rupture, and eventu-
ally become part of a more comprehensive aneurysm management pipeline [110, 111].

Morphodynamic characterization. Regions or spots presenting larger pulsation
on the aneurysmal wall during the cardiac cycle could be likely candidates for possible
aneurysm rupture points or areas of growth. Therefore, it should be possible to
characterize the shape at different time instants using a techniques such as the
moment invariants method proposed by Millán at al. [61]. After analyzing the shape
at the different time instants for one patient, each of the shapes could be compared to
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the precomputed shapes from other patients in a database. Based on the relationship
of each shape with respect to its closest neighbors, discriminating between ruptured
and unruptured aneurysms should be feasible. Such approach could be also extended
to the temporal domain to help determining the potential risk of growth based on
the retrieved pulsation patterns.

Combination with blood flow simulations. To date, the variable that has
shown to have the largest impact on the computed flow fields is the geometry of
the vascular structures [16]. Therefore, combining morphodynamic characterization
with computational fluid dynamics (CFD) simulations could help to understand the
effects of deforming walls on the hemodynamic patterns [18, 75]. Additionally, it
could also provide more realistic intra-aneurysmal flow patterns, which in turn could
help to better predict rupture risk.

Application to other vascular districts. Other possible applications in the
future could be vascular motion related analysis of carotid arteries [2], aorta [92] or
coronary arteries [10, 66], among others. The methodological framework developed in
this thesis would probably need to be adapted to these applications, since the motion
amplitude and pattern, the shape structure of the studied object, and routine imaging
techniques are expected to vary greatly.
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Additional miscellaneous aneurysm
locations not shown: 3.5%Pericallosal artery, 4%

Anterior communicating artery, 30%

Internal carotid artery 
bifurcation, 7.5%

Middle cerebral 
artery, 20%

Posterior communicating
artery, 25%

Basilar tip, 7%

Posterior inferior
cerebellar artery, 3%

Figure 1.2 (page 4): The most frequent 
locations of cerebral aneurysms in the 
intracranial vasculature. Reproduced 
with permission from [14].

Figure 1.4 (page 10): An illustration of the 
imaging principle of the 3DRA modality. More 
than 100 contrast-enhanced images are acquired 
by rotational angiography during a 4-second 
scan, at constant time intervals and uniformly 
distributed over more than 200   along a 
circular trajectory. A 3D volume automatically 
reconstructed from these image date can be 
viewed with real-time volume rendering. 
During the rotational run, a physiological signal
can be synchronously recorded as well.

◦

Figure 1.3 (page 9): A picture of a flat panel 3DRA 
system Allura Xper FD20 (Philips Healthcare, Best, 
The Netherlands). 1. X-ray source; 2. Image detector; 
3. C-arm that rotates around the patient; 4. Patient 
table.
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Figure 2.16 (page 37): (a) The obtained volume variations with two downsampling factors df=1,2, along with the Doppler ultrasound 
velocity waveform. (b) Four (boxes) out of 20 (dots) estimated time points presenting the instantaneous wall displacements with respect
to the reference geometry.
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Figure 2.7 (page 27): Instantaneous estimated pulsation amplitude distribution at 8 (dots) time points referenced to the ground truth 
pulsation curve. A 12-mm aneurysm with pulsation of 4% (0.48 mm). Ground truth (top) is compared to the results from our method 
(bottom).

Figure 2.17 (page 37): Color-coded displacement range over the cardiac cycle for each point on the surface, and the histogram of the 
displacement range.
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Figure 3.10 (page 60): 
Results of aneurysm wall 
motion in patient #1. (a) A 
close view indicating the 
region where our motion 
estimation method has been 
applied (dashed frame) in an 
X-ray angiography. (b) The 
color map (line in (a) 
indicating the viewing plane) 
of the displacements around 
the end-systolic (ES) phase 
(indicated by the arrow in 
(d)). (c) The radial Cauchy 
strain at the same phase as 
in (b). (d) Aneurysm wall 
displacement amplitude
over the cardiac cycle at 
the location indicated by 
the arrow head in (a) and 
the circles in (b,c).

Figure 3.9 (page 59): Results from in 
vitro LP phantom: (a,b) Example of 
checkerboard images for the in vitro 
phantom comparing respectively the 
measured projection with the equivalent 
DRR computed from the reference 
volume and our estimation. The color 
maps of the wall displacement 
amplitude (c) and the radial Cauchy 
strain (d) for the frontal and lateral 
views at the instant presenting the 
largest displacement.

Figure 3.8 (page 58): Wall displacement 
amplitude and radial Cauchy strain at the 
maximum (top) and minimum (bottom) 
deformation states for an in silico phantom 
with diameter of 12 mm and pulsation of 
3% (i.e. maximum amplitude of 0.36 mm).
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Figure 3.14 (page 65): Results comparing the 
influence of inhomogeneous contrast filling on the 
method in [130] (denoted as ALG1) and our present 
technique (denoted as ALG2), using an in silico 
phantom with diameter of 10 mm and pulsation 
of 4% (i.e. maximum amplitude of 0.4 mm). 
Results at two instants are shown graphically: 
(a,c,e) minimum pulsation and (b,d,f) maximum 
pulsation. The ground-truth shape (wireframe) 
at each time instant is overlaid with: (a,b) the 
reference, (c,d) the estimation using ALG1, and 
(e,d) the estimation using ALG2. (g) Comparison 
of e   between ALG1 and ALG2 with the three 
sampling regions: S      , S     , and S     .
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Figure 3.11 (page 61): Results of vessel wall 
motion in patient #2. (a) A close view 
indicating the region where our motion 
estimation method has been applied (dashed 
frame) in an X-ray angiography. (b) The color 
map of the displacements around the 
end-systolic (ES) phase (indicated by the 
arrow in (d)). (c) The radial Cauchy strain at 
the same phase as in (b). (d) The vessel 
diameter change over the cardiac cycle at the 
location as indicated by the arrow head in (a).

Figure 3.12 (page 62): 
Results of catheter tip 
movements in patient #2. 
(a) A close view 
indicating the region 
where our motion
estimation method has 
been applied (dashed 
frame) in an X-ray
angiography. The color 
maps of the estimated 
catheter movements (b) 
and the strain (c) at ten 
selected time points. (d) 
The catheter tip (arrow 
head in (a)) longitudinal 
displacement plotted 
together with the ECG 
signal.
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Figure 4.1-2 (page 75, 
76): Patients #2,5,6,8 
and #9,10,11,12: (from 
left to right) 3DRA 
data with the studied 
region of interest 
highlighted in 
different colors: 
aneurysm region (AR),
vessel region (VR) 
and bifurcation region 
(BiR); one DSA 
image; measurement 
regions on 2D contour 
delineations (crosses 
indicate the region 
on the contour); 
measurement regions 
on 3D surface.
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Figure 4.6 (page 86): (a) Original ECG waveforms (R-R peak) of the 8 patients and the temporally synchronized ECG (TS-ECG). 
Synchronization landmarks are also indicated. (b,c) Motion curves of average 3DRA estimated wall displacements after applying 
the temporal synchronization (TS-Displacement) at regions: right before, or at and after the ICA bifurcation. Triangles indicate the 
peak motion.
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