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Abstract

Cardiovascular diseases (CVDs) are the major cause of death in the Western world. The
desire to prevent and treat CVDs has triggered a rapid development of medical imaging
systems. As a consequence, the amount of imaging data collected in health care insti-
tutions has increased considerably. This fact has raised the need for automated analysis
tools to support diagnosis with reliable and reproducible image interpretation. The in-
terpretation task requires to translate raw imaging data into quantitative parameters,
which are considered relevant to classify the patient’s cardiac condition. To achieve this
task, statistical shape model approaches have found favoritism given the 3D (or 3D+t)
nature of cardiovascular imaging datasets. By deforming the statistical shape model to
image data from a patient, the heart can be analyzed in a more holistic way.

Currently, the field of cardiovascular imaging is constituted by different modalities.
Each modality exploits distinct physical phenomena, which allows us to observe the
cardiac organ from different angles. Clinicians collect all these pieces of information to
form an integrated mental model. The mental model includes anatomical and functional
information to display a full picture of the patient’s heart. It is highly desirable to trans-
form this mental model into a computational model able to integrate the information in
a comprehensive manner. Generating such a model is not simply a visualization chal-
lenge. It requires having a methodology able to extract relevant quantitative parameters
by applying the same principle. This assures that the measurements are directly compa-
rable. Such a methodology should be able to: 1) accurately segment the cardiac cavities
from multimodal datasets, 2) provide a unified frame of reference to integrate multiple
information sources, and 3) aid the classification of a patient’s cardiac condition.

This thesis builds upon the idea that statistical shape models, in particular Active
Shape Models, are a robust and accurate approach with the potential to incorporate all
these requirements. In order to handle multiple image modalities, we separate the statis-
tical shape information from the appearance information. We obtain the statistical shape
information from a high resolution modality and include the appearance information
by simulating the physics of acquisition of other modalities.

The contributions of this thesis can be summarized as: 1) a generic method to auto-
matically construct intensity models for Active Shape Models based on simulating the
physics of acquisition of the given imaging modality, 2) the first extension of a Magnetic
Resonance Imaging (MRI) simulator tailored to produce realistic cardiac images, and
3) a novel automatic intensity model and reliability training strategy applied to cardiac
MRI studies. Each of these contributions represents an article published or submitted to
a peer-review archival journal.
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Resumen

Las enfermedades cardiovasculares (ECVs) son la principal causa de mortalidad en el
mundo Occidental. El interés de prevenir y tratar las ECVs ha desencadenado un rápido
desarrollo de los sistemas de adquisición de imágenes médicas. Por este motivo, la can-
tidad de datos de imagen recolectados en las instituciones de salud se ha incrementado
considerablemente. Este hecho ha aumentado la necesidad de herramientas automati-
zadas para dar soporte al diagnóstico, mediante una interpretación de imagen confiable
y reproducible. La tarea de interpretación requiere traducir los datos crudos de imagen
en parámetros cuantitativos, los cuales son considerados relevantes para clasificar la
condición cardiaca de un paciente. Para realizar tal tarea, los métodos basados en mod-
elos estadísticos de forma han recibido favoritismo dada la naturaleza tridimensional (o
3D+t) de las imágenes cardiovasculares. Deformando el modelo estadístico de forma a
la imagen de un paciente, el corazón puede analizarse de manera integral.

Actualmente, el campo de las imágenes cardiovasculares esta constituido por difer-
entes modalidades. Cada modalidad explota diferentes fenómenos físicos, lo cual nos
permite observar el órgano cardiaco desde diferentes ángulos. El personal clínico re-
copila todas estas piezas de información y las ensambla mentalmente en un modelo
integral. Este modelo integral incluye información anatómica y funcional que muestra
un cuadro completo del corazón del paciente. Es de alto interés transformar este mod-
elo mental en un modelo computacional capaz de integrar la información de manera
global. La generación de un modelo como tal no es simplemente un reto de visual-
ización. Requiere una metodología capaz de extraer los parámetros cuantitativos rele-
vantes basados en los mismos principios técnicos. Esto nos asegura que las mediciones
se pueden comparar directamente. Tal metodología debe ser capaz de: 1) segmentar con
precisión las cavidades cardiacas a partir de datos multimodales, 2) proporcionar un
marco de referencia único para integrar múltiples fuentes de información, y 3) asistir la
clasificación de la condición cardiaca del paciente.

Esta tesis se basa en que los modelos estadísticos de forma, y en particular los Mode-
los Activos de Forma, son un método robusto y preciso con el potencial de incluir todos
estos requerimientos. Para procesar múltiples modalidades de imagen, separamos la
información estadística de forma de la información de apariencia. Obtenemos la infor-
mación estadística de forma a partir de una modalidad de alta resolución y aprendemos
la apariencia simulando la física de adquisición de otras modalidades.

Las contribuciones de esta tesis pueden ser resumidas así: 1) un método genérico
para construir automáticamente modelos de intensidad para los Modelos Activos de
Forma simulando la física de adquisición de la modalidad en cuestión, 2) la primera
extensión de un simulador de Resonancia Magnética Nuclear diseñado para producir
estudios cardiacos realistas, y 3) un método novedoso para el entrenamiento automático
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de modelos de intensidad y de fiabilidad aplicado a estudios cardiacos de Resonancia
Magnética Nuclear. Cada una de estas contribuciones representa un artículo publicado
o enviado a una revista técnica internacional.
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Chest pain, shortness of breath. The patient may have a cardiac condition. And so the

imaging journey begins. The first Ultrasound study makes its appearance, giving a

general evaluation of heart performance. If abnormalities are found, a cardiac Magnetic

Resonance Imaging study can provide a more complete picture. If ischemia is suspected,

a Nuclear Medicine study would be the right choice, or perhaps a Computed Tomogra-

phy scan to search for coronary stenosis.

As the patient dances from acquisition to acquisition, the amount of data collected in-

creases enormously. Ultimately, raw imaging data has to be translated into interpretable

parameters. Each pathology can be described as a combination of those parameters. The

clinician in charge will mentally combine all the information to diagnose the patient

and finally decide the appropriate treatment.
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1
General Introduction
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2 1.1. Context

1.1 Context

1.1.1 Cardiac Function

The pumping action of the cardiac organ is caused by a fascinating chain of
events. A healthy heart will unfold each of these events at specific moments to
obtain a choreographed ejecting contraction and filling relaxation. As the heart
deteriorates, due to aging or disease, its performance becomes inefficient.

Heart performance, i.e. cardiac function, is usually divided into two groups:
systolic and diastolic. Systolic function refers to events occurring during con-
traction and ejection. Diastolic function refers to events occurring during re-
laxation and filling. Different quantitative parameters have been suggested to
evaluate each of them at global and regional level.

Global systolic function can be measured for both ventricles and is based
on ventricular volumes at end diastole (EDV) and end systole (ESV). From
these volumes other parameters are calculated, as summarized in Table 1.1.
Ventricular mass (VM) is also a global indicator of cardiac function. VM is
calculated based on the volume contained within the epicardial borders, mi-

Figure 1.1: Schematic diagram of cardiac function. Venous blood arrives from the Superior
Vena Cava (SVC) and Inferior Vena Cava (IVC) to the Right Atrium (RAt). From the

RA, blood passes to the Right Ventricle (RV). The RV sends the blood via the Pulmonary
Artery (PA) to be oxygenated in the lungs. Oxygenated blood comes back to the Left

Atrium (LAt) via Pulmonary Veins (PVs) and passes to the Left Ventricle (LV). Finally,
the LV ejects the blood through the Aorta (Ao) to the peripheral circulatory system.
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TABLE 1.1: Systolic function parameters derived from volume

measurements

Parameter Acronym Calculation Units

Stroke Volume SV EDV − ESV ml

Ejection Fraction EF EDV−ESV
EDV × 100 %

Cardiac Output CO HR× SV ml/min

Mass VM (EDVepi − EDV)× 1.05 g

EDV= End diastolic volume; ESV= End systolic volume;

HR= Heart rate; EDVepi= Epicardial EDV.

nus the chamber volume, multiplied by the density of the muscle tissue (see
Table 1.1). A better evaluation of systolic performance can be achieved by eval-
uating regional function. Main regional parameters include wall thickness and
wall thickening [1]. More recently, myocardial strain1 can be evaluated along
the radial, circumferential and longitudinal directions [2].

Diastolic function is currently evaluated based on flow and tissue velocity
curves. These curves show the filling dynamics of the LV and yield the fol-
lowing parameters: isovolumic relaxation time (IVRT), peak early (E) and peak
atrial (A) flow velocity, and, deceleration time (DT) of early flow velocity [3].
Some studies have indirectly measured diastolic function parameters from vol-
ume time curves (VTC) [4,5]. The diastolic behavior of the LV is evaluated from
the filling rate curve, calculated as the first derivative of the VTC. The two most
exploited parameters obtained from this curve are: peak filling rate (PFR) and
time to peak filling (TTPF). PFR is estimated as the maximum value of this
curve, divided by EDV as a normalizing factor. TTPF corresponds to the time
elapsed between end systole and PFR (see Fig. 1.2) [4].

Valvular function can have an impact on both systole and diastole. If the
valves fail to open or close properly, the ejection and filling processes, and
hence cardiac function, will be impaired. Valvular function is evaluated as the
degree of valvular stenosis and/or regurgitation fraction (RF)2 [6].

1.1.2 Cardiovascular Imaging

This section briefly reviews the imaging techniques most frequently used for
cardiac function analysis. Some functional parameters can be evaluated with
multiple modalities (see Fig. 1.3). In this case, the decision to use one modality
or another is given by a combination of cost-effectiveness and non-ionization
requirements.

1Relative deformation of tissue from an applied force.
2Percentage of blood that backflows to the previous cavity.
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Figure 1.2: Methodological outline of the volume (−) and filling rate (− −) curves:
definition of time to peak filling (TTPF) as the time elapsed between time of end systole

(ES) and time of peak filling rate (PFR).

Angiography

Angiography is an imaging technique based on X-ray principles. A 2D projec-
tion of the heart is obtained after injecting a radio-opaque contrast. The strength
of this modality is the visualization of coronary stenosis, while its weakness is
poor soft tissue contrast. Angiography is the modality used for interventional
procedures and it involves catheterization of the patient. The catheter allows
the interventional radiologist to reach the coronaries in a minimally invasive
way. Catheterization can be used for stent deployment, myocardial ablation or
electrophysiological studies3, among others (see 1.2.2) [7].

Ultrasound (US)

Cardiac ultrasound or echocardiography is the fastest, least expensive, and
least invasive screening modality to image the heart. The strength of this mo-
dality is its high temporal resolution, ideal for wall motion assessment. Using
color Doppler and tissue Doppler imaging, intracavitary flow and wall tissue
velocities can be measured as well. The acquisition can be performed in 2D,
for high temporal resolution, or in 3D, for volumetric information. As a down
side, the acoustic window of some patients may not alow for high quality im-
age acquisition. In such cases, a transesophageal echocardiography study can
be performed [8].

Single Photon Emission Computed Tomography (SPECT)

Nuclear medicine is the classical modality to evaluate myocardial perfusion to
determine infarcted and/or underperfused areas. In order to obtain a SPECT
dataset, a radiopharmaceutical is administered to the patient. This radiophar-
maceutical emits gamma rays, which are detected by the imaging device. SPECT
images can be gated with the patient’s electrocardiogram such that perfusion

3Measuring the action potentials of the myocardium.
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3DUS CT SPECT MRI

Figure 1.3: Images from different modalities: 3DUS= Three-dimensional ultrasound;
CT= Computed Tomography; MRI= Magnetic Resonance Imaging; SPECT= Single

Photon Emission Computed Tomography.

and left ventricular function can be evaluated simultaneously. The strength of
this modality is that it directly assesses viability, while its weakness is the low
spatial and temporal resolution of the datasets. The recent commercial avail-
ability of SPECT/CT hybrid systems provide attenuation correction for recon-
struction techniques improving considerably the quality of the images [9].

Computed Tomography (CT)

This modality presents high resolution of over-all anatomical information pro-
viding excellent imaging of the heart and coronary arteries. Also, it is relatively
inexpensive and provides fast acquisitions. However, it is based on physical
principles (X-ray) that expose patients to high doses of radiation. Recent stud-
ies have employed delayed enhancement CT imaging to quantify myocardial
infarct size and transmurality [9, 10].

Magnetic Resonance Imaging (MRI)

MRI has become the gold standard of accuracy and reproducibility for assess-
ment of volumes, mass, and wall motion [8]. It allows easy differentiation of
soft tissues and blood without any contrast agent. The limitations of this moda-
lity include: long acquisition time, claustrophobic sensations, and contraindi-
cations for patients with implanted pacemakers. Different sequences, perhaps
in combination with contrast media, result on different types of images: an
anatomical image highlights the soft tissues, a late gadolinium enhancement
image highlights the necrotic/fibrotic tissue, an oedema image highlights ac-
cumulation of water (see Fig. 1.4). Recent developments allow to acquire 3D
isotropic datasets for anatomical evaluation [11], 3D tagging datasets for strain
analysis [12], 4D phase contrast imaging for flow measurements [13, 14], tis-
sue phase mapping for myocardial motion analysis [15] and in-vivo4 diffusion
tensor imaging for cardiac fiber orientation visualization [16].

4Measurements performed in a living organism, as opposed to in a dead organism (in-vitro).
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bSSFP LGE TIR

Figure 1.4: MRI images for the same patient with three different sequences: balanced
Steady State Free Precession (SSFP) sequence for anatomical evaluation, late gadolinium
enhancement (LGE) sequence for necrotic/fibrotic tissue evaluation and triple inversion

recovery sequence (TIR) for oedema evaluation.

1.2 Clinical Motivation

1.2.1 Cardiovascular Diseases

Heart performance can easily be affected by dysfunctions. Dysfunctions initiate
a cascade that latter on develops into a cardiovascular disease (CVD). CVDs are
the major cause of death in the Western world claiming more lives each year
than cancer and accidents combined [17, 18]. It is estimated that 36% of the
adult population in the USA has a CVD [17]. In Europe, the older population
has a 50% prevalence of CVDs causing about 40% of deaths. Let us briefly
review the main ones:

Ischemic Cardiomyopathy

The cardiac muscle cell, like any other cell, depends on oxygen supply to func-
tion. Oxygen is provided by the blood. The blood is channeled through the
coronary arteries. A reduction of blood supply to the cardiac muscle causes is-
chemia. An ischemic event is frequently caused by atherosclerosis5 in the coro-
nary arteries. This is known as coronary arterial disease (CAD). Atherosclerosis
can cause occlusion of the coronary vessels, disrupting the blood supply to the
myocardium. A prolonged ischemia can cause irreversible damage to the my-
ocardial tissue [19]. This is known as myocardial infarction.

A myocardial infarction can cause abnormal loading conditions in the my-
ocardium. In time, these abnormalities can induce shape alterations of the
heart, such as localized thinning of the wall, and in extreme cases might gener-
ate a ventricular aneurysm. Other main shape alteration is ventricular dilation,
and it is known as ischemic dilated cardiomyopathy. Ultimately, these abnor-
malities will impair the ejection capabilities of the heart.

5Accumulation of plaque on the wall of the vessels, which decreases the diameter of the vessel.
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Non-ischemic Cardiomyopathies

A relatively recent classification of cardiomyopathies divides them into: genetic,
mixed and acquired [20]. The most frequent genetic cardiomyopathy is hyper-
trophic cardiomyopathy (HCM). HCM is mainly characterized by thickening
of the myocardial wall (hypertrophy). Although hypertrophy may appear as
a physiological response to hypertension or aortic stenosis, the genetic alter-
ations causing HCM increase the size of the myocardial cells severely. HCM is
the most common cause of sudden cardiac death in young people, including
athletes. In some cases of HCM, the myocardium can obstruct the out-flow of
blood, disrupting the normal functionally of the heart [21].

The most frequent mixed cardiomyopathy is dilated cardiomyopathy (DCM).
It may be caused by infectious agents, toxins, autoimmune and systemic dis-
orders, as well as genetic alterations [20]. DCM is mainly characterized by di-
lation of the left ventricle, or even both ventricles, and impaired contractility.
Contractility impairment translates into severe systolic dysfunction6 [22].

The main acquired cardiomyopathy is myocarditis. Myocarditis is an in-
flammatory process affecting the myocardium. It can be caused by toxins, drugs
or infectious agents [20]. The inflammation can cause ventricular tachyarrhyth-
mia due to electrical instability. It can also start an autoimmune reaction caus-
ing myocardial damage. This disease presents a clinical frame similar to the
one of myocardial infarction, including wall motion abnormalities and ST-T
changes on the electrocardiogram [20].

Congenital Heart Disease

A variety of conditions can be caused by abnormalities during embryonic de-
velopment. These conditions are usually treated very early in life via surgical
intervention. Over the patient’s life time, mainly due to growth, a new surgery
might be necessary. In this case, imaging is used to carefully follow-up the
patients and discern whether a new surgery is necessary. Some examples of
congenital heart diseases are: cardiac shunts7, Tetralogy of Fallot, valve abnor-
malities, aortic coarctation, transposition of the great vessels [23].

Arrhythmias

Abnormalities in the heart rhythm are caused by problems with the electri-
cal conducting system of the heart. Any electrical alteration ultimately affects
its mechanical function. This mainly means that the timing of the contractile
events are not synchronized and therefore the overall performance of the heart
is impaired. A clear example is Left Bundle Branch Block (LBBB). Some pa-
tients with this type of electrical disorder present a mechanical reaction known
as septal flash [24]. Septal flash is an early inward and outward motion of the
ventricular septum. The contraction of the lateral wall is relatively delayed loos-
ing the synchronicity of the contraction. Other examples of electrical disorders
include: atrial fibrillation, ventricular tachycardia, ventricular fibrillation, atri-
oventricular block, sinus node disease, bundle branch blocks [7].

6Impaired ventricular contraction, which reduces the pumping capabilities of the heart.
7Holes that communicate the cardiac chambers.
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1.2.2 Cardiovascular Care Cycle

To reduce the burden of CVDs, cardiological societies, such as the American
Heart Association and the European Society of Cardiology, have taken the re-
sponsibility to develop guidelines for prevention, diagnosis and treatment of
CVDs [25–30]. These guidelines are constantly updated to include new scien-
tific evidence into the clinical cardiovascular care cycle [31].

Prevention

In 1966, the Framinghan study defined hypertension, smoking, diabetes, and
hyperlipidemia as the major coronary risk factors [32]. These risk factors were
then combined into risk scores for the evaluation of cardiovascular risk [33–36].
Using risk scores, these studies developed algorithms which allowed clinicians
to predict whether a patient was in low, intermediate or high risk of developing
a CVD. Usually, risk assessment is performed once the disease has manifested
clinical symptoms, for instance an acute coronary syndrome. However, there
are high risk asymptomatic patients who would greatly benefit from preven-
tive cardiology [18, 30]. These patients can be identified in routine check-ups
where some coronary risk factors can be found. To further evaluate CAD, phar-
macological stress can be induced to evaluate ischemia in combination with
echocardiography, radionuclide imaging (like SPECT) and MRI [28, 29]. Coro-
nary calcifications are a clear sign of coronary atherosclerosis and they can be
visualized in a CT scan. However, CT exposes the patient with x-ray radiation
and therefore should be used carefully. Patients in high risk of developing a
CVD will receive preventive treatment including pharmacological therapy and
life-style changes, such as stoping smoking, dieting and exercising [30].

Diagnosis

Despite preventive measures, approximately 15 million patients are treated in
the emergency room for suspected myocardial infarction every year in the USA
and in Europe [37]. In an emergency setting, the priority is to decide whether
the patient requires an urgent reperfusion procedure. This is decided consider-
ing case history, physical examination, electrocardiogram (ECG) analysis, blood
sampling and imaging evidence [25,29]. The case history takes into account cur-
rent symptoms and risk factors for coronary disease. The physical examination,
such as blood pressure measurement and ausculation8, can evaluate hemody-
namic and respiratory alterations. The blood sampling can reveal the presence
of enzymes, such as cardiac troponin and CK-MB9, which indicate recent my-
ocardial damage. The ECG can show abnormal patterns, specifically ST and T
changes, which suggest myocardial infarction.

In the acute setting, imaging is commonly used with two purposes: 1) rul-
ing out or confirming the presence of infarction or ischemia, and 2) identi-
fying non-ischemic conditions causing chest pain [25]. The first purpose can
be achieved with echocardiography by evaluating local motion abnormalities

8Listening to the internal sounds of the body with a stethoscope.
9The MB fraction of creatine kinase.
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or with SPECT by directly measuring myocardial perfusion [29]. MRI, capa-
ble of evaluating wall motion and ischemia, is less used in the acute setting
due to longer examination times. However, it is recommended if myocarditis
is suspected since the inflammation displays a very distinct late gadolinium
enhancement pattern [25]. The second purpose is known as differential diagno-
sis. It can reveal non-ischemic causes for the chest pain, such as valve defects,
cardiomyopathies, pericarditis, myocarditis, hypertensive heart disease, pul-
monary embolism and aortic dissection [26, 37].

Treatment

Once the reason for the chest pain is detected, patients will undergo treatment
targeted to their specific condition. Patients with strong evidence of myocardial
infarction will be urgently treated with pharmacological or mechanical reper-
fusion. Pharmacological reperfusion is achieved with fibrinolytic treatment and
mechanical reperfusion is achieved by percutaneous catheterization (PCI) [29].
PCI often includes inflating an angioplastic balloon to reopen the vessel and
placing a stent10 to reinforce vessel structure.

Both ischemic and non-ischemic patients will receive pharmacological ther-
apy and close monitoring to prevent the development of heart failure (HF). The
symptoms of HF include shortness of breath at rest, fatigue, signs of fluid re-
tention, and evidence of cardiac structure or function abnormalities at rest [8].
Depending on the underlying cause and the severity of HF, different treatments
are recommended:

• Pharmacological therapy: this treatment aims to control heart rate, blood
pressure, plasma lipids and diabetes [30]. A combined control of these
processes can help balance hemodynamic conditions of cardiac function.
For instance, hypertension can be managed by reducing circulating vol-
ume, inhibiting vasoconstriction and promoting vasodilation [30, 31].

• Surgeries: revascularization procedures aim to restore perfusion to the
myocardium using PCI and/or coronary artery bypass grafting (CABG).
Valvular surgery is used to repair or replace cardiac valves. It is recom-
mended for patients with severe aortic stenosis, severe aortic, mitral or
tricuspid regurgitation, or congenital valve defects [8]. Another type of
surgery aims to remove portions of the myocardium. For instance, a ven-
tricular aneurysmectomy for patients with large LV aneurysms or a septal
myectomy for patients with obstructive HCM [8, 38]. Patients with con-
genital cardiac shunts may require surgery to close the septal communi-
cation [39].

• Pacing: if the natural pacing of the heart is impaired, the use of a pace-
maker is recommended. Such is the case for patients with atrioventricular
block or sinus node disease [7]. In patients with high risk of sudden car-
diac death, such as HCM or DCM, implanting a cardioverter defibrillator
is recommended [40]. The defibrillator will perform a rescue shock if the

10Small mesh tube.
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patient goes into cardiac arrest. Another type of procedure, called Car-
diac Resynchronization Therapy (CRT), uses a biventricular pacemaker
to create a delay in electrical stimulation. CRT has been recommended
in patients with severe HF and electrical dyssynchrony, although recent
studies have suggested new criteria to select CRT candidates [41]. The
delay is optimized for each patient to restore synchronicity [7].

• Ablation: ablation is performed with a catheter that applies a specific ra-
diofrequency and causes a localized infarction. It is usually performed
in patients with atrial fibrillation or ventricular arrhythmias to interrupt
electrical pathways [7]. Alcohol ablation can be recommended in patients
with severe HCM to reduce myocardial mass [38].

• Heart transplantation: heart transplantation is only recommended when
no alternative treatment is available. This is due to the shortage of donor
hearts and the possibility of rejection. To qualify for a heart transplant,
the candidate should have no history of alcohol or drug abuse [8].

During treatment, imaging has two main roles: 1) monitoring the progres-
sion of the a CVD, and 2) guiding interventions. For cost-effectiveness reasons,
the main monitoring modality is echocardiography, although in some patients
transthoracic11 and transesophageal12 echocardiography may fail to provide
enough diagnostic details. In such case, additional non-invasive imaging ex-
aminations, such as MRI, CT or SPECT, should be employed. For patients un-
dergoing heart transplantation, both echocardiography and MRI can be used
to monitor the long term adaptation effects of the transplanted heart [42].

Imaging guidance of interventions is a fast growing field. Typically, a pre-
operative imaging dataset is acquired. The preoperative image can be used to
plan the intervention, aiding the selection of the type of device and implanta-
tion site. Revascularization procedures can be endorsed if evidence of viable
myocardium is found. Myocardium viability is evaluated with SPECT, contrast
enhanced MRI and, recently, contrast enhanced CT [9]. Other procedures that
can be improved with image guidance include: aortic dissection/aneurysm,
and congenital heart disease repairs [39].

A step further is to use preoperative information to guide the procedure
itself. From preoperative imaging (MRI, CT), patient specific anatomical infor-
mation is extracted. The anatomical information can be complemented with
the localization of scar. The intraoperative overlay requires a special system
that aligns the position of the patient with the preoperative image, and keeps
it updated during the whole intervention. Two procedures that already benefit
from image-guided interventions include ablation and CRT [43, 44].

11Suboptimal acoustic windows are usually due to obesity or small rib separation.
12Failure may be due to unsuccessful esophageal intubation and respiratory complications.
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Figure 1.5: Google Earth c© a computational model of the Earth. Similarly, a computational model of the heart
would include different sources of information. The information can be displayed as it becomes relevant to the level

of detail and the point of view.

1.3 Technical Motivation

1.3.1 From Mental to Computational

The imaging journey taken by the patients through the care cycle generates
massive amounts of information. Clinicians collect bits and pieces of informa-
tion to form a mental model. This integrative mental model displays a full
picture of the condition of the patient. It is highly desirable to transform this
mental model into a computational model. The computational model should
be able to integrate the information in a comprehensive manner. The model
should be built such that only relevant data is stored. Ideally, we should be
able to display multiple levels, from organ to cell level. Each level of the model
will then display the information relevant for that scale.

A good analogy to illustrate this idea is found in the tool Google Earth c©.
The tool gathers information from different sources and at different levels of de-
tail. It allows to navigate from the globe, through different scales, to street level.
The street level display also provides relevant localized information: restau-
rants, hotels, bus stops, etc (see Fig. 1.5). To be able to create such a model, we
can recognize three main challenges:

Multimodal Integration

The concept of a multimodal scheme refers to the evaluation of the same patient
with different image modalities. In the end, this allows to have information
of the heart from several points of view. Inside the clinical environment the
multimodal scheme is observed quite naturally (see Fig. 1.6).

This brings us to our first main challenge: multimodal integration. Data
from different modalities is processed independently. Usually it is translated
into a parameter which is considered relevant to classify the patient’s pathol-
ogy. Given that the parameters are calculated by different tools, they are not
directly comparable. Ideally, information should be extracted from the various
modalities by the same methodology or, better yet, by the same tool. Again, we
find suitability for a statistical model-based approach. Once the statistical mo-
del is able to handle multimodal data, it can process the multiple datasets and
calculate the desired parameters. Since the statistical model is the same for each
dataset, we have a unified frame of reference with all the relevant information.



“myThesis” — 2011/5/19 — 16:46 — page 12 — #30

12 1.3. Technical Motivation

Figure 1.6: In a clinical environment the multimodal scheme is observed naturally. The
clinician in charge will mentally combine all the information to diagnose the patient.

3DUS= Three-dimensional ultrasound; CT= Computed Tomography; MRI= Magnetic
Resonance Imaging; SPECT= Single Photon Emission Computed Tomography. (See color

insert)

Dimensionality Reduction

Our second challenge is the reduction of dimensionality: the amount of data
collected during the clinical diagnostic pipeline needs to be reduced to simple,
yet relevant, measurements. Currently it is mainly achieved by combining 2D
measurements, such as wall thickness and ventricular diameters, with volu-
metric measurements. In this context, an approach based on a statistical model
becomes very interesting. By deforming the statistical model to image data
from a patient, the heart can be analyzed in a more holistic way. The analysis
can be targeted to shape analysis: are there local/global thickness alterations?
are the cavities proportional to each other? It can also be targeted to a dynamic
analysis: is the contractility function uniform or unbalanced? is it normal or
impaired? A statistical model-based approach allows to place the heart of a
specific patient into a common frame of reference. This common frame of ref-
erence is known as atlas.
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Figure 1.7: Active Shape Models are a robust and accurate approach to quantify cardiac
parameters from multimodal image data. They can evaluate the spatio-temporal variability
of the heart. 3DUS= Three-dimensional ultrasound; CT= Computed Tomography; MRI=
Magnetic Resonance Imaging; SPECT= Single Photon Emission Computed Tomography.

(See color insert)

Pathology Classification

Clinicians, thanks to previous knowledge and experience, hold a pattern of
normality in their mind, which allows them to compare the condition of one
patient to a pattern of normality. Statistical atlases allow us to mimic this behav-
ior. Although initially atlases were employed as a simple template, they have
evolved to encode shape variability within a population. This variability in-
formation allows to compute the distance between a patient-specific geometry
and the mean atlas [45]. This distance can be related to a CVD and, therefore,
it can be used to aid the diagnosis.

1.3.2 Approach

Keeping in mind all the requirements and challenges presented above, we de-
sire an approach that:

• is able to accurately segment the cardiac cavities from multimodal datasets:
this implies flexibility in the type of structure (i.e. one or two ventricles)
and the image appearance information (i.e. SPECT or MRI).
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• provides a unified frame of reference to integrate multiple information
sources: this targets the idea of displaying the clinicians mental model of
the patient’s heart in a computational manner.

• aids the classification of a patient’s cardiac condition: this requires a priori
statistical knowledge of normality and pathological conditions.

Our idea is that statistical shape models, in particular Active Shape Models
(ASM), are a robust and accurate approach with the potential to incorporate the
aforementioned requirements (see Fig. 1.7). We evaluate this idea in the con-
text of left ventricular segmentation from SPECT datasets and bi-ventricular
segmentation from MRI datasets [46–48]. Within our research group, an exten-
sion to 3DUS has been carried out [49]. In the next chapter we will elaborate
on the implementation issues tackled in this thesis.
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2.1 Context

Model-based object recovery from images is a problem that has motivated over
30 years of research in computer vision. Early applications employed rigid
models to recognize man-made parts in industrial systems [50]. The models
incorporated a priori shape information into the recognition task. These mod-
els evolved from rigid to flexible and doing so brought deformable models into the
picture [51]. Deformable models allowed to constrain and regulate a problem
that is, in general, ill-posed. Hence, they were quickly adopted by the research
community. Among them, statistical shape models have been particularly rele-
vant since they allow to encode population variability, a very desirable charac-
teristic in medical image analysis. In particular, Active Shape Models (ASMs)
have been widely employed to segment organs from medical images. Before
unleashing their great potential, ASMs must be properly trained. The training
process, however, has a few non-trivial requirements. Automatizing this pro-
cess has motivated over two decades of research, which has brought us a long
way towards an automatic construction of ASMs.

2.1.1 Active Shape Models

ASMs constitute a statistical deformable model approach which includes a pri-
ori information about the shape of the object of interest [51]. The shape in-
formation is encoded into a template known as a Point Distribution Model
(PDM). The template is deformed to outline an unseen object within an un-
seen image. The PDM, as its name indicates, is based on a collection of points.
These points are known as landmarks [52]. Fig 2.1 shows examples of landmark
positions representing familiar objects. All training shapes are required to have
equal amount of landmarks. The landmarks are labeled such that landmarks
with the same label represent the same location of the physical object in every
training shape. This is known as point correspondence. Once a full set of training
shapes with point correspondences is available, the PDM can be constructed
by applying Principal Component Analysis (PCA). PCA will include statistical
information regarding shape variability into the PDM. That is, the principal

(a) (b) (c) (d)

Figure 2.1: Examples of landmark positions representing the boundary of familiar objects:
(a) a star, (b) a hand, (c) a face, and (d) a heart. As the shape becomes more complex, more

landmarks are necessary to described it.
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modes of variation of the training samples are used to compute valid instances
of the object.

Still, a fully trained PDM is not enough to recognize the object in the im-
age. The model needs to learn the typical image appearance around the object.
This is usually achieved by sampling profiles perpendicular to the object’s con-
tour (see Fig. 2.2). Similarly, profiles are collected for every landmark of every
sample in the training set. From them, an intensity model is computed for each
landmark. The intensity model will include: a mean profile (to account for av-
erage image intensity values) and a covariance matrix (to account for image
variability). In the end, a matching algorithm will use this intensity information
to look for possible edges and yield the shape instance that best fits to the
unseen data being processed.

2.1.2 Training Steps

Going over the training steps necessary for ASM construction, can help us
identify possible bottle necks:

1. Manual outlining: as a starting point the target object needs to be iden-
tified in the training images. This means delineating the object in every
image of the training set. Given that shape information will come from
these delineations, it is common practice to obtain them manually. In 3D
applications, the outlining needs to be performed in every slice of every
sample volume. This constitutes a major bottle neck, and often limits the
sample size from which ASMs are built.

Figure 2.2: Explanatory diagram of intensity model construction. Profiles are sampled
perpendicularly to the contour of the object. At the location of each landmark, profiles are

collected for every training set. The intensity model will include: a mean profile (to
account for average image intensity values) and a covariance matrix (to account for image

variability).
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2. Point correspondence: the manually outlined objects need to be landmarked.
As stated above, the landmarks should be consistent in number and po-
sition. Assuring point correspondences over a large database is a labor-
intensive task. For early 2D applications, this step was achieved manually.
For 3D applications, the amount of landmarks needed to describe the ob-
ject increases considerably. This makes it nearly unfeasible to assure point
correspondences with manual interaction alone.

3. Point Distribution Model: once step 1 and 2 are achieved successfully, we
are ready for PDM construction. First, shapes are aligned to remove vari-
ations due to position, scale and rotation [52]. Second, PCA is carried out
from the aligned shapes. In this manner, the principal modes of varia-
tion account for elastic deformations among shapes, not for pose or size
differences.

4. Intensity model: intensity model training can be obtained from the same
set that is used for PDM construction. For an application targeted to a
unique image modality, this training set is sufficient. For a multimodal
application, on the other hand, the information obtained from the PDM
training set is not enough. Given that image appearance changes from one
modality to another, the ASMs require retraining. This brings us back to
step 1.

2.1.3 Automatic Construction of Active Shape Models

Due to the complications mentioned above, several techniques for automatic
training of ASMs have been developed. The first training step, manual outlin-
ing, is hard to avoid. In fact, initially all automatic techniques for PDM con-
struction started from a database of segmented objects [53–57]. These studies
aimed to automatically obtain point correspondences. We can recognize differ-
ent types of approaches. A first type of approach in which segmented objects
are landmarked and later point correspondences are optimized [53–55]. They
differ from one another on the optimization technique. The second type of ap-
proach, proposed by Frangi et al. [56], in which all the shapes in the training set
inherit the landmarks from an atlas. The atlas is computed from labeled vol-
umes obtained from the manual segmentations. The labeled volumes are regis-
tered to a normalized coordinate system. In this normalized coordinate system,
an average shape (atlas) is computed and landmarked. Landmark positions are
propagated back to the original segmented volumes using the inverse of the
registration transforms. Kaus et al. [57] proposed a technique which creates a
triangulated surface from one labeled volume. The resulting mesh is adapted
to the other labeled volumes, preserving point correspondences. Rueckert et
al. [58] proposed a technique which bypasses the manual outlining step. An av-
erage volume (atlas) is obtained directly from the original intensity images (raw
data) by using non-rigid registration. The manual annotation is performed only
once over the average volume. The landmarks are mapped back to every train-
ing shape, similarly to Frangi et al. [56]. This approach was evaluated on MRI
datasets to construct a PDM of the brain with positive results [58]. Whether
this approach would be able to catch the inter-subject and temporal variability



“myThesis” — 2011/5/19 — 16:46 — page 19 — #37

2.2. Contributions 19

of the heart, was studied by Ordas et al. [59]. In this study, a whole heart model
was successfully constructed from 100 high resolution CT datasets. Lorenz and
von Berg [60] proposed a technique to avoid manual outlining of every sample.
The approach uses a boot-strap method which works directly on the original
intensity images.

Table 2.1 summarizes these techniques for automatic construction of ASMs
within the medical imaging field. We can observe some interesting aspects.
First, most of the efforts made on the automatization of ASM construction
were targeted to PDM construction. Second, given that early techniques de-
pended on manual segmentations as initial data, the ASMs were often built
from relatively few samples. Third, the final step of intensity model training
had been overlooked until very recently. The need for automatizing this step
became more evident thanks to the proliferation of multimodal datasets in the
patient care cycle (see Chapter 1.2.2). The proposed approaches all coincide in
the idea of reusing a PDM trained from a high resolution imaging modality
and collecting appearance information from a different source [46, 61, 62]. Van
Assen et al. [62] proposed to use a fuzzy inference system based on relative in-
tensity differences, bypassing the need for an intensity model. This technique
was tested in CT and MRI. Peters et al. [61] proposed to use a few manual delin-
eations for each modality. The delineations were then propagated and refined
with a simulated search method. This approach was applied to CT, MRI and
Rotational Angiography.

2.2 Contributions

This is the context in which this thesis was developed. Working towards our
desired approach (see Chapter 1.3.2) the first step was to generate a PDM able
to capture a wide range of spatio-temporal variability of the heart. This step
was tackled within our research group by Ordas et al. [59] and, more recently,
by Hoogendoorn et al. [64]. In this work a statistical shape model represent-
ing the whole heart was constructed from CT datasets. The model includes 20
subpart labels. The combination of these labels results on different model con-
figurations. Possible configurations include: a left ventricular model for SPECT
and US datasets, a bi-ventricular model for MRI datasets, and a full heart mo-
del for CT datasets. The PDM was built from 100 patients in 15 cardiac phases,
totalling 1500 training volumes. Taking into account typical sample sizes for
PDM construction (Table 2.1), we can consider this a to be large sample. In this
sense, we can expect this shape model to meet our requirements of accuracy
and robustness, with the added value of a multi-configuration scheme.

Aiming to preserve this shape information, we were challenged to find
an alternative way to include appearance information from other modalities
into the model. The answer to this challenge came from the field of image
acquisition modeling. Hereby, the physics of the imaging technique is simu-
lated to generate virtual images of computer models of, in our case, the heart.
For brevity, we will refer to these images as simulated datasets. Over the last
decade, a number of simulators have been developed. They are capable of mod-
eling the physics and acquisition process of medical imaging with great detail.
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Figure 2.3: We use a 3D shape model built from CT datasets. The shape information is
complemented with intensity information specific to each modality by simulating the

physics of acquisition. (See color insert)

Imaging simulators provide tools for a variety of modalities: SPECT [65–67],
CT [68, 69], US [70], and MRI [71, 72]. By simulating the physics of acquisition,
we were able to complement the shape information with intensity information
specific to each modality (see Fig. 2.3). Given that SPECT simulators have the
longest trajectory and provide straightforward tools for cardiac applications,
we chose this modality for an initial evaluation of our approach. The results
showed that clinical SPECT studies can be successfully segmented by models
trained under this scheme. Details on the implementation and evaluation of
the methodology will be presented in Chapter 3. At that point, we had imple-
mented the first contribution of this thesis: a method to automatically construct
intensity models for ASMs, based on simulating the physics of acquisition of the given
imaging modality.

To continue developing our methodology, the next step was to extend this
method to MRI. We found that the state of the art of cardiac MRI simula-
tion was not as advanced as expected. On the one hand, MRI simulators were
widely used for brain applications, yet hardly used for cardiac applications.
On the other hand, cardiac digital phantoms were targeted mainly to low con-
trast imaging modalities, such as SPECT. Hence, they lacked the amount of
detail required for a modality with high tissue contrast, such as MRI. This mo-
tivated the second contribution of this thesis: the first extension of an MRI sim-
ulator tailored to produce realistic cardiac images. The extension was based on the
MRISIM simulator [72] and the XCAT [73] digital phantom. Digital phantoms
were modified in order to include relevant intracavitary structures. The pro-
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posed approach obtained a noticeable improvement of the local appearance of
the simulated images with respect to the ones obtained originally. Full details
will be presented in Chapter 4.

Using the improved simulated datasets developed in Chapter 4, we imple-
mented the third contribution of this thesis: a novel automatic intensity model
and reliability training strategy applied to cardiac MRI studies. In this strategy the
intensity information was complemented with the reliability measure for sta-
tistical shape models proposed by Sukno et al. [74]. Both the intensity models
and the reliability information, were obtained from the simulated datasets. The
inclusion of reliability information during matching proved to increase robust-
ness of the segmentation process. It made it less sensible to initialization and
reduced the outliers in difficult areas, such as areas with local minima and/or
high partial volume effect. Full details will be presented in Chapter 5.

These contributions will be presented in detail in the following three chap-
ters. Each chapter was made self-contained and represents an article published
or submitted to a peer-review archival journal.
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Abstract

Active shape models bear a great promise for model-based medical image anal-
ysis. Their practical use, though, is undermined due to the need to train such
models on large image databases. Automatic building of Point Distribution
Models (PDMs) has been successfully addressed and a number of autoland-
marking techniques are currently available. However, the need for strategies to
automatically build intensity models around each landmark has been largely
overlooked in the literature. This work demonstrates the potential of creat-
ing intensity models automatically by simulating image generation. We show
that it is possible to reuse a 3D PDM built from Computed Tomography (CT)
to segment gated Single Photon Emission Computed Tomography (gSPECT)
studies. Training is performed on a realistic virtual population where image
acquisition and formation have been modeled using the SIMIND Monte Carlo
simulator and ASPIRE image reconstruction software, respectively. The dataset
comprised 208 digital phantoms (4D-NCAT) and 20 clinical studies. The evalua-
tion is accomplished by comparing point-to-surface and volume errors, against
a proper gold standard. Results show that gSPECT studies can be successfully
segmented by models trained under this scheme with sub-voxel accuracy. The
accuracy in estimated LV function parameters, such as End Diastolic Volume,
End Systolic Volume and Ejection Fraction, ranged from 90.0% to 94.5% for the
virtual population and from 87.0% to 89.5% for the clinical population.

3.1 Introduction

In spite of the high technological developments in medical imaging systems for
diagnostic cardiology, cardiac function is still mostly analyzed through visual
assessment or manual delineation, which are both time consuming, subjective
and error prone. This fact has generated the need for automated analysis tools
to support diagnosis with reliable and reproducible image interpretation. How-
ever, the success of currently available commercial packages is modest and their
use under-diffused.

On the one hand, automated delineation of the cardiac chambers from 3D
and 4D image datasets is challenging. Recent surveys have pointed out the
prevalence of model-based approaches to accomplish this task [75, 76]. Typi-
cally, they require a generic template which undergoes adaptation to fit spe-
cific image data. This strategy enables introducing a priori knowledge of shape
of the structure of interest into the segmentation process. In particular, Ac-
tive Shape Models (ASMs) [51] have been successfully employed in image seg-
mentation [77,78]. Unfortunately, construction of these models requires several
training steps based on a target image database (ideally a rather extensive one).
This is simply unachievable by sole manual processing on 4D datasets due
to the huge amount of data involved. These steps include: 1) manual outlin-
ing of target boundaries, 2)consistent distribution of landmarks across sample
shapes, 3) statistical shape decomposition yielding a Point Distribution Model
(PDM) [51], and 4) learning a statistical model of the intensity around the tar-
get object. Substantial efforts have been carried out to automatically construct
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PDMs by autolandmarking surface [53–55] or volumetric [56, 57] representa-
tions of already segmented structures. Some authors have shown techniques
which circumvent the need for segmenting all sample volumes and work di-
rectly from the raw images [58, 59].

To the best of our knowledge, no work has attempted to automate the pro-
cess of creating intensity models. This is precisely the focus of this work, which
we use to complement our fully automatic ASM construction strategy initiated
with the autolandmarking method by Frangi et al. [56], and more recently by
Ordas et al. [59]. We show that it is possible to build a 3D-ASM, suitable for seg-
mentation of gated Single Photon Emission Computed Tomography (gSPECT)
images, with a PDM previously built from a large database of cardiac Com-
puted Tomography (CT) data [59]. The use of a virtual population provided
access to known LV surfaces for training purposes and accuracy evaluation.

On the other hand, imaging simulators are currently a mature field of
research providing tools for a variety of modalities: SPECT [65–67], CT [68,
69], Ultrasound (US) [70], and Magnetic Resonance Imaging (MRI) [71, 72].
Among them, SPECT simulators have the longest trajectory, hence they now
offer straightforward tools for cardiac applications. This has motivated the use
of gSPECT as a show case for the usage of our approach. Nonetheless, the un-
derlying concepts regarding automatic building of statistical shape models can
be applied to other major diagnostic imaging modalities.

Segmentation of the LV cavity from SPECT imaging is a challenging prob-
lem owing to limitations inherent to the modality (i.e. low resolution, blurred
boundaries, high noise levels, signal drops, absence of anatomical landmarks,
etc) [79]. Model-based postprocessing algorithms are quite widespread in clin-
ical practice [80, 81]. Yet their quantifications are affected by intrinsic imaging
drawbacks, specially in patients with small or hypertrophic hearts [82]. Simi-
larly, less accurate calculations have been found in the presence of extracardiac
activity, low-dose studies or severe perfusion defects [83, 84]. Hence, new ap-
proaches able to cope with these constraints are highly desirable. Deformable
models [85] and level set based [86] algorithms are more sophisticated ap-
proaches previously applied to SPECT segmentation, giving promising results
on simulated data. Still, further validation on real clinical cases is needed.

This manuscript is organized as follows: the theoretical background of ASMs
is explained in Section 5.2. The datasets used for our experiments are presented
in Section 4.2. A detailed description of the methodology for automatic con-
struction of 3D-ASM intensity models is provided in Section 3.4. Section 3.5
presents the experimental setup of this work, followed by its results in Sec-
tion 4.3. Section 3.7 aims to further discuss the obtained results. Finally, the last
section exposes the clinical contribution and outlook of our work.

3.2 Background

A concise explanation of Active Shape Models (ASM) is provided in the current
section. An extended description can be found in [51].

Basically, three main parts constitute the backbone of an ASM: a shape mo-
del, an intensity model, and a matching algorithm. The shape model (PDM)
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represents the shape variability of the object under study. For a three dimen-
sional space, a linear PDM constructed from n aligned shapes, {xi; i = 1, . . . , n},
of m landmarks each, {lj = (lxj, lyj, lzj); j = 1, . . . , m}, is a linear model defined
by:

x = x̄ + Φb (3.1)

where x is a 3m-element vector obtained by concatenating all landmark coor-
dinates in the form (lx1, ly1, lz1, lx2, ly2, lz2, · · · , lxm, lym, lzm). Then, x̄ is the mean
of aligned shapes in the training set, b is the shape parameter vector of the
model, and Φ is a matrix whose columns are the principal components of the
covariance matrix:

S =
1

n− 1

n

∑
i=1

(xi − x̄)(xi − x̄)T (3.2)

Obtaining the m 3D landmarks and their correspondence for all points on
every dataset is not a trivial task. Our methodology was inspired on the method
proposed by Frangi et al. [56]. Because of our particular application, a one
chamber model (LV) was used. Such configuration is a subpart of our recently
constructed whole heart model, trained from a high-resolution CT dataset [59].
Its training included 100 subjects in 15 temporal phases. Thus, 1500 sample
volumes were considered in total.

Once the shape model has been established, the second component (inten-
sity model) comes into action. It aims to grasp the intensity distribution typi-
cally found near the object’s boundaries. It does so by sampling the gradient of
the intensity profiles along the perpendiculars to the mesh. From pixels sam-
pled along each profile, the mean vector and covariance matrix are estimated
and stored for later use during matching. An intensity model was calculated
for each endocardial and epicardial wall of the 17 LV AHA’s segments [87].
Hence a total of 33 regions were obtained, corresponding to 17 epicardial and
16 endocardial.

Finally, the third element (matching algorithm) has the role of deforming the
mesh to match image data. Our approach is based on the sparse fitting method,
SPASM, put forward by van Assen et al. [77]. We modified this technique by
using an intensity model where each candidate point is obtained by selecting
the minimal Mahalanobis distance between the sampled profiles and the mean
profiles of the intensity model. Candidate points operate as deformation forces
propagated to neighboring nodes with a weight function

w(λ, ω) = e
− ‖λ−ω‖2

2σ2
p (3.3)

where (‖λ−ω‖2) is the geodesic distance between nodes, and σp is the width of
the normalizing Gaussian kernel. Deformation forces drive the mesh to a best-
fit location after several iterations. The steps of the algorithm are illustrated in
Algorithm 2.
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Algorithm 1 Matching Algorithm: SPASM
1: InitialMesh←Initialize mean Mesh
2: repeat
3: Intersect(ImageStack,InitialMesh)
4: for all Intersection points do
5: Find closest mesh vertex
6: end for
7: CountourStack←Create 2D contours
8: Candidates(CountourStack,LearnedProfiles)
9: for all Possible profile positions do

10: Mahalanobis(LearnedProfiles,SampledProfiles)
11: end for
12: CandidatePoints←Smallest Mahalanobis
13: ForcePropagation(CanditatePoints)
14: for all CandidatePoints do
15: UpdateVectors←Calculate weight function w
16: end for
17: Forces←Project UpdateVectors to surface normals
18: DeformedShape←Apply forces to mesh
19: NewValidInstance(DeformedShape)
20: BestFit←Best parameters to fit DeformedShape
21: until Iterations completed or convergence achieved

3.3 Materials

Two main datasets were used for this work: a virtual and a clinical population.
The virtual population consisted of digital phantoms (see Section 3.4.1 for de-
tails) and was considered for 3D-ASM intensity model training. Afterwards,
it was employed to evaluate performance of the trained models by means of
leave-one-out approach: each case was segmented by a model trained with all
cases but itself (in total n− 1 cases).

The clinical population, on the other hand, was only used for performance
evaluation. It included 20 subjects of which 2 were healthy, 2 hypertrophic, 11
infarcted and 5 dilated. A rest gSPECT study and an MRI study were obtained
for each subject with a mean interval of 53 days given no change in clinical
condition.

Gated SPECT studies were acquired at a rate of eight frames per cardiac cy-
cle. Patients were imaged one hour after administration of 99mTc-tetrofosmin
using a Siemens ECAM SPECT system (Siemens Medical Systems, Illinois,
USA) or an ADAC CardioEpic system (Philips Medical Systems, Best, NL) both
with a double-detector at 90◦ with high resolution collimators. Sixty-four pro-
jections of a 64×64 matrix over 180◦ arc were obtained with a 6.60mm/pixel
resolution. Image data was reconstructed with Filtered Back-projection (see Fig. 3.1).
MRI studies were acquired using a General Electric Signa CV/i, 1.5 T scanner
(General Electric, Milwaukee, USA). Datasets contained short-axis image stacks
at 30 temporal phases. The slice thickness was 8mm with an in-plane pixel res-
olution of 0.78mm × 0.78mm.



“myThesis” — 2011/5/19 — 16:46 — page 28 — #46

28 3.4. Methods

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Interpolated (top) and original (bottom) axial views of a virtual (a-b, d-e) and
a clinical (c,f) gSPECT study. They were reconstructed by means of OSEM (a,d) and FBP

(b-c, e-f). FBP= Filtered Back-projection; OSEM= Ordered-subset Expectation
Maximization. (See color insert)

3.4 Methods

In the current section our methodology for automatic construction of inten-
sity models for 3D-ASM is described thoroughly. For an overall view of the
complete pipeline, refer to Fig. 3.2.

3.4.1 Digital Phantoms

To ensure a realistic representation of a clinical population, several anatomical
parameters were modified in a random manner, as proposed by He et al. [88],
resembling a normal distribution obtained from the Emory PET thorax model
database [89]. The minimal population size, n, was calculated following the
criteria exposed by Jain et al. [90]. In our case, close to twenty parameters were
modified during patient generation, yielding nmin = 200. Detailed description
of modified parameters follow.

Anatomical Variations

Aiming to include anatomical variations which induce usual attenuation arti-
facts (i.e. breasts or high diaphragms) [91], three main anatomical groups were
implemented (see Fig. 3.3):

• Normal subjects: featuring males with a flat diaphragm and females with
small breasts.

• Male subjects with high liver dome: half the male subjects present a high liver
dome, creating strong edges which may attract segmentation algorithms.
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Figure 3.2: Overall description of the pipeline for construction of 3D-ASM intensity
models. Main steps are represented in grey blocks and complementary steps in white ones.
FBP= Filtered Back-projection; OSEM= Ordered-subset Expectation Maximization; ED=

End diastole; ES= End systole.

• Female individuals with large breasts: breast size, position and orientation
were modified in order to represent possible attenuation effects.

In order to generate the population, eight representative individuals were
chosen from the Emory PET thorax model database [89]. With these eight
anatomical models, four male (M1, M2, M3, M4) and four female (F1, F2, F3,
F4), a total of 208 subjects were created, for which half the males present a high
liver dome and half the females were attributed large breasts. Fig. 3.4 presents
a graph which illustrates the general distribution of the virtual population.
Parameters used as NCAT input are summarized in Table 4.2.

TABLE 3.1: Torso parameters of female and male subjects.

Body Ribcage
LA SA LA SA

Gender Model cm cm cm cm

Fe
m

al
e F1 29 18 22 14

F2 31 21 23 16
F3 33 24 24 19
F4 32 26 26 20

M
al

e

M1 39 22 25 17
M2 37 26 22 18
M3 35 27 25 21
M4 38 28 27 19

LA= Long-axis; SA= Short-axis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Sample of the three anatomical groups: normal subjects (a-c), male subjects
with high liver dome (d-f) and female individuals with large breasts (g-i). Images were

generated with NCAT (left), SIMIND (middle) and ASPIRE (right), respectively.

Heart Variations

The heart of each subject was varied by modifying its length and left ventricu-
lar basal radius. Global position was altered by inducing different orientation
angles and translations of the heart along posterior-anterior (P-A) and lateral
(Lat) directions. Specific parameters are summarized in Table 3.2.

Organ Uptake Ratios

Tracer uptakes of organs differ from patient to patient. To mimic this physiolog-
ical condition, heart, liver, lung, kidney, spleen and background isotope uptake
ratios were also modified in a random manner resembling a normal distri-
bution of a typical clinical population [88]. Parameter values are displayed in
Table 3.3.

Phantom Generation

Each voxel phantom included activity and attenuation files for 8 phases of
a normal (1 second) cardiac cycle. Each set consisted of 98 slices of 64×64
pixels with a 6.25mm isotropic voxel size. This low resolution matches the usual
conditions present in our clinical studies.



“myThesis” — 2011/5/19 — 16:46 — page 31 — #49

3.4. Methods 31

Population
N = 208

Male
N/ 2 = 104

High Liver
Dome

N/ 4 = 52

M 1 M 2 M 3 M 4

Flat
Diaphragm
N/ 4 = 52

M 1 M 2 M 3 M 4

Female
N/ 2 = 104

Small
Breasts

N/ 4 = 52

F 1 F 2 F 3 F 4

Large
Breasts

N/ 4 = 52

F 1 F 2 F 3 F 4

Figure 3.4: General distribution of the virtual population, subdivided into anatomical
groups. See Section 3.4.1 for details.

TABLE 3.2: Anatomical parameters for heart variation

according to gender. Adapted from [88].

Size Orientation Translation
Length Ratio Angle φ Angle ψ Lat P-A

Gender Measure cm ◦ ◦ cm cm

Fe
m

al
e mean 7.4 3.20 27 40 5.2 -5.0

SD 0.9 0.30 9 13 1.1 2.6
max 10.5 4.00 54 76 8.5 0.2
min 5.7 2.44 8 16 3.0 -10.6

M
al

e

mean 8.3 3.17 21 36 5.6 -6.4
SD 0.9 0.40 9 12 1.1 2.6

max 11.6 4.32 41 73 8.0 1.2
min 6.6 2.29 0 15 3.5 -11.6

Lat= lateral; P-A= posterior-anterior; SD= standard deviation.

Up to this point the anatomical models included a full thorax model that
incorporates structures other than the heart, which are important for realistic
gSPECT simulation. Aiming to extract LV true surfaces, higher resolution im-
ages with only the LV structure were generated. They consisted of 321 slices
of 512×512 pixels each, with a 0.78mm isotropic voxel size. Once true surfaces
were extracted from these datasets, our 3D model was aligned to them us-
ing a similarity transformation through Procrustes Analysis [92]. Subsequently,
nodes of the true surfaces acted as exact candidates to deform our mean shape
using one iteration of the ASM algorithm. This process allowed warping the
atlas model to all the training shapes in order to assure: 1) control over the dis-
tribution of clinical parameters in our training database of heart shapes based
on published data, 2) the same number of nodes and mesh topology for all true
LV surfaces, and 3) the inclusion of high inter-subject and inter-phase variabil-
ity during the matching process since the PDM is based on a larger database
of real patient data.
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TABLE 3.3: Typical distribution of tracer uptake ratios

on different organs. Adapted from [88].

Intensity Ratio
Heart Liver/ Lung/ Background/

Measure Value Heart Heart Heart
mean 1419 0.44 0.14 0.11

SD 810 0.19 0.04 0.05
max 4236 1.30 0.25 0.29
min 490 0.16 0.05 0.02

Ratio= with respect to heart uptake; SD= standard deviation.

3.4.2 Monte Carlo Simulation

In order to generate gSPECT studies for the virtual population, Monte Carlo
simulation was employed using SIMIND code [65]. Details regarding the sim-
ulation set-up are given below.

Collimator Parameters

SIMIND allows for modeling different types of collimators. A Siemens Low
Energy High Resolution (LEHR) collimator was chosen since it resembles our
current clinical conditions [93]. Characteristics of such a collimator include:
hexagonal shape, parallel hole collimator, radius of rotation of 20cm, hole size
of 1.24mm, septal size of 0.90mm and thickness of 23.6mm.

Projection Parameters

Noise free projections were obtained by simulating 107 photon histories per
projection. Sixty-four of them were obtained over a 180◦ arc, from 45◦ left poste-
rior oblique to 45◦ right anterior oblique. Each projection consisted of a 64×64
matrix with 6.25mm/pixel resolution. Energy resolution was set to 9% Full-
Width-at-Half-Maximum (FWHM) at 140 KeV and energy window threshold to
15% photopeak at 140 KeV.

System Characterization

Ordered-subset Expectation Maximization (OSEM) reconstruction requires FWHM
parameters to be determined (see Section 3.4.3). This was accomplished by
measuring point-sources at different distances from the collimator surface. The
point source response was approximated to a symmetric Gaussian by means of
nonlinear least squares fitting [94].

Image Generation

Simulations were run using grid computing on a cluster facility of 20 dual-
processor dual-core SGI Tezrix 210/2, 3Ghz/1333 Mhz, Intel Woodcrest proces-
sors. InnerGrid v5.0 (GridSystems, Palma de Mallorca, Spain) was employed as
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grid middleware. Distribution was achieved in the following manner: each sub-
ject corresponds to eight digital phantom datasets (one for each cardiac phase),
totalling 1664 digital phantom (208 subjects × 8 time frames). Each dataset
includes sixty-four projections, which were distributed to different nodes of
the cluster such that one node will simulate only one projection of one digital
phantom. The whole set of projections was then concatenated to obtain full
projection volumes. This methodology allowed us to reduce computation time
from 16 hours to 48 minutes per subject. For the whole database it represented
trading 5 months of calculations for about 7 days.

3.4.3 Tomographic Reconstruction

Aiming to obtain datasets with different intensity features for our model
training (see Section 5.2) tomographic reconstruction after simulation was per-
formed in two approaches: Filtered Back-projection (FBP) and Ordered-subset Ex-
pectation Maximization (OSEM).

FBP Reconstruction

Reconstruction was performed with a Butterworth filter. Its cut-off frequency
was visually inspected on a range from 0.30 to 0.80 pixels−1 with step 0.2.
Selected parameters were order 4 and cut-off frequency of 0.66 pixels−1.

OSEM Reconstruction

Reconstruction was carried out using 4 subsets and 20 iterations. It also applied
a quadratic penalty function using the 4 nearest neighbors of each pixel within
a plane, along with the pixels adjacent to it on the slices above and below, as
suggested by Fessler [94].

3.4.4 Postprocessing

Following reconstruction, images were automatically masked for truncation
artifact removal. Subsequently, they were scaled to a 100 grey level window,
setting negative values to zero. Finally, they were saved in DICOM format in
order to be processed by our 3D-ASM algorithm as a regular patient.

3.4.5 3D-ASM Segmentation

Automatic segmentation of LV cavity was performed by means of 3D-ASM (see
Section 5.2). Implementation details are provided next.

ASM Parameters

A uni-ventricular model of 2677 points (1835 for endocardium and 842 for epi-
cardium) was used. The algorithm was set to run for 15 iterations or until
the change in LV volume was not substantial between iterations (∆Volume <
0.01ml). New model instances were generated with 75% of the total shape vari-
ability. This constrain was imposed to obtain a smooth fit to match the sparse



“myThesis” — 2011/5/19 — 16:46 — page 34 — #52

34 3.4. Methods

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Axial view of a virtual study for FBP (a-c) and OSEM (d-f) reconstructed
images. Edges obtained automatically by 3D-ASM with ST (a,d), GR (b,e), FBP (c) and

OSEM (f) boundary models are shown in white (thick). True edges are displayed on yellow
(thin). ST= step function; GR= maximum gradient; FBP= Filtered Back-projection;

OSEM= Ordered-subset Expectation Maximization. (See color insert)

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Two clinical cases with severe perfusion defects: case one in axial view (a-c)
and case two in long-axis view (d-f). Edges obtained automatically by 3D-ASM with ST
(a,d), GR (b,e) and FBP (c,f) boundary models are shown in white (thick). True edges are

displayed on yellow (thin). Abbreviations as in Fig. 3.5. (See color insert)
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TABLE 3.4: Parameters used for 3D-ASM Segmentation

Description Symbol Value
Allowed Mode Variation β ±2σ

Number of Nodes m 2677
Profile Length n.a. 7
Profile Sampling Interval n.a. 3mm
Shape Variability n.a. 75%
Gaussian Kernel Width σp 7
Maximum Iterations n.a. 15

data obtained from SPECT imaging, as apposed to CT imaging which allows
for finer details. Other ASM parameters are summarized in Table 5.1.

Dynamic Studies Segmentation

Cardiac dynamics add to our segmentation process yet another challenge: in-
tensity profile variation per cardiac phase. The most intuitive scheme to ap-
proach this matter would be to obtain a model trained for each cardiac frame.

An alternative strategy is to perform ASM fusion [95], which has proven
to be an effective technique for intensity model generation [96]. Under this
methodology, only End Diastolic (ED) and End Systolic (ES) models were gen-
erated, since they represent the two most extreme circumstances on cardiac
dynamics. Missing phases were obtained through a weighted fusion of ED and
ES models. Weights used for each cardiac phase were set by the current heart
phase index (LV contraction percentage) as logged by NCAT [63].

Model Initialization

We followed a very simple mechanism to roughly scale and position the mean
shape of the model. The operator defines two epicardial points at the basal level
and a third one at the apex. Corresponding anatomical landmarks of the mean
shape were previously tagged by an experienced investigator. Consequently,
the mean shape is aligned to the landmarks through a similarity transform.
The manual interaction required for this procedure lasts about 30 seconds. In
complex cases (i.e. large perfusion defects) longer interaction may be required,
up to 1.5 minutes, for a correct depiction of basal and apical planes.

For the virtual population, initialization points were extracted automatically
from the true shapes, thus eliminating initialization bias for a better analysis
of segmentation accuracy. The clinical database, instead, was initialized by an
experienced investigator, hereafter referred to as Obs1.

Functional Analysis

Once the shape model is correctly matched to specific image data, LV volumes
both in End Diastole (EDV) and End Systole (ESV) can be calculated. Ejection
Fraction (EF) can be derived from these measurements in order to evaluate
systolic function of a patient.
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3.5 Experimental Evaluation

3.5.1 Segmentation Accuracy

• Idealized vs. simulated boundary model: to evaluate the advantage of using
advanced simulations during training, a comparison with two idealized
boundary models was performed. The first model consisted of a step
function (ST), ranging from zero to one corresponding to a normalized in-
tensity profile. The second model located the boundary at the maximum
gradient (GR) of a sampled profile, as initially proposed by Cootes et
al. [51]. Both virtual and clinical populations were segmented with these
models.

• True vs. fitted geometry: unsigned point-to-surface (P2S) errors were com-
puted between the fitted meshes obtained with idealized and simulated
boundary models and the gold standard LV surfaces. Mean± standard
deviation (SD) values of all subjects in all temporal phases were com-
puted.

• Trained-tested analysis: to examine the influence of using the same recon-
struction method both in training and segmentation stages, we performed
an experiment combining trained-tested models. That is, a model trained
with FBP reconstructed datasets was tested on an OSEM reconstructed
dataset during segmentation, and vice versa. A Mann-Whitney U-test [97],
with a 95% confidence interval, was carried out to determine statistical
significance of the differences.

• Clinical dataset: location of LV borders in SPECT datasets is quite sub-
jective due to the blurred nature of these images (see Fig. 3.1). How-
ever, to generate a proper gold standard for accuracy evaluation, LV con-
tours were manually drawn according to a standard criterion: LV bor-
ders should be located at 40% of the maximum myocardial intensity. This
value was obtained based on reported studies [98] and our clinical expe-
rience. In case of extensive perfusion defects, the human observer could
modify the threshold down to 20%. Endocardial and epicardial border de-
lineation of the LV, at ED, was performed by two observers (Obs1, Obs2)
in two individual sessions (S1, S2). The resulting traces were used to: 1)
evaluate intra and inter-observer variability, and 2) obtain P2S errors of
automatically segmented surfaces.

3.5.2 Sensitivity to Initialization

To evaluate the influence of initialization on our segmentation approach, the fit-
ting process was performed 10 times for each virtual subject. Each set of initial-
ization points was generated by adding a random error to the true landmarks
of up to 6.25mm (voxel size) along the X, Y and Z axis. P2S errors between true
LV surfaces and the 10 fitted meshes with initialization error were computed.
Also, volume errors were measured as the absolute difference between true
volumes and calculated volumes.
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3.5.3 LV Function Calculations

• True vs. measured volume: for the virtual population, volume error was
measured with respect to true LV volumes at ED and ES. For the clinical
population, gold standard volumes were obtained from manually traced
LV contours on the paired MRI datasets. Agreement of measurements
with gold standard values was assessed by means of Bland-Altman (B&A)
plots [99]. Accuracy error was calculated as the percentage of absolute
volume difference (diff(True,Measured)) relative to true volume.

• Clinical tool: for the clinical dataset, a comparison with the most wide-
spread clinical analysis tool, Quantitative Gated SPECT (QGS), was made.
Results were analyzed taking into account previously published studies
which describe QGS performance (see Table 5.5).

• Population subgroups: in order to analyze the effect of perfusion defects on
3D-ASM volume calculations, we separated our clinical population into
three subgroups. Categorization was performed by an expert clinician,
Obs2, according to severity of the perfusion defect: 1) none, 2) mild to
moderate, and 3) severe.

3.6 Results

3.6.1 Quantitative

Segmentation Accuracy

Fig. 3.5 shows LV edges obtained with 3D-ASM for the ST, GR, FBP and OSEM
boundary models. Fig. 3.6 displays two clinical cases with severe perfusion
defects. LV edges obtained with 3D-ASM for all boundary models are displayed
as well. Corresponding true surfaces are included on both figures.

Table 3.5 shows the results for the trained-tested analysis and the idealized
vs. simulated boundary model analysis. The P2S errors of the segmentations
performed with the idealized models are noticeably larger than the ones of the
simulated boundary models. Endocardial errors were 28% larger than those of
the FBP model and 20% larger than those of the OSEM model. Epicardial errors
were 89% larger than those of the FBP model and 66% larger than those of the
the OSEM model.

Sub-voxel accuracy was obtained with our segmentation method for both
reconstruction techniques (See Table 3.5). For FBP reconstructed datasets, epi-
cardial borders were segmented 35% more accurately than endocardial ones,
while in OSEM reconstructed datasets the difference was 38%.

Fig. 3.7 displays the statistical significance evaluation of the trained-tested
analysis. All compared groups generated significantly different P2S errors, ex-
cept for endocardial errors of FBP-FBP vs. OSEM-FBP and ST-FBP vs. GR-FBP,
and epicardial errors of ST-OSEM vs. GR-OSEM.

Fig. 3.8 displays P2S errors for each cardiac phase, with ED being t = 1
and ES being t = 5. Endocardial errors obtained at ED were 21% larger with
respect to ES for both FBP and OSEM reconstructed datasets. On the other
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TABLE 3.5: Point-to-surface errors for the virtual population

Endocardium Epicardium
mean SD mean SD

Trained Tested mm mm mm mm

Id
ea

liz
ed ST

FBP 4.57 0.24 4.33 0.23
OSEM 4.35 0.25 3.67 0.24

GR
FBP 4.57 0.22 4.49 0.20

OSEM 4.27 0.24 3.67 0.22
Si

m
ul

at
ed FBP

FBP 3.56 0.27 2.33 0.22
OSEM 3.70 0.29 3.00 0.29

OSEM
FBP 3.61 0.26 2.69 0.14

OSEM 3.57 0.27 2.21 0.17
SD= standard deviation; Abbreviations as in Fig. 3.5.
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Figure 3.7: Box-and-whisker plot of the trained-tested analysis for FBP, OSEM, ST
and GR boundary models. Connecting lines illustrate compared groups. The stars

represent statistically significant differences. p values of the statistically nonsignificant
differences are also displayed. Abbreviations as in Fig. 3.5.

hand, epicardial errors were 18% smaller at ED for FBP reconstructed datasets
and only 3% lower for OSEM reconstructed datasets.

Fig. 3.9 shows P2S errors for each of the 17 LV AHA’s segments [87]. For the
FBP reconstructed datasets, errors corresponding to the basal plane were 43%
larger than those of the medial plane and 56% larger than those of the apical
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Figure 3.8: Bar plot of mean point-to-surface errors per cardiac phase for FBP and
OSEM reconstructed datasets. ED corresponds to t = 1 and ES to t = 5. Error bars

represent standard deviation of the measurements. Endo= Endocardium; Epi=
Epicardium; Abbreviations as in Fig. 3.5.
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Figure 3.9: Bull’s eye plot of point-to-surface errors for each of the 17 left ventricular
AHA’s segments for FBP and OSEM reconstructed datasets. Abbreviations as in Fig. 3.5.

plane. For the OSEM reconstructed datasets, the same comparison generated a
39% and 52% difference, respectively.

For the clinical population, intra and inter-observer variabilities are summa-
rized in Table 3.6. P2S errors between 3D-ASM fitted shapes and manual de-
lineations are also displayed. For endocardial errors, intra- and inter-observer
variabilities were not significantly different than those obtained automatically
with the FBP and ST boundary models. The GR boundary model, instead, gen-
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TABLE 3.6: Point-to-surface errors for the clinical population

Endocardium Epicardium

mean SD mean SD

Variability mm mm mm mm

M
an

ua
l

Intra-observer 4.52 0.96 3.15 0.57

Inter-observer 4.70 1.01 3.45 0.77
3D

-A
SM

FBP 4.69 0.78 4.15 0.75

ST 5.11 0.93 6.16 1.52

GR 5.26 0.98 4.88 1.20

SD= standard deviation; Abbreviations as in Fig. 3.5.

TABLE 3.7: Sensitivity to initialization

Point-to-surface error LV Function
Endocardium Epicardium EDV ESV EF

Dataset Measure mm mm ml ml %

FB
P

mean 3.73 2.54 3.65 3.29 4.79
SD 0.28 0.25 1.23 1.12 1.16

max 21.1 21.9 73.9 40.7 24.6
min 0.25 0.66 0.01 0.00 0.01

O
SE

M mean 3.74 2.40 3.85 3.17 4.70
SD 0.28 0.20 1.22 1.18 1.2

max 17.90 9.43 52.9 45.8 26.9
min 0.29 0.31 0.01 0.00 0.00

SD= standard deviation; EDV= End diastolic volume; ESV= End systolic volume;
EF= Ejection fraction; Other abbreviations as in Fig. 3.5.

erated significantly higher P2S errors than intra-observer variability. They were
also significantly higher than those of the FBP boundary model. Epicardial er-
rors, on the other hand, were found to be significantly different for all schemes.

Sensitivity to Initialization

Table 3.7 shows the results regarding initialization sensitivity for FBP and
OSEM reconstructed datasets. For both of them, the added inaccuracy caused
by initialization error was 5% for endocardial borders and 8% for epicardial
ones. Volume calculations presented an average error of 3.5ml affecting the EF
measurements in 4.7%. However, maximum errors came to be as large as 22mm
for accuracy measurements and 74ml for volume calculations.

LV Function Analysis

Fig. 3.10 displays B&A plots of volume calculations for the virtual population.
FBP reconstructed datasets produced EDV measurements with a 94.4% accu-
racy, ESV measurements with a 90.0% accuracy and EF measurements with
a 90.8% accuracy. For the OSEM reconstructed datasets, accuracy calculations
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3D-ASM on FBP reconstructed datasets
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3D-ASM on OSEM reconstructed datasets
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Figure 3.10: Virtual population: Bland-Altman plots for EDV (a,d), ESV (b,e) and EF
(c,f) comparing gold standard and measured values estimated with 3D-ASM for the

datasets reconstructed by means of FBP (top) and OSEM (bottom). Abbreviations as in
Table 3.7.
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Figure 3.11: Plot of Ejection Fraction (EF) error vs End Diastolic (ED) volume for FBP
(o) and OSEM (*) reconstructed datasets of the virtual population. Abbreviations as in

Fig. 3.5.
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3D-ASM on clinical dataset

0 50 100 150 200 250
−80

−60

−40

−20

0

20

40

60

80

51mL

−41mL

3DASM Bland−Altman plot for EDV (mL)

Mean EDV (MRI,SPECT) (mL)

 E
D

V 
(M

R
I) 

(m
L)

 −
 E

D
V 

(S
PE

C
T)

 (m
L)

0 50 100 150 200

−60

−40

−20

0

20

40

60

36mL

−31mL

3DASM Bland−Altman plot for ESV (mL)

Mean ESV (MRI,SPECT) (mL)

 E
SV

 (M
R

I) 
(m

L)
 −

 E
SV

 (S
PE

C
T)

 (m
L)

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

17%

−17%

3DASM Bland−Altman plot for EF (%)

Mean EF (MRI,SPECT) (%)

 E
F 

(M
R

I) 
(%

) −
 E

F 
(S

PE
C

T)
 (%

)

(a) (b) (c)
QGS on clinical dataset
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Figure 3.12: Clinical population: Bland-Altman plots for EDV (a,d), ESV (b,e) and EF
(c,f) comparing gold standard and measured values estimated with 3D-ASM (top) and
QGS (bottom). QGS= Quantitative Gated SPECT software; Other abbreviations as in

Table 3.7.

were: 94.5% for EDV, 90.2% for ESV, and 90.9% for EF. A further analysis of EF
error relative to EDV is presented in Fig. 3.11.

For the clinical population, B&A plots are displayed in Fig. 3.12. 3D-ASM
obtained accuracy levels of 89.5% for EDV, 87.0% for ESV, and 88.1% for EF.
QGS measurements obtained accuracy levels of 81.7% for EDV, 83.5% for ESV,
and 83.9% for EF. In concrete, the B&A plots for EF calculated with 3D-ASM
displayed no bias and smaller variance than those of QGS.

Fig. 3.13 displays accuracy errors for the clinical population subgroups. Er-
rors showed no obvious correlation to severity of perfusion defect. Only ESV
of the none subgroup shows a high inaccuracy for both postprocessing algo-
rithms. It must be noted that half the patients in this group (ntotal=4) presented
hypertrophic LVs with collapsing walls at ES, hence the larger errors in ESV
calculations.

3.6.2 Critical Analysis

Segmentation Accuracy

Idealized models demonstrated not to be robust enough for the segmentation
task evaluated during this work. Fig. 3.14 illustrates this fact by displaying a bar
plot of the gradient profile averaged over all landmarks and all datasets of each
population (i.e. nvirtual = 208 and nclinical = 20). Position zero in the horizontal
axis indicates the location of the boundary. Due to the absence of OSEM clinical
datasets, only the FBP datasets are presented. Comparisons were performed
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Figure 3.13: Accuracy errors on volume calculations for the three population subgroups
according to perfusion defect severity. EDV and ESV errors for 3D-ASM and QGS. Error
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Figure 3.14: Bar plot comparing the underlying gold standard and the best-fit profiles
using the three boundary models in both virtual (left) and clinical (right) populations.

Plots show the gradient profiles with respect to the gold standard boundary position (zero
abscissa). Dark and light bars stand for the mean gold standard gradient profile (around
and along the normal to expert surfaces) and the best-fit gradient profiles (around and
along the normal to candidate surfaces based on FBP, GR and ST boundary models),

respectively. Error needles on the light bars represent the SD of the difference between the
gold standard and model gradient profiles. Means and SDs were computed over all
landmarks and all datasets for both populations. Experiments show that the higher
accuracy achieved with our proposed technique is consistent with a more accurate

modeling of gradient profiles. Abbreviations as in Fig. 3.5

against the corresponding gold standard which is represented with dark bars.
Light bars represent the profile with respect to the best-fit boundary position
according to the FBP, GR and ST boundary models. It is interesting to observe
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that in all cases (virtual and clinical datasets) the actual best-fit profiles are more
alike to the simulated profiles than to the idealized profiles. This is achieved in
spite of the limitations of a simulated training set, which may not capture all
the details of an actual clinical database. Similarly, the standard deviation of the
difference between the gold standard and the simulated boundary models were
smaller than those of the two idealized boundary models. In practical terms, it
reduced P2S segmentation errors by at least 20% for endocardial borders and
66% for epicardial borders.

The trained-tested analysis showed that more accurate segmentation results
are obtained when the same reconstruction method is used both in training
and segmentation stages. Despite the fact that OSEM reconstruction allows for
better definition of LV structures, endocardial borders are located with errors of
the same magnitude as those obtained with FBP. We suspect that a substantial
increase in image resolution is necessary before the apparent visual improve-
ment of OSEM reconstructed datasets has a real impact on global quantitative
parameters.

Overall decreased accuracy found on endocardial border segmentation is
reasonable as the relative image resolution is lower for the inner surface of the
LV. That is, the correct position of a large contour (epicardium) can be found
more precisely than the position of a smaller contour (endocardium), given the
same pixel size.

Greater P2S errors found at basal level are quite understandable since a
correct depiction of LV basal plane is a well known complication of cardiac
imaging postprocessing for most modalities [100]. SPECT images are specially
challenging on this matter owing to the lack of commonly used anatomical
landmarks such as the mitral valve or the left atria.

As can be observed in Fig. 3.9, P2S errors are larger at the inferoseptal
basal segment. Because of the presence of the membranous septum, this region
displays almost no tracer activity. Hence, during fitting the mesh is not actively
deformed at this area the LV wall. This is represented in the virtual phantoms as
thinner septal structures. It is particularly noticeable at ED where the difference
in activity between the basal portion of the lateral wall and the basal portion of
the septal wall is quite visible. At ES, though, due to thickening and shortening
of the LV walls, the septum can be better defined at basal levels.

For the cardiac phase analysis, the larger epicardial P2S errors found at ES
phase are natural (lower resolution and partial volume effect). However, the
decrease in error observed for endocardial borders is counterintuitive. Visual
inspection suggests this is caused by the higher segmentation inaccuracy at
basal level, as mentioned above.

For the clinical studies, 3D-ASM errors for endocardial borders are com-
parable to inter-observer variability. However, epicardial boundaries presented
20% larger errors than inter-observer variability. This might be due to overesti-
mation of wall thickness in places of extensive perfusion defects. Regardless of
lack of data, a human observer may deduct a thinning of the LV walls caused
by chronic infarcted myocardium. ASM, on the other hand, will try to conserve
the wall thickness present on the remaining sampled data. It must noted that
intra and inter-observer variability under uncontrolled circumstances (i.e. with-
out a standardized criterion) will most likely be larger than the ones measured
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during our experiments.

Sensitivity to Initialization

The evaluation of initialization sensitivity illustrated the extent of inaccuracy
caused by initialization error. Yet, in average, this inaccuracy was rather small.
The maximum errors revealed noticeable bias in case of very improper initial-
ization points. However, in clinical dataset processing, initialization would be
performed by a trained technician capable of efficiently and correctly defining
basal and apical positions.

LV Function Analysis

For the virtual population, the scatter distribution of the B&A plots showed a
dependency of the error on the LV volume. B&A plots also revealed that our
algorithm tends to underestimate EDV, a tendency also present on QGS (See
Table 5.5). The most extreme case of overestimation was found for the largest
heart. Yet its difference is within reported limits of discrepancy (30ml from gold
standard measurements) [108].

For ESV, a slight overestimation is revealed through the B&A plots, pre-
viously stated for QGS as well (Table 5.5). For EF, the confidence intervals in
the B&A plots are wider than those for EDV and ESV, probably caused by the
higher dispersion observed on lower EF values. Note in Fig. 3.11 that many
of the large discrepancies in EF calculations are located around small hearts
(50ml EDV). This parameter is known to be overestimated for this type of
hearts when calculated from perfusion studies [109]. This is attributed to ar-
tificially increased counts in the LV cavity, complicating a proper calculation of
ESV volumes.

For the clinical population, overall patterns of B&A plots were comparable
to those of QGS. Calculated parameters showed less biased underestimations.
Smaller confidence intervals were found for 3D-ASM for all calculated param-
eters. Similarly, accuracy levels were higher than those obtained with QGS for
all measured parameters.

No obvious correlation between perfusion defect severity and segmentation
inaccuracy was found for our clinical database. Inaccuracy could be more re-
lated to low image quality or segmentation difficulty depending on pathology.
For instance, the group with no perfusion defects was composed of hyper-
trophic patients and one dilated patient with Left Bundle Branch Block, both
difficult cases to segment even for a human observer.

3.7 Discussion

3.7.1 Clinical Contributions

Our method obtained higher accuracy compared to QGS, one of the most wide-
spread commercial packages. Although this result is obtained in a small pop-
ulation, this is quite encouraging for a simulation based approach since it by-
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passes the labor of clinical database collection and, furthermore, the underlying
methodology is potentially applicable to other modalities.

The employed segmentation method could either be applied on transaxial
slices or on reformatted short axis images. The use of the transaxial slices is
preferable since time consuming operator assistance is required to define the
LV long axis.

As can be concluded from previous works (see Table 5.5) the tendencies
of QGS for small hearts still needs further review. Virtual populations with
specific heart sizes may be useful for investigating this matter.

3.7.2 Outlook

The feasibility of our approach has been illustrated in the context of one clinical
application (viz. cardiac image analysis) and one specific imaging modality
(viz. gSPECT). Nevertheless, the potential of this approach is much broader.

To start off, it can help decoupling the sample size requirements of building
relevant statistics for the intensity models. Shape models could be built based
on a high-resolution imaging modality (e.g. CT) and the derived PDM be sam-
pled to generate a virtual population from which simulated images of other
modalities can be produced (e.g. MR, SPECT or US). Regarding sample size,
only few real clinical images might be available for extreme anatomical variants
(e.g. very small or very large hearts). However, they can be sampled uniformly
when creating the virtual population for simulated data.

Another problem in learning intensity models directly from real images
is related to the rapid evolution of most imaging technologies. Handling this
problem would become simpler with our technique as we can regenerate the
intensity models, as long as the employed simulator allows for it. The upgrades
can be related to: 1) improvement of spatial resolution (i.e. smaller pixel size),
2) increase of temporal resolution (i.e. more frames per cycle), 3) development
of better reconstruction techniques (e.g. iterative algorithms), 4) isotropic voxels
(i.e. for MRI or CT), 5) variation on physical parameters used during acquisition
(e.g. modification of MRI sequences), etc.

As the final advantage, we would like to mention that avoiding the need to
use shapes derived from manually contoured shapes prevents expert depen-
dency as the true boundary information is known by construction. Moreover,
the possibility to build intensity models in every major modality based on a
high-resolution PDM pave the way for handling more consistently multimodal
datasets.

This approach, however, may present a number of disadvantages, depend-
ing on the realism and accuracy of the image acquisition simulator, such as:
computationally expensive processing, large amount of input parameters some-
times hard to determine, use of theoretical noise which may not resemble clin-
ical conditions, etc.
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3.8 Conclusion

This paper introduced the notion of using advanced imaging simulators to
enable automatic creation of intensity models. Results show that gSPECT stud-
ies can be successfully segmented by models trained under this scheme with
sub-voxel accuracy. The accuracy in estimated LV function parameters range
from 90.0% to 94.5% for the virtual population and from 87.0% to 89.5% for
the clinical population. These results are within the intervals reported by other
widespread clinical segmentation tools.

Our future efforts along the generic approach we presented here is to extend
this technique to other imaging modalities. Efforts are underway to apply this
approach to 3D US data [49] and we do not foresee fundamental issues not to
extend this technique to MRI and CT.
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Abstract

Simulated magnetic resonance imaging brain studies have been generated for
over a decade. Despite their useful potential, simulated cardiac studies are
only emerging. This paper focuses on the realistic simulation of cardiac MRI
datasets. The methodology is based on the XCAT phantom, which is modified
to increase realism of the simulated images. Modifications include the model-
ing of trabeculae and papillary muscles based on clinical measurements and
published data. To develop and evaluate our approach, the clinical database in-
cluded 40 patients for anatomical measurements, 10 patients for papillary mus-
cle modeling, and 10 patients for local grey value statistics. The virtual database
consisted of 40 digital voxel phantoms. Histograms from different tissues were
obtained from the real datasets and compared to histograms of the simulated
datasets with the Chi-square dissimilarity metric (χ2) and Kullback-Leibler di-
vergence (KL). For the original phantom, χ2 values averaged 0.65±0.06 and
KL values averaged 0.69±0.38. For the modified phantom, χ2 values averaged
0.34±0.12 and KL values averaged 0.32±0.15. The proposed approach dem-
onstrated a noticeable improvement of the local appearance of the simulated
images with respect to the ones obtained originally.

4.1 Introduction

Cardiac structural and functional assessment in the clinical environment is still
largely dependent on manual postprocessing [110]. Certainly, efficient and ac-
curate tools to perform cardiac function evaluation are highly desirable. This
is the goal of many automated algorithms under development. Simulated im-
age datasets are an interesting way to help implement and validate such algo-
rithms. They bring along several advantages: access to a ground truth without
expert dependency, the possibility to generate large databases, the capability to
update training sets to account for the evolution of imaging devices, and the
feasibility to generate a multimodal dataset with the available image simula-
tors [65, 72, 73, 111].

Simulated magnetic resonance imaging (MRI) brain studies have been gen-
erated for over a decade [72,112]. Despite their useful potential, simulated car-
diac studies are only emerging [113–115]. This is mainly due to the lack of an
appropriate phantom for MRI cardiac simulations. Current digital phantoms
suitable for cardiac applications mainly focus on low contrast imaging modal-
ities (i.e. nuclear medicine) where a macroscopic representation of the tissues
is sufficient. However, a modality like MRI, mainly characterized by high tis-
sue contrast and improved spatial resolution, requires greater detail to fully
represent a real acquisition.

Which brings us to the focus of this paper: realistic simulation of cardiac
MRI datasets. Our methodology is based on the XCAT phantom [73,116], which
is modified to increase realism of the simulated datasets to capture features
that are important for the development and evaluation of image processing
algorithms. The modifications include: 1) modeling of the left ventricular pap-
illary muscles, 2) inclusion of trabeculae in both ventricular cavities, 3) addition
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of intensity variability of each tissue by increasing the number of labels of the
phantom, and 4) resemblance of partial volume effect by using a higher resolu-
tion phantom as input to the simulator.

4.2 Materials and Methods

4.2.1 Patients

Clinical datasets were used for two main purposes: extracting the anatomical
modeling parameters and validating the simulated images. Our database con-
sisted of cardiac MRI studies of 60 patients, which can be divided into three
groups:

• G1: composed of axial slices of 40 patients (20 females). This group con-
sisted of healthy subjects and was used to characterize anatomical vari-
ability. Measurements included long-axis/short-axis of the torso, long-
axis/short-axis of the ribcage, long-axis/short-axis of the breasts and an-
gle between the breasts.

• G2: composed of short-axis stacks of 10 patients (5 females). Patients with
any sign of hypertrophy and/or deposition diseases were excluded. This
group was used to model papillary muscle variability. Measurements in-
cluded thickness, angle from the center of the cavity and distance to the
wall. Fig. 4.1 displays a scheme of the obtained measurements. Angle and
distance were measured at papillary muscle initial point (midventricular
level) and final point (apical level).

• G3: composed of short-axis stacks of 10 patients (5 females). This group
consisted of healthy subjects, with no history of heart disease, and was
used to obtain a gold standard of local appearance for each evaluated
tissue.

4.2.2 MR Imaging

Datasets were acquired using a General Electric Signa CVi-HDx, 1.5T scanner
(General Electric, Milwaukee, USA). All images were acquired during breath-
holds of approximately 15 seconds and were gated to the vector ECG. Im-
ages were scanned with a multi-slice 2D balanced Steady State Free Preces-
sion (SSFP) sequence. Both axial and short-axis datasets were acquired with
the following scan parameters: TR/TE= 2.9/1.2ms, flip angle= 45◦, pixel spac-
ing= 1.56×1.56mm, slice thickness= 8mm slice separation= 0mm, field of view=
400×340mm, number of signal averages= 1, scan matrix size= 224×224, cardiac
phases= 30.

4.2.3 MR Simulation

The MRI simulation code used in this work was developed by Kwan et al. [72].
This code uses a tissue template to define the spatial distribution. A tissue tem-
plate is an anatomical image where each tissue is a mask with a certain value
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(a) (b)

Figure 4.1: (a) Clinical measurements for papillary muscle modeling: thickness, distance
from wall (d) and angle from center of the cavity (α). (b) Long axis view of a left ventricle

to illustrate papillary direction assignment: initial angle (αi), initial distance (di), final
angle (α f ) and final distance (d f ). Arrows=distance; Arcs=angles.

(i.e. a labeled image). A stack of these templates forms a 3D volume used as
input for the simulator. A parameter file contains characteristic magnetic reso-
nance properties for each tissue label. Specific scan parameters define the output
images of the simulator. The code models the physical phenomena by solving
the Bloch equations [117]. Finally, the images may include acquisition artifacts,
such as noise, partial volume effect, chemical shift, etc.

Sequence parameters for the simulation were: TR/TE= 2.9/1.2ms, flip an-
gle= 45◦, pixel spacing= 1.56×1.56mm, slice thickness= 7.8mm, slice separa-
tion= 0mm, field of view= 400×400mm, number of signal averages= 1, scan
matrix size= 256×256. No field inhomogeneities were simulated. Noise settings
included: water-fat shift= 2 pixels and Gaussian noise with standard deviation
calculated as 0.03× intensity (re f erence tissue).

4.2.4 Digital Voxel Phantoms

Original Phantom

Virtual subjects were generated with XCAT, a 4D NURBS-based cardiac-torso
model that allows for the generation of realistic human anatomy and physiol-
ogy [73]. The code generates a voxelized version of each virtual phantom. This
voxelized representation can be used as a 3D labeled volume for the simulation.

The organ shapes of XCAT are based on the Visible Human Male and Fe-
male datasets from the National Library of Medicine [118]. Given that the phan-
tom is NURBS-based, the organ shapes can be easily modified according to de-
sired values. To ensure realistic geometrical representations, we used the torso
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parameters measured from patient group G1 and heart parameters from the
literature [88, 119, 120] (for details see Table 4.2). We assumed all anatomical
parameters follow normal distributions with mean (µ) and standard deviation
(σ), truncated to the minimum and maximum values observed in our clinical
population. Therefore, to generate each virtual subject, each anatomical param-
eter was assigned a random value X ∼ N (µ, σ2) within the allowed range, as
summarized in Table 4.2. Based on these distributions a total of 40 virtual sub-
jects (20 females) were generated. Each phantom was computed with 8 types
of tissue, labeled as displayed in Table 4.1, where label 0 corresponds to air
background.

The cardiac cycle length was kept constant (1 s) for all virtual subjects.
Hence, alterations on heart dynamics were limited to volume changes due to
each individual heart shape. A total of 30 phases per cycle were generated for
each virtual subject. Each set was represented by a stack of 221 axial slices of
512×512 pixels with a 0.78mm3 isotropic voxel size. Axial stacks were refor-
matted to short-axis stacks with the true rotation angles used during phantom
generation. Thanks to the isotropy of the axial volume, smooth short-axis slices
could be obtained after 3D rotation. A short-axis stack, spanning the whole
heart, was used as input to the simulator. For partial volume effect modeling,
each simulated MRI slice was computed from 10 slices of the input phantom
(simulated slice thickness=7.8mm/phantom slice thickness=0.78mm).

Modified Phantom

Initial simulations with the standard XCAT phantom generated images with a
rather artificial appearance. Therefore we modified the phantoms to increase
realism of the simulated images. We accomplished this by adding to the 40
original phantoms papillary muscles, trabeculae and tissue sublabels. The MR
simulations were computed both for the 40 original and the 40 modified phan-
toms. Find below a detailed explanation of the modifications.

• Papillary muscles: there are two main left ventricular (LV) papillary mus-
cles: anterior and posterior. They have been detailed in a preliminary
work by Segars et al. [132], but not yet included in the XCAT. Therefore,
we modeled them using the measurements from patient group G2. Each
papillary muscle was assigned a thickness, an initial angle, an initial dis-
tance, a final angle, and a final distance (see Fig. 4.1-b). This allowed us
to generate a 3D direction vector. At the intersections of this vector with
each midventricular short-axis slice, 2D representations of the papillary
muscles (disks) were placed. The following anatomical constraints were
imposed to avoid unrealistic configurations of the papillary muscles: min-
imal and maximal intra-papillary angle and distance, minimal and max-
imal inter-papillary angle and distance (for details see Table 4.3).

Three main processes occur to the papillary muscles during cardiac con-
traction: shortening, thickening and wall attachment. We used the XCAT
dynamics as a basis for modeling these three processes. From the original
XCAT phantoms, we can calculate the position of the LV base and the
variation of the LV radius along the cardiac cycle. Shortening was simply
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TABLE 4.1: Magnetic resonance parameters per tissue class

PATIENT GROUP Literature

n = 17†
Label 0 1 2 3 4 5 6 7 8

Sublabel 0-27 28-55 56-83 84-111 112-139 140-167 168-195 196-223 224-251

[5− 32]‡ Tissue Bkg Lung Bone Body Liver Gastric Peric Myo Blood

PD

mean 0 0.12 0.08 0.25 0.45 0.71 0.20 0.50 0.90

SD 0 0.20 0.01 0.20 0.15 0.25 1.00 0.30 0.50

max 0 0.20 0.10 0.30 0.50 0.90 1.00 0.70 1.00

min 0 0.00 0.00 0.24 0.40 0.62 0.10 0.20 0.50

T1

mean 0 1199 269 549 586 765 500 982 1516

SD 0 117 30 52 39 75 37 46 21

max 0 1380 329 653 664 915 574 1092 1558

min 0 1040 209 445 508 615 426 902 1474

T2

mean 0 79 55 49 46 58 70 54 189

SD 0 29 21 20 20 24 21 12 26

max 0 137 97 89 86 106 112 78 276

min 0 21 13 9 6 10 28 30 115

T2*

mean 0 30 35 16 27 30 61 30 153

SD 0 4 3.8 4 6 4 12 8 12

max 0 38 43 24 38 38 85 49 223

min 0 22 27.6 8 17 22 37 14 96

Each parameter was sampled from a normal distribution with mean and standard deviation (SD)

within the minimum (min) and maximum (max) values listed above.

Bkg= Background; Peric= Pericardium; Myo= Myocardium;

† Average and ‡ range of sample sizes from references [114, 121–131]

modeled by varying the initial longitudinal position of the papillary mus-
cles relative to the LV base. Since the LV base moves downwards (towards
the apex) during contraction, the initial longitudinal position of the pap-
illary muscles does as well. Wall attachment was modeled by reducing
the distance from the papillary muscles to the wall following the radial
dynamics of the phantom. In a similar manner, radial dynamics of the
phantom were used to increase the thickness of each papillary muscle.
The volume of each muscle is conserved over the course of a cardiac cycle
by adjusting its length. As a result, at end diastole (ED) papillary muscles
are thin, long and separated from the wall, while at end systole (ES) they
are shorter, thicker and touching the wall.

• Trabeculae: besides the papillary muscles, trabeculae are an important
component of the ventricular anatomy. However, the modeling of trabecu-
lae has been mainly focused on oxygen delivery processes and contractile
function [133,134]. To the best of our knowledge, no previous mathemat-
ical model of spatial distribution of trabeculae has been proposed. Our
modeling strategy takes into account the reported anatomical descrip-
tions of trabeculae [135], along with careful observation of our clinical
datasets. Basically, the amount of trabeculae increases from base to apex.
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(a) (b) (c) (d)

Figure 4.2: Illustration of trabeculae generation. The density of trabeculae
(ρtrab = ρ(γ) · ρ(Lr)) increases with: (a-b) angular distance (γ) from the aorta, and (c-d)

longitudinal distance (L) from the base (k = 180, β = 0.5; µ = 5; s = 3).

They are absent along the outflow track towards the aorta in the LV and
towards the pulmonary trunk in the right ventricle (RV). In addition, they
are more visible at ED. During contraction, trabeculae are displaced until
they are fused with the wall.

To resemble this, we used the following procedure (see Fig. 4.2):

I We selected all short-axis slices from LV base to LV apex.
I On each slice i, we selected a region adjacent to the wall of both

ventricles. The region included all possible locations of trabeculae
on slice i, where region thickness = 0.7× LV wall thickness.

I Within this region, a random location was selected to place a trabec-
ular structure, represented as a 3-pixels-wide disk.

I For each slice i, this process was repeated until a desired density of
myocardium (myocardium/blood ratio) was achieved. The desired
trabeculae density was calculated as ρtrab = ρ(γ) · ρ(Lr), with Eq. 4.1
and Eq. 4.2:

ρ(γ) =
sin(γ− π

2 ) + 1
k

(4.1)

ρ(Lr) = β + β tanh(
Lr − µ

2s
) (4.2)

Lr =
10L

LVlength
, (4.3)

where γ = angular distance from aorta, k = 180, β = 0.5, µ = 5,
s = 3 and L=longitudinal distance from the base.

I In order to add a component in Z-direction to the trabecular struc-
tures, the obtained pattern was repeated for the following 10 slices.
Then, for slice i + 10 a new trabecular pattern was computed.
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I A myocardium label was assigned to each of the trabecular struc-
tures.

Given the rapid change in LV radius at apical level, for slices with Lr >
0.65 (Eq. 4.3) the trabecular pattern was updated every i + 3 slices. For
these same slices, ρ(γ) was set to 0.16 to resemble the uniform radial
distribution of trabeculae at apical level.

For each subject, the trabecular pattern was determined at ED and main-
tained alike for the duration of the cardiac cycle. The process of wall
thickening (as modeled by XCAT) naturally managed to reduce the den-
sity of trabeculae throughout the cycle. Meaning, as the wall thickens it
displaces trabeculae until they appear to be fused with the wall.

• Tissue sublabels: even with the Gaussian noise added by the simulator, the
variability of the intensity distributions of simulated images based on the
original phantom was found to be limited. Mainly, the input phantom
allows for a unique label per tissue, which results in a unique intensity
value on the simulation output. In a real acquisition, however, tissues
have a wider range of intensities. We aimed at incrementing intensity
realism by increasing the number of labels in the input phantom. The
modification was done such that each original label was composed of
27 randomly distributed sublabels (reaching the 255 maximum labels al-
lowed by the simulator). Afterwards, magnetic resonance properties were
assigned to each sublabel according to its original tissue class. Properties
were sampled from a normal distribution with mean and standard de-
viation (SD), as listed in Table 4.1, which were gathered from the litera-
ture [114, 121–131].

• Partial volume effect: due to the spatial resolution inherent to every image
modality, some of the pixels of an acquired image are a contribution of
multiple types of tissue. This basically translates into blurriness and is
particularly noticeable at the edges of most organs. Aiming to resemble
this effect, a higher resolution phantom was used as input to the simulator
(double the in-plane resolution). Therefore, the intensity value of each
voxel in the output image included the contribution of 40 voxels from the
input phantom: 4 pixels in each of the 10 slices.

4.2.5 Experimental Evaluation

Typical intensity distributions were obtained from group G3 to evaluate the re-
alism of the simulated results. To cope with the inconsistency of intensity val-
ues typical of MRI data, intensity values of all the datasets were standardized
with the approach proposed by Nyul et al. [136]. Briefly, this method deforms
the histogram of the sample image to a previously defined histogram by using
a set of landmarks. In our case the set of landmarks included: s1 and s2 repre-
senting the minimal and maximal intensities, respectively, and µ01 and µ97 with
µp representing the pth percentile. The final configuration of these parameters
were: min=0, µ01=2, µ97=53083, max=65535.
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A region-of-interest (ROI) for the most relevant tissues for cardiac appli-
cations were outlined by a researcher with experience in cardiac MRI in two
independent sessions. Each ROI included the largest possible area with an ho-
mogeneous visual appearance. For each patient of group G3, one basal, one
midventricular and one apical slice, both at ED and ES, were processed. Five
ROI’s per slice were obtained: lung, pericardium, myocardium, blood and tra-
becular region of both ventricles (including papillary muscles). This yielded
300 manually delineated ROI’s per session, for a total of 600 ROI’s to be used
as gold standard. For the virtual datasets, intensity distributions of each tis-
sue were obtained automatically using binary masks derived from the original
labeled phantoms. After intensity standardization, the distributions were aver-
aged for all the virtual subjects.

Average real distributions were compared with average simulated distribu-
tions with the 1) original phantom and 2) the modified phantom as input. All
of them were analyzed with histograms. All histograms were obtained with a
consistent number of bins, estimated according to Scott’s rule (70 bins) [137].
Histograms were then compared using two distance metrics: chi-square dis-
similarity metric (χ2) [137] and Kullback–Leibler divergence (KL) [138]. χ2 was
calculated with Eq. 4.4 and KL was calculated with Eq. 4.5. For both of them
P is the real histogram, Q is the simulated histogram, and n is the number of
bins:

χ2 =
n

∑
i=1

(Pi −Qi)2

Pi + Qi
(4.4)

DKL(P||Q) = −
n

∑
i=1

Pi log(Qi) +
n

∑
i=1

Pi log(Pi) (4.5)

4.3 Results

4.3.1 Anatomical Variability

Measurements describing anatomical variability of our clinical datasets are dis-
played on Table 4.2. This table includes parameters obtained from group G1
and from the literature (marked with †, ‡ and §). Measurements for papillary
muscles modeling, all obtained from group G2, are summarized in Table 4.3.

4.3.2 Simulated Images

Some examples of the simulated images with both input phantoms are shown
in Fig. 4.3. The simulated images based on the modified phantom show good
resemblance of the intensity values from real images. However, mainly due to
the simplified anatomy of the virtual population, they still have a synthetic
appearance. Note that the right ventricular papillary muscles, very visible in
the real dataset (Fig. 4.3-e-f), are not yet included in our model. Fig. 4.5 shows
simulated images from a different virtual patient in several stages of the cardiac
cycle. We can observe the behavior of the LV papillary muscles along the cycle.
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TABLE 4.2: Anatomical parameters for torso and heart variation

according to gender

PATIENT GROUP G1

n = 40

TORSO HEART

Torso Ribcage Breasts Size† Ori‡ Trans‡ Peri§

LA SA LA SA LA SA θ Lth Dmt φ ψ Lat P-A Thk

cm cm cm cm cm cm ◦ cm cm ◦ ◦ cm cm mm

Fe
m

al
e

mean 31.4 21.3 26.0 18.1 18.2 4.8 141 7.2 4.6 27 40 5.2 -5.0 1.2

SD 2.99 2.44 2.13 2.24 2.32 1.5 2 0.5 0.3 9 13 1.1 2.6 0.8

max 35.1 24.9 28.9 22.2 21.0 8.4 176 8.1 5.1 54 76 8.5 0.2 2.5

min 23.8 15.0 20.7 12.5 11.5 2.0 110 6.3 4.1 8 16 3.0 -10.6 0.0

M
al

e

mean 34.6 25.2 29.8 21.5 n.a. n.a. n.a. 8.3 5.0 21 36 5.6 -6.4 1.2

SD 2.12 2.37 2.12 2.77 n.a. n.a. n.a. 0.6 0.4 9 12 1.1 2.6 0.8

max 37.7 30.3 34.4 27.0 n.a. n.a. n.a. 9.4 5.8 41 73 8.0 1.2 2.5

min 28.5 20.4 25.4 17.1 n.a. n.a. n.a. 7.0 4.2 0 15 3.5 -11.6 0.0

Each parameter was sampled from a normal distribution with mean and standard

deviation (SD) within the minimum (min) and maximum (max) values listed above.

Heart parameters from [119]†, [88]‡ and [120]§; Ori= Orientation; Trans= Translation;

Peri= Pericardium; LA= Long Axis; SA= Short Axis; Lth=Length; Dmt= Diameter;

Lat= Lateral; P-A= Posterior-anterior; Thk= Thickness; n.a.= Not applicable.

For the original phantom, χ2 values averaged 0.65±0.06 and KL values aver-
aged 0.69±0.38. For the modified phantom, χ2 values averaged 0.34±0.12 and
KL values averaged 0.32±0.15. Meaning that the modifications applied to the
phantom improved the simulated histograms by 48% according to χ2 and 54%
according to KL.

Fig. 4.4 plots the resulting χ2 and KL values for each of the tissues at basal,
midventricular, apical level, both at ED and ES. It can be observed that the
modifications of the phantom resulted on the improvement of the intensity
distributions for the lung, myocardium and blood. The pericardial tissue was
not specially improved. Looking at the histogram it is evident that this tissue
presents a wide range of intensity values and both real and simulated his-
tograms have coarse features. This is understandable since the intensity values
of the pericardium has a high inter-patient variability given its components (i.e.
fat and fluid).
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Long-axis 4-chamber Short-axis

(a)

(b)

(c)

Figure 4.3: Examples of simulated images with the original phantom (a) at End Diastole
(top) and End Systole (bottom). Examples of simulated images with the modified phantom
(b) at End Diastole (top) and End Systole (bottom). Examples of a real dataset (c) at End

Diastole (top) and End Systole (bottom).
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Figure 4.4: Plot of the Chi–square dissimilarity metric (χ2) and the Kullback-Leibler
divergence (KL) at basal (a-b), midventricular (c-d) and apical level (e-f). Note that lower

metric values represent more similar histograms. Histograms were computed from the
whole population for each tissue and normalized by the number of samples per ROI.

Peric= Pericardium; Myo= Myocardium; Trab= Trabecular region.
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To further analyze the behavior of blood, trabecular region and myocardium
in our data, Fig. 4.6 displays representative histograms of these tissues. Simu-
lated histograms of blood from the original phantom are characterized by a
sharp peak at high intensity. On the other hand, in real histograms the peak is
smoother and much lower. The modified phantom better resembles this behav-
ior, specially at basal and midventricular level (Fig. 4.6-a-d). Fig. 4.6-d shows
the blood histogram with the largest improvement of the modified phantom
with respect to the original phantom, according to both metrics.

For the trabecular region, the simulated distributions from the modified
phantom improved the similarity to the real histograms at all levels of the end
diastolic phase (Fig. 4.6-b). The improvement of this tissue was less noticeable
at end systole. Particularly at ED apical level, the trabecular region presents
a good match of the real myocardium/blood ratio (Fig. 4.4-e). On the other
hand, the ES apical level, we can observe that high intensity components of
blood were reduced, but the presence of trabecula was not strong enough to
match the darker components of the real histogram (Fig. 4.6-e).

For the myocardium, the simulated distributions from the modified phan-
tom were very similar to the real distributions both at basal and midventricular
levels (Fig. 4.4-a-d, Fig. 4.6-c). At the apical level, however, the distribution was
slightly shifted towards higher intensities. Therefore, regardless of its very sim-
ilar shape, the metrics were not favorable (Fig. 4.4-e-f, Fig. 4.6-f).

4.4 Discussion and Conclusions

Our approach has demonstrated a noticeable improvement of the local appear-
ance of the simulated images with respect to the ones obtained initially. These
are favorable results with potential use in edge driven algorithms or algorithms
based on average intensity distributions. Furthermore, the simulated images
can be generated with different MRI sequences, increasing the applicability of
our proposed strategy. These algorithms will then aid daily clinical practice by
providing accurate tools to make the postprocessing of cardiac studies easier
and faster.

Evidently, the amount of details found on real images are far greater than
the details obtained with the simulation strategy proposed with our work. For
instance, our research is focused on cardiac structures, which led us to overlook
typical characteristics of other tissues, such as liver vessels or stomach contents.

Another characteristic that gives the simulated images still a synthetic ap-
pearance is that cardiac structures are based on basic geometrical shapes. There-
fore, despite the positive match of real and simulated intensity distributions,
the shape and dynamics of the cardiac structures seem oversimplified. Current
research on modeling of cardiac shape and dynamics is under development
worldwide.

Finally, the modeling strategy we proposed was specially targeted to the
influence of intracavitary structures on the final appearance of cardiac MRI
datasets. This is, however, a simplified approach and requires further investi-
gation if aimed at applications with detailed anatomical information (i.e. elec-
trophysiological/mechanical simulations).
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In summary, this manuscript presents a realistic cardiac MRI simulation
pipeline based on the MRISIM simulator and the XCAT phantom. Phantoms
were modified in order to include relevant intracavitary structures, such as
papillary muscles and trabeculae. The modeling of all cardiac structures was
based on clinical measurements and published data. Performance was mea-
sured by comparing data of 40 virtual datasets with 10 clinical datasets. The
modifications applied to the phantom improved the simulated histograms by
48% according to χ2 and by 54% according to KL. In this sense, the compar-
ison of histograms indicated a good match between the local appearance of
real and simulated images. Results are quite encouraging for potential use in
training and evaluation of image processing and analysis algorithms. Since our
approach is based on the XCAT phantom, and all anatomical measurements
are summarized, this strategy can be easily implemented by other researchers.
Further improvements may include the addition of motion artifacts due to res-
piration and addition of right ventricular papillary muscles.
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Abstract

Model-based approaches are widely used in cardiac segmentation. In this pa-
per, we use a 3D Active Shape Model (3D-ASM) approach to segment the left
and right ventricular cavities from cardiac MRI studies. Training the ASMs re-
quires the collection of manual ground-truth meshes in a large image database.
While shape information can be reused across multiple imaging modalities,
intensity information needs to be imaging modality- and protocol-specific. In
this context, this study has two main purposes: 1) to test the potential of using
intensity models learned from MRI simulated datasets, 2) to test the potential
of including a measure of reliability during the matching process to increase
robustness. We used a population of 400 virtual subjects (XCAT phantom),
and two clinical populations of 40 and 45 subjects. A subset of 20 studies was
segmented by a radiologist to evaluate inter-observer variability (IV). Virtual
subjects were used to generate simulated datasets (MRISIM simulator). Real
datasets included short-axis slices at end diastole and end systole. Intensity
models were trained both on simulated and real datasets. The trained models
were used to segment the left (LV) and right ventricles (RV) from real datasets.
Segmentations were also obtained with and without reliability information.
The methodology was analyzed for each pathology and tested for initializa-
tion sensitivity. Performance was evaluated with point-to-surface and volume
errors. Simulated intensity models achieved accuracy 15% below IV for LV. Dis-
crepancies on LV volume measurements were within the limits of IV (10ml for
volumes and 5% for EF). The right ventricular model of the simulated images
needs further improvement to generate proper profiles around the myocardial
edges. The inclusion of reliability information proved to increase robustness of
the segmentation process making it less sensible to initialization and reducing
the influence of outliers in difficult areas.

5.1 Introduction

Imaging data has become essential in clinical routine. Analyzing it often re-
quires extensive manual postprocessing. Most of the collected information is
disregarded during actual diagnosis/treatment. This fact has motivated the
development of computer based techniques to translate the data into clinically
relevant and quantitative information.

In the cardiac field, model-based approaches have found wide acceptance
given the 3D (or 3D+t) nature of most data [76, 139, 140]. Active Shape Models
(ASMs) is one of these approaches [51,141]. It is based on a generic template of
the target organ, which encodes knowledge of shape variability across a pop-
ulation. The template is constituted by a distribution of landmarks, known as
a Point Distribution Model (PDM). To construct a PDM, several training steps
must be fulfilled. While in 2D datasets these training steps are achievable with
manual processing, in 3D datasets they are nearly unfeasible. This complication
has inspired the development of automatic techniques for PDM construction.
Some authors have proposed techniques for auto-landmarking surface [53–55]
or volumetric [56, 57] representations of the target organ. Other authors have
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shown techniques that work directly from raw images [58, 59].
Fitting a PDM to unseen data requires knowledge about the appearance of

the image being processed. ASMs have a second component, known as gray-
level or intensity model, which takes care of this. However, the appearance
of the images changes from modality to modality. Thus, to be able to handle
multi-modal datasets, the intensity model needs retraining. That requires the
collection of manual ground-truth contours. To bypass this step, several authors
have proposed to reuse a previously built PDM and generate the appearance
information some other way [46,61,62]. [61] use a few manual delineations per
modality, which are propagated and refined with the Simulated Search method.
[62] use a fuzzy inference system based on relative intensity differences. Our
approach is to learn the intensity models from simulated datasets. We have
previously explored this concept on gated Single Photon Emission Computed
Tomography (gSPECT) studies, obtaining sub-voxel accuracy [46]. However,
applying this method to a modality with higher spatial resolution, such as
MRI, raises a new question regarding its achievable accuracy.

The aim of this study is to test two hypotheses in the context of cardiac
MRI segmentation with a 3D-ASM approach. 1) An intensity model trained
with simulated images can obtain segmentation accuracy comparable to inter-
observer variability; 2) Including a measure of reliability during the matching
process can increase robustness. To test hypothesis 1, we train the intensity
models with simulated images generated as described in [47]. We evaluate the
segmentation accuracy obtained with these models in comparison to the inter-
observer variability. We also compare their accuracy with the accuracy obtained
with models trained on real images from manual ground-truth meshes. Unlike
gSPECT studies, in MRI studies both ventricular cavities are visible. Therefore,
we use a bi-ventricular model for our segmentation approach (further details in
Section 5.5.1). To test hypothesis 2, we employ the generic reliability measure
for statistical shape models proposed by [74]. Only the landmarks labeled as
reliable are used to deform the PDM during matching (further details in Sec-
tion 5.3). In Section 5.8.3, we discuss our results considering other model-based
cardiac segmentation studies [61, 62, 142–144].

5.2 Active Shape Models

The essential components of an ASM are: a shape model, an intensity model,
and a matching algorithm (full description in [51]). The shape model is a tem-
plate of the organ of interest represented as a distribution of landmarks or
Point Distribution Model (PDM). The PDM encodes statistical information of
variability in the training set. For a 3D space, a linear PDM trained from n
shapes, {xi; i = 1, . . . , n}, of m landmarks each, {lj = (lxj, lyj, lzj); j = 1, . . . , m},
is a linear model defined as:

x = x̄ + Φb (5.1)

where x is a concatenated vector of all landmark coordinates in the form
(lx1, ly1, lz1, lx2, ly2, lz2, · · · , lxm, lym, lzm). Then, x̄ is the average of all aligned
shapes, b is the shape parameter vector of the model, and Φ is a matrix formed
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Algorithm 2 Matching with Reliability Information
1: repeat
2: Intersect(ImageStack,InitialShape)
3: for all Intersection points do
4: Find closest mesh vertex
5: end for
6: CountourStack←Create 2D contours
7: Candidates(CountourStack,MeanProfiles)
8: for all Possible profile positions do
9: Mahalanobis(MeanProfiles,SampledProfiles)

10: end for
11: if MinMahalanobis < ζth then
12: CandidatePoints←Update best positions
13: end if
14: ForcePropagation(CanditatePoints)
15: for all CandidatePoints do
16: UpdateVectors←Calculate weight w
17: end for
18: DeformedShape←Apply forces to mesh
19: NewValidInstance(DeformedShape)
20: BestFit←Best parameters to fit DeformedShape
21: until Iterations completed

by the principal components of the covariance matrix:

S =
1

n− 1

n

∑
i=1

(xi − x̄)(xi − x̄)T (5.2)

The intensity model, as mentioned in the introduction, learns the appear-
ance around the boundaries of the target organ. Typically, this means sampling
a 1D profile of gray-level values (or gradients) for each landmark along the
direction perpendicular to the boundary. From the values sampled along each
profile, the mean vector and covariance matrix are estimated. The matching al-
gorithm uses the intensity model to match unseen image data. Our approach
is based on the sparse fitting method SPASM [77]. It is sparse in the sense
that image data is obtained only from the acquired image planes. This char-
acteristic is quite relevant for MRI datasets given their anisotropic nature. The
algorithm first finds the intersections of the mesh with the image planes. These
intersections make a stack of 2D contours. Each landmark in the contour stack
will be displaced to a new location. The new location, or candidate position,
is selected by locally searching a profile which better resembles the one stored
during training. In our case, the best candidate position is selected by comput-
ing the minimal Mahalanobis distance between the sampled profiles and the
mean profiles of the intensity model. Each candidate point forces a deforma-
tion on the mesh. The deformation propagates to the rest of the nodes with a
weighting function, normalized by a Gaussian kernel. The mesh is deformed
for several iterations until a best-fit is found.



“myThesis” — 2011/5/19 — 16:46 — page 71 — #89

5.3. Reliability Estimation 71

End diastole End systole

(a) (b)

Figure 5.1: Images from virtual group V1: two virtual patients at end diastole (a) and
end systole (b). Edges obtained automatically by 3D-ASM with simulated intensity

models are displayed in color. Thick white= ground-truth surface; Dark gray= matched
surface with no reliability; Light gray= matched surface with reliability.

5.3 Reliability Estimation

In this work, we use the generic approach proposed by [74]. This method uses
a probabilistic framework to identify whether the position identified by the
image model for a given landmark is trustworthy (reliable). The reliability r̂(j)

i

can be thought of as an estimation of the random variable r(j)
i , which indicates

whether landmark j of shape i is correctly placed. The landmark will be labeled
as reliable when its distance with respect to the ground-truth position is within
the intrinsic precision of the algorithm.

To compute reliability thresholds, we run the matching algorithm on the
training set. At each iteration, we store the minimal Mahalanobis distance for
each landmark. Then, for each landmark j-th of shape i, we compute the seg-
mentation error ε

(j)
i from the ground-truth. The threshold ζth is chosen to max-

imize the mutual information between r̂(j)
i and r(j)

i across the training set:

ζ
(j)
th = argmax

x
MI

(
1(ε

(j)
i < ε

(j)
th ); 1(ζ

(j)
i < x)

)
(5.3)

where MI(x, y) is the mutual information between x and y, and 1(b) is one
if b = true and zero otherwise. The thresholds ζth are stored to be used dur-
ing matching. The steps of the algorithm, including reliability information, are
described in Algorithm 2.
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5.4 Image Datasets

5.4.1 Population Group 1 (V1)

This population included 400 virtual subjects generated with XCAT [73]. The
XCAT generates a voxelized version of each virtual subject containing several
thoracic structures: heart, great vessels, lungs, ribs, liver, spleen, stomach, in-
testines, body background. Each volume was represented by a stack of 221 axial
slices of 512×512 pixels with a 0.78mm3 isotropic voxel size. We reformatted
the axial stacks with the true rotation angles used during phantom generation.
Each short-axis stack was used as input to the simulator (further details in
Section 5.5.1). This group was used for training and testing (see Fig. 5.1).

5.4.2 Clinical Population Group 1 (C1)

This group included 40 patients, with 12 healthy subjects, 18 patients with
hypertrophy, and 10 patients with infarction. The studies were acquired using
a GE Signa CVi-HDx, 1.5T scanner (General Electric, Milwaukee, USA). Short-
axis images were scanned with a Steady State Free Precession (SSFP) sequence.
The slice thickness was 8mm with an in-plane pixel resolution of 1.56mm ×
1.56mm. Both left and right ventricles (LV and RV) were manually segmented
at End Diastole (ED) and End Systole (ES) by an experienced researcher. A
subset of 20 studies was segmented by a radiologist to evaluate inter-observer
variability. This group was used for training and testing.

5.4.3 Clinical Population Group 2 (C2)

This group included 45 patients, with 9 healthy subjects, 12 patients with is-
chemic heart failure, 12 patients with non-ischemic heart failure and 12 patients
with hypertrophy. The database was collected at Sunnybrook Health Sciences
Centre as part of the cardiac MRI LV segmentation challenge [145]. The studies
were acquired using a GE Signa, 1.5T scanner (General Electric, Milwaukee,
USA). Short-axis images were scanned with a SSFP sequence. The slice thick-
ness was between 8mm and 10mm with an in-plane pixel resolution of 1.36mm
× 1.36mm. Ground-truth contours, provided in the segmentation challenge
package, were drawn by an experienced cardiologist. The contours included
endo and epicardium at ED and endocardium at ES. All the contours were
confirmed by another cardiologist. This group was used for testing only.
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5.5 Methods

5.5.1 MRI Simulation

The MRI simulator used in this work models the physical phenomena by solv-
ing the Bloch equations [72]. It uses a labeled volume as input, where each label
corresponds to a tissue with certain magnetic resonance properties.

The virtual population in group V1 was used as input to the simulator. Each
virtual patient was modified to increase the realism of the simulated images.
These modifications were evaluated in [47]. Briefly: 1) we included papillary
muscles in the LV and trabecular structures in both ventricles. Papillary mus-
cles generation was based on clinical measurements and trabeculae generation
was based on a mathematical model; 2) we incremented the intensity variabil-
ity of each body tissue in the simulated image by increasing the number of
labels of the virtual patient. Magnetic resonance properties, gathered from the
literature, were assigned to each sublabel according to its tissue class; 3) we
modeled partial volume effect by using a higher resolution virtual patient as
input to the simulator. Each pixel was computed from 4 input pixels and each
slice was computed from 10 input slices. Therefore, each voxel in the output
image included the contribution of 40 voxels from the input virtual patient. An
example of the obtained simulations can be found in Fig. 5.1.

5.5.2 3D-ASM Training

Our shape model is a surface mesh representing the left and right ventricles.
The model is constituted by three regions: LV endocardium, LV epicardium
and RV endocardium. This configuration is a subpart of a whole heart model
trained from 100 high-resolution CT datasets [59].

For intensity model training, we require all training meshes to have iden-
tical topology. To accomplish this on the simulated datasets, we extracted the
LV and RV as binary masks from the 3D labeled phantoms in group V1 (Sec-
tion 5.4.1). We generated isosurfaces from the binary images. Our shape mo-
del was aligned to these surfaces using finite Iterative Closest Point registra-

TABLE 5.1: Parameters used for 3D-ASM segmentation

Shape Model Number of nodes
LV endocardium 880
LV epicardium 1797
RV endocardium 3478
Intensity Model Profile
Length 17
Sampling interval 1.56mm
Matching Coarse search Fine search
Resolution number 3-2 1
Profile search range 21 21
Allowed mode variation ±1σ ±2σ
Shape variability 95% 99%
Gaussian kernel width 2mm 2mm
Iterations 100 100
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tion [146]. The aligned shape models were then deformed to match the binary
images using our 3D-ASM algorithm1. Shape model parameters were set to
99.9% of the total variance and ±3σ along each principal component. These
constrains allowed our model to capture fine details of the XCAT phantom
geometry.

For the real datasets in group C1 (Section 5.4.2), we enforced topologi-
cal consistency by obtaining 3D manual segmentations. We used an in-house
software and manually deformed our shape model to fit the cardiac bound-
aries [147]. To initialize the shape model, the observer selected four anatomical
landmarks: one in the aortic valve, one in the mitral valve, one in the tricuspid
valve, and one in the LV endocardial apex. We registered these initialization
points to the corresponding anatomical landmarks in the shape model with
a similarity transformation. The shapes were manually deformed by the ob-
server to obtain the manual ground-truth shapes. Note that the shape model
constrains were not used to prevent statistical bias.

We trained one intensity model for each landmark of the PDM. The intensity
models were independently trained for each cardiac phase. This means that for
the simulated datasets we obtained 30 intensity models and for the real datasets
we obtained 2 intensity models (ED and ES). The same applies for the reliability
thresholds: one threshold per landmark and per phase (Section 5.3).

5.5.3 3D-ASM Segmentation

To run the segmentation on groups V1 and C1, we used the initialization shapes
described above (Section 5.5.2). For group C2, initialization shapes were ob-
tained in the same manner as for group C1.

To process the datasets, we used a coarse-to-fine search strategy [148]. It
consists on building a multi-resolution pyramid from the original image and
processing each level independently. In the coarse levels, we increased the con-
strains of the model to avoid local minima. In the fine level, we relaxed the
constrains to allow for finer details [149]. Table 5.1 summarizes the parameters
of our 3D-ASM segmentation approach.

5.6 Experimental Setup

5.6.1 Segmentation Accuracy

• Simulated vs. real intensity models: the intensity models were trained both
on simulated and real datasets. The simulated intensity models were used
to segment the datasets in all test groups (V1, C1 and C2). The real inten-
sity models were used to segment datasets in groups C1 and C2. Datasets
in C1 were segmented by means of leave-one-out cross validation. To test
performance, we calculated point-to-surface (P2S) errors with respect to
the ground-truth meshes/contours described previously (Sec. 5.5.2 and
Sec. 5.4.3). Statistical significance was assessed with a Mann-Whitney
test [97].

1We assumed an ideal profile (background=0, myocardium=1) to search for candidate positions.
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• Effect of reliability: we performed the experiment described above with and
without reliability information. To include reliability information during
matching, each landmark is displaced to a new candidate position only if
the Mahalanobis distance is below its corresponding reliability threshold
(Sec. 5.3). Therefore, only the landmarks marked as reliable contribute
to the deformation of the shape model. We calculated P2S errors and
evaluated statistical significance with a Mann-Whitney test.

• Clinical population subgroups: to analyze the influence of pathology on
segmentation errors, we separated our clinical population in three main
groups: 1) normal, 2) hypertrophic, and 3) infarcted and/or with heart
failure. We computed the segmentation errors within each of these groups.
Statistical significance was assessed with a Mann-Whitney test.

• Initialization sensitivity: to test the sensitivity of the segmentation to ini-
tialization, we executed the segmentation four times: 1 with favorable
and 3 with unfavorable initialization. The favorable initialization shape
was obtained as described in Sec. 5.5.2. The unfavorable initialization
shapes were obtained by translating the favorable initialization shape.
The translation was performed on each axis (x, y, z) by a random factor.
The random factors were obtained independently for each axis from a
Gaussian distribution with SD equals to ± 3SD of inter-observer initial-
ization variability (8.07mm). We calculated the ratio of segmentation error
with unfavorable initialization over the segmentation error with favorable
initialization.

5.6.2 Volume Measurements

We calculated the ground-truth volumes from the ground-truth meshes in
group V1 and C1. For group C2, we computed volumes from the ground-truth
contours by summing the volume of each slice (area inside contour × slice
thickness). We calculated the measured volumes from the matched meshes in
all groups. Relevant parameters were computed: end diastolic volume (EDV),
end systolic volume (ESV), ejection fraction (EF) of both ventricles and myocar-
dial mass (MASS) of the LV. Measurement agreement with respect to ground-
truth volumes was evaluated with the mean signed difference (Ground-truth -
Measured) and its corresponding SD.

5.7 Results

5.7.1 Segmentation Accuracy

Visual results of the segmentation for V1, C1 and C2 are displayed in Fig. 5.1,
Fig. 5.2 and Fig. 5.3, respectively. Table 5.2 summarizes the P2S errors for all
data groups and their corresponding division per pathology. For group V1, we
obtained sub-pixel average accuracy (1.42mm). The errors were lowest for the
LV endocardium at ED and highest for LV epicardium at ES. For group C1,
real intensity models achieved accuracy below inter-observer variability (IV)
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for all regions except for RV in ED (5% above). Simulated intensity models
achieved accuracy 15% below IV for LV endo and epicardium in ED and for LV
endocardium in ES. For RV the obtained accuracy was 30% above IV. On the
other hand, the simulated intensity models achieved accuracy above the one
obtained with real intensity models by 27% for LV at ED, 55% for LV at ES and
56% for RV at both phases. For group C2, simulated intensity models achieved
average accuracy 29% above the one obtained by the real intensity models.

Analyzing each clinical group, we observe that on the normal population of
C1, simulated intensity models can segment the LV with average accuracy 17%
below IV. For normal and infarcted patients, end systolic RV can be segmented
with accuracy 5% below IV. Also for infarcted patients, LV epicardium in ES
was segmented by the simulated intensity models with accuracy 13% below
the one obtained for other clinical groups. On the normal population of C2,
the simulated intensity models can segment the LV with average accuracy of
79% the one obtained by the real intensity models. It is also evident that the
hypertrophic group is the most challenging one, specially from population C2.
This is understandable since hypertrophic patients can present alterations in
shape beyond the bounds of the PDM. Besides the alterations in shape, the my-
ocardial walls often collapse during systole leaving no cavity to be segmented.
For this clinical group, the reliability information increased accuracy at ES for
both real and simulated intensity models. Examples of each pathology are also
included in Fig. 5.2 and Fig. 5.3.

Table 5.2 also shows that including reliability information during the match-
ing process can improve accuracy in ES, noticeable on groups V1 and C1. This
is mainly manifested as a reduction of SD in the accuracy measurements.

To have a better understanding of the distribution of outliers, Fig. 5.4 dis-
plays average P2S errors for group C1 color-mapped on the mean shape model.
In the inter-observer maps, LV outliers are located at the base and slightly at
the apex. For RV, outliers are located on the outflow tracks (Fig. 5.4-a). Both for
real and simulated intensity models, LV outliers are located at the base and at
the apex as well (Fig. 5.4-b). For simulated intensity models, some RV outliers
are located on the outflow tracks, while most of them are located along the free
wall (Fig. 5.4-d). Note the reduction of outliers for simulated intensity models
with reliability information (Fig. 5.4-e).

Table 5.3 summarizes the initialization sensitivity results. It shows that real
intensity models are relatively robust to initialization (1%-5% error increase),
while simulated intensity models are more sensible to it (5%-19% error in-
crease). This is likely due to the presence of body structures in the real datasets
which are absent on the simulated images. Nevertheless, the inclusion of re-
liability information increased the robustness of real and simulated intensity
models, specially on group C2.
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TABLE 5.2: Segmentation errors for each clinical subgroup

with favorable initialization

End Diastole End Systole

LV RV LV RV

Endo Epi Endo Endo Epi Endo

mean SD mean SD mean SD mean SD mean SD mean SD

Train Test n mm mm mm mm mm mm mm mm mm mm mm mm

Inter-observer C1 20 2.26 2.12 2.54 2.49 3.02 2.75 3.14 2.83 3.12 3.08 4.67 4.61

A
ll

N
R

L

sim V1 400 0.79 0.83 1.51 2.08 1.73 2.35† 1.07 1.26 2.11 2.84 1.51 2.15

sim C1 40 1.88 2.23 2.21 2.10 4.56 4.36 2.64 3.13 3.33 3.09 5.27 4.76

real C1 40 1.51 1.86† 1.70 2.14† 3.18 4.41† 1.95 2.13† 1.91 2.19† 3.10 3.76

sim C2 45 3.64 4.00 3.06 3.10 n.a. n.a. 4.85 4.63 n.a. n.a. n.a. n.a.

real C2 45 2.41 2.42 2.23 2.07 n.a. n.a. 4.12 2.76 n.a. n.a. n.a. n.a.

R
L

sim V1 400 0.80 0.83 1.42 1.91 1.73 2.36† 1.04 1.20 1.98 2.68 1.46 2.12

sim C1 40 2.37 2.64 2.45 2.54 4.57 4.52 2.67 2.59 3.02 2.64 5.08 4.88

real C1 40 1.49 1.75† 1.69 1.92† 3.19 4.19† 1.92 2.00† 1.91 2.07† 3.82 4.11

sim C2 45 4.51 4.17 3.38 2.96 n.a. n.a. 5.23 4.57 n.a. n.a. n.a. n.a.

real C2 45 2.59 2.57 2.36 2.19 n.a. n.a. 4.05 2.96 n.a. n.a. n.a. n.a.

N
or

m
al

N
R

L

sim C1 12 1.56 1.61 2.17 1.91† 4.43 4.12† 2.33 2.38† 3.29 2.81 4.42 4.01†

real C1 12 1.28 1.24† 1.48 1.44† 3.27 4.00† 1.93 2.18† 2.08 2.46† 2.98 3.51

sim C2 9 3.15 3.22 2.94 2.59 n.a. n.a. 3.94 3.35† n.a. n.a. n.a. n.a.

real C2 9 2.60 2.78 2.38 2.37† n.a. n.a. 2.87 2.52† n.a. n.a. n.a. n.a.

R
L

sim C1 12 1.97 2.18 2.24 2.21† 4.58 4.33† 2.41 2.38† 3.17 2.78 4.36 3.96†

real C1 12 1.29 1.31† 1.48 1.47† 3.19 3.92† 1.96 2.17† 2.09 2.43† 3.52 3.71

sim C2 9 3.82 3.57 3.17 2.69 n.a. n.a. 3.82 3.12† n.a. n.a. n.a. n.a.

real C2 9 2.69 2.84 2.45 2.46† n.a. n.a. 2.92 2.58† n.a. n.a. n.a. n.a.

H
yp

er
tr

op
hi

c N
R

L

sim C1 18 2.21 2.78 2.26 2.33 4.73 4.79† 3.00 3.90 3.60 3.61 6.23 5.40

real C1 18 1.79 2.39† 1.98 2.75† 3.43 5.17 2.09 2.31† 2.02 2.31† 3.56 4.38

sim C2 12 5.72 5.42† 4.06 4.41 n.a. n.a. 4.36 3.81 n.a. n.a. n.a. n.a.

real C2 12 3.03 2.61† 2.82 2.52 n.a. n.a. 3.26 3.10† n.a. n.a. n.a. n.a.

R
L

sim C1 18 2.81 3.08 2.66 2.94 4.75 4.85† 2.98 2.93 3.02 2.81 6.02 5.82

real C1 18 1.77 2.16† 1.94 2.35† 3.46 4.72 1.97 2.08† 1.94 2.03† 4.35 4.72

sim C2 12 5.38 4.69† 4.20 3.77 n.a. n.a. 4.59 4.00 n.a. n.a. n.a. n.a.

real C2 12 3.11 2.70† 2.90 2.53 n.a. n.a. 3.36 3.33† n.a. n.a. n.a. n.a.

In
fa

rc
te

d
/

H
F N
R

L

sim C1 10 1.66 1.54 2.15 1.84† 4.44 3.85 2.33 1.99† 2.88 2.08† 4.67 4.0

real C1 10 1.24 1.15† 1.42 1.30† 2.64 3.27† 1.72 1.67† 1.52 1.48 2.45 2.55

sim C2 24 3.12 3.41 2.76 2.59 n.a. n.a. 5.08 4.91 n.a. n.a. n.a. n.a.

real C2 24 2.18 2.22 2.00 1.75 n.a. n.a. 4.39 4.92 n.a. n.a. n.a. n.a.

R
L

sim C1 10 2.01 2.05 2.30 1.98† 4.24 4.12 2.39 2.04† 2.83 2.11† 4.34 3.72

real C1 10 1.23 1.21† 1.46 1.35† 2.70 3.40† 1.77 1.60† 1.66 1.65 3.28 3.23

sim C2 24 4.41 4.09 3.16 2.65 n.a. n.a. 5.58 4.80 n.a. n.a. n.a. n.a.

real C2 24 2.40 2.44 2.17 1.96 n.a. n.a. 3.41 3.21 n.a. n.a. n.a. 0.0

LV= left ventricle; RV= right ventricle; SD= standard deviation; HF= Heart Failure;

NRL= no reliability; RL= with reliability; sim = simulated; n.a.= not applicable;

NRL errors are significantly different from RL errors unless indicated (†p > 0.05).
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TABLE 5.3: Ratio of P2S errors with unfavorable/favorable initialization

End Diastole End Systole

LV RV LV RV

Endo Epi Endo Endo Epi Endo

mean SD mean SD mean SD mean SD mean SD mean SD

Train Test n mm mm mm mm mm mm mm mm mm mm mm mm

N
R

L

sim V1 400 1.05 1.18 1.02 1.05 1.05 1.07 1.07 1.17 1.02 1.04 1.08 1.09

sim C1 40 1.05 1.05 1.05 1.06 1.06 0.99 1.16 1.24 1.12 1.19 1.05 0.99

real C1 40 0.97 0.82 0.95 0.77 1.05 0.93 0.99 0.97 0.99 0.92 1.09 1.04

sim C2 45 1.10 1.08 1.27 1.11 n.a. n.a. 1.18 1.29 n.a. n.a. n.a. n.a.

real C2 45 1.06 1.12 1.07 1.09 n.a. n.a. 0.92 1.49 n.a. n.a. n.a. n.a.

R
L

sim V1 400 1.06 1.20 1.03 1.07 1.05 1.07 1.06 1.15 1.02 1.04 1.08 1.09

sim C1 40 1.07 1.10 1.05 1.01 1.07 1.02 1.08 1.20 1.13 1.18 1.12 1.04

real C1 40 0.98 0.89 0.98 0.89 1.02 0.97 1.01 1.00 1.02 1.00 1.07 1.00

sim C2 45 1.18 1.14 1.15 1.17 n.a. n.a. 1.07 1.01 n.a. n.a. n.a. n.a.

real C2 45 1.00 1.04 1.01 1.03 n.a. n.a. 0.86 1.16 n.a. n.a. n.a. n.a.

All abbreviations as in Table 5.2.

TABLE 5.4: Volume measurements: mean signed difference

LV RV

EDV ESV EF MASS EDV ESV EF

MSD SD MSD SD MSD SD MSD SD MSD SD MSD SD MSD SD

Train Test n ml ml ml ml % % gr gr ml ml ml ml % %

Inter-observer C1 20 -9.26 11.19 -11.19 15.53 5.09 12.23 -2.52 14.58 -19.42 19.60 -34.58 32.13 15.06 17.73

N
R

L

sim V1 400 -0.30 5.20 -0.29 3.07 0.65 3.33 -0.69 7.38 -0.68 7.54 -0.23 9.52 1.53 9.03

sim C1 40 1.67 15.52 -4.25 23.61 4.52 22.76 -31.57 18.51 -2.59 30.27 -25.49 46.13 20.19 32.13

real C1 40 1.39 12.91 -6.01 9.73 5.23 8.99 4.12 16.99 23.35 27.87 3.67 19.96 8.85 11.93

sim C2 45 39.99 37.45 31.59 27.76 -4.98 14.60 -38.55 49.07 n.a. n.a. n.a. n.a. n.a. n.a.

real C2 45 28.50 32.48 22.46 41.83 2.34 32.85 -10.30 30.21 n.a. n.a. n.a. n.a. n.a. n.a.

R
L

sim V1 400 1.15 5.35 0.88 3.23 -0.26 3.13 1.92 7.82 0.52 7.73 0.27 9.73 1.93 9.05

sim C1 40 7.50 16.56 -0.27 12.05 3.49 13.52 -19.02 20.86 23.83 28.31 -14.84 42.65 27.07 35.02

real C1 40 0.11 12.04 -7.32 9.61 5.78 9.16 4.43 16.77 20.58 28.09 -5.86 23.45 16.11 16.31

sim C2 45 54.49 38.47 31.93 35.79 1.13 11.03 -44.87 50.59 n.a. n.a. n.a. n.a. n.a. n.a.

real C2 45 31.64 32.27 14.16 35.02 6.77 34.10 -11.45 30.25 n.a. n.a. n.a. n.a. n.a. n.a.

LV= left ventricle; RV= right ventricle; EDV= end diastolic volume; ESV= end systolic volume;

EF= ejection fraction; MSD= mean signed difference; Other abbreviations as in Table 5.2.
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5.7.2 Volume Measurements

Table 5.4 summarizes the volume measurement analysis. For group C1, the dis-
crepancies on LV volume measurements are within the limits of IV (10ml for
volumes and 5% for EF). LV MASS was overestimated above IV limits. This
is most likely due to the large segmentation errors on hypertrophic patients.
The error was substantially reduced in the segmentation including reliabil-
ity information. Regardless of the large segmentation errors for RV, volume
measurements were below the bounds of IV. The measurement of EF was un-
derestimated by the simulated models beyond the bounds of IV. For group
C2, the overestimation of volume might be due to difference on volume mea-
surement (3D vs. 2D approach). This effect was also observed in other 3D ap-
proaches during the segmentation challenge, and it applies to EDV, ESV, and
LV MASS [145, 150]. The overestimation was compensated in the calculation of
EF.

5.8 Discussion

5.8.1 Evidence for Hypothesis 1 - an intensity model trained
with simulated images can obtain segmentation accu-
racy comparable to inter-observer variability

Our first hypothesis mainly holds true for the LV. As for the RV, the segmen-
tation accuracy with simulated intensity models was comparable to IV only at
ES. This was particularly noticeable on normal and infarcted patients. Taking a
closer look at the simulated images, we can observe that the RV model seems
oversimplified. On the one hand, it still lacks RV papillary muscles making the
cavity more even than in real images. On the other hand, the anterolateral wall
changes diameter rather rapidly generating extremely blurred edges. This ef-
fect is less noticeable at ES, where the wall thickens and partial volume effect is
reduced. It is also less noticeable along the posterior wall due to its smoother
change of diameter. This drawback can be improved either by: 1) modifying the
geometry of the phantom to provide a smoother transition towards the apex
and/or increasing the wall thickness of the RV model; 2) simulating thinner
MRI slices to reduce partial volume effect. We chose not to explore the sec-
ond option in this work to maintain consistency of MRI acquisition parameters
between our real and simulated datasets.

With respect to the LV model, it would be interesting to include in the
phantom geometrical alterations due to pathology, since the appearance of the
profiles are evidently affected by them. For instance, a chronic infarction makes
the walls thinner while a hypertrophy makes the walls thicker. Besides the
alteration of the profiles, the pathology can also modify the overall shape of
the ventricles and the relationship between them. Therefore, a specific PDM per
pathology can also greatly improve segmentation accuracy. This will require,
as well, an automatic technique to select the proper PDM when processing a
new case.

As for the location of outliers, both the base and the apex are known to
be challenging areas. First, the correct definition of the basal plane is a known
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complication of cardiac imaging postprocessing for most modalities. Second,
the boundaries at the apex are specially blurred due to high density of trabec-
ulae. Both of these difficulties can be greatly improved by including long-axis
images in the matching process. In this type of images, the base and apex are
clearly visible.

5.8.2 Evidence for Hypothesis 2- including a measure of relia-
bility during the matching process can increase robust-
ness

Our second hypothesis mainly holds true for the simulated intensity profiles.
The real intensity profiles proved to be robust enough on their own. Possibly,
since the real images already include everything that could draw the model
away from the true boundary. For the simulated intensity models, reliability
not only increases robustness, it may also increase accuracy. This was notice-
able for LV epicardium and RV at ES. In general, the inclusion of reliability
made the segmentation based on simulated intensity models less sensitive to
initialization. Reliability also reduced outliers in end systolic volumes and LV
mass computation.

We can conclude that in the presence of clear edges, the segmentation with-
out reliability draws the model to a correct position. When the edges are less
clear, like in the epicardium or in severe hypertrophy, the reliability informa-
tion helps the model stay in a more correct position.

5.8.3 Comparison to Previous Relevant Studies

Table 5.5 summarizes the segmentation errors of other model-based cardiac
MRI segmentation approaches. Given that comparisons across studies are diffi-
cult since datasets are different (i.e. type of patients, number of cardiac phases,
image quality, image resolution), our purpose is to identify consistent trends.
In general, endocardial errors tend to be the smallest, followed by the epicar-
dial ones, and RV errors tend to be the largest. We also observed that trend
in our work. For most studies, at least half of their database is comprised by
normal subjects. In our study only 30% of datasets corresponded to normal
subjects, which most likely contributed to the inaccuracies. The performance
of model-based approaches on hypertrophic patients seems understudied in
the literature. We found in our work, including 45% of hypertrophic patients,
that this pathology poses a special challenge to our model-based segmentation
approach.

5.9 Conclusion and Future work

In this work, we tested the ability of intensity models trained on simulated MRI
datasets to segment the ventricular cavities from real datasets. A motivation to
train intensity models from simulated datasets is to be able to handle multi-
modal datasets more efficiently. Another motivation is to avoid the need for
manual outlining, because it is very laborious and very expert dependant. The
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accuracy obtained by the simulated intensity models was compared to the one
obtained by real intensity models and to inter-observer variability.

We can conclude the following: if the proper ground-truth meshes (with
point correspondence) are available, this dataset is ideal for intensity model
training since they perform with good accuracy and robustness. If, in the other
hand, no such dataset is available, training the intensity models on simulated
data can achieve accuracy below inter-observer variability (mainly for the left
ventricle). The right ventricular model of the simulated images needs further
improvement to generate proper profiles around the myocardial edges.

We also tested how the inclusion of reliability information during the match-
ing process can increase robustness. Reliability information was also obtained
from the simulated datasets. It proved to increase robustness of the segmenta-
tion process making it less sensible to initialization and reducing the outliers
in difficult areas.

Future work should target the incorporation of long-axis information dur-
ing training and matching for a better segmentation of the base and apex. An-
other factor that needs to be tackled is the correction for z-shift due to respi-
ration. While currently it is handled by the statistical constrains of the PDM,
a correction of this artifact can aid the segmentation. Finally, building a spe-
cific PDM per pathology, alongside with an automatic technique to select the
proper PDM, should benefit the segmentation in cases of severe hypertrophy
and infarction.
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6.1 Overview

The work developed in this thesis was motivated by the clinical challenge to
handle large amounts of multimodal data. This challenge is typically found in
the cardiovascular care cycle. As mentioned in Chapter 1, to tackle this chal-
lenge we require an approach that:

• is able to accurately segment the cardiac cavities from multimodal datasets

• provides a unified frame of reference to integrate multiple information
sources

• aids the classification of a patient’s cardiac condition

This thesis builds upon the idea that statistical shape models, in particular
Active Shape Models, are a robust and accurate approach with the potential
to incorporate all these requirements. The use of a statistical model-based ap-
proach provides a way to unify multiple sources of data in a unique frame
of reference (i.e. atlas). The proposed approach decouples the shape informa-
tion from the appearance information. On the one hand, the shape information
is trained from high-resolution CT datasets. On the other hand, the appear-
ance information is obtained for each modality by simulating the physics of
acquisition. We tested the proposed approach in two major modalities: SPECT
and MRI. Implementation and evaluation details can be found in Chapter 3-
Chapter 5. For both modalities, the constructed models were tested on virtual
and clinical datasets. The automatically built 3D-ASM were able to segment the
left ventricular cavity below inter-observer variability.

We hereby complete the automatic 3D-ASM construction pipeline includ-
ing: 1) the autolandmarking method by Frangi et al. [56], 2) the automatic PDM
generation method by Ordas et al. [59] and Hoogendoorn et al. [64], and 3) the
automatic construction of intensity models method by Tobon-Gomez et al. [46].

6.2 Outlook

A complete pipeline to automatically train 3D-ASM brings several advantages.
Let us review some of them:

6.2.1 Efficient Handling of Multimodal Datasets

Multimodal imaging is a fast gowning field. In fact, efforts to build devices
which are multimodal in nature are increasing enormously. Their basic concept
is to combine a modality with high spatio-temporal resolution with a moda-
lity with molecular specificity (i.e. SPECT/CT, PET/CT, PET/MRI). Although
mainly targeted to cancer research, their working principles are applicable to
other pathologies. This highlights the importance of a multimodal approach,
like the one developed along the scope of this thesis. Given that our segmenta-
tion approach is based on the same methodology for different modalities, the
information retrieved can be considered comparable. This eases up the integra-
tion and subsequent visualization of functional information.
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Figure 6.1: MRI images acquired with a 3D isotropic SSFP sequence (coronal view) and
a 2D non-isotropic SSFP sequence (long-axis view). Both images belong to the same

subject.

6.2.2 Intensity Model Update

We can identify two main scenarios that can modify the intensity distributions
of cardiac images: 1) acquisition parameters are modified to visualize a spe-
cific physiological phenomena, and, 2) acquisition devices are able to produce
datasets with higher spatial and/or temporal resolution due to technical up-
grades. A classical example of scenario 1 is a late gadolinium enhancement
MRI sequence in which myocardium appears darker than in a SSFP sequence
(see Fig. 1.4). An example of scenario 2 is found with the new SPECT/CT de-
vices. Low-dose CT images are used to improve tomographic reconstruction of
SPECT datasets obtaining images with higher spatial resolution and reduced
noise. Another example is the 3D isotropic MRI acquisition recently imple-
mented by Uribe et al. [11]. Such a sequence modifies the blood/myocardium
contrast and sharpens the edges (see Fig.6.1). In all these cases, being able to
retrain the intensity models to handle the new appearance of the datasets is
highly desirable.

6.2.3 Population of Virtual Subjects

With the statistical information encoded in the PDM of the 3D-ASM approach,
we can generate a population of virtual subjects. This can be interesting from
several points of view: 1) to generate a large imaging database to train post-
processing algorithms, 2) to create extreme anatomical variants, such as small
or big hearts, and, 3) to run a parametric study with uniformly distributed
anatomies, thus ensuring that all the shape space is represented in our database.

6.3 Research Opportunities

The information to potentially integrate in a computational model is not lim-
ited to classical functional parameters. As research advances, novel functional
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Figure 6.2: Illustration of a multilevel computational model: the anatomical geometry is
complemented with functional information at different levels. WH= Whole heart; LV= Left
Ventricle; EDV= End diastolic volume; ESV= End systolic volume; EF= Ejection fraction;

deMRI= Delayed enhancement Magnetic Resonance Imaging; Core= Infarct core; Gray
Zone= Area peripheral to the core. (See color insert)

parameters are proposed. Most likely, those parameters will be quantifiable
from a retrospective population of patient-specific computational models.

Such a computational model is a perfect candidate to provide an integrative
frame of reference to enrich electrophysiological simulations. Besides provid-
ing patient specific anatomy, it can provide complementary functional infor-
mation (i.e. scar) and ex-vivo information (i.e. fiber orientation) to constrain the
simulations. Another research opportunity can be targeted to comparing pop-
ulation subgroups. Building a statistical model of population subgroups allows
for comparing them among each other. For instance, the shape and/or defor-
mation patterns of a normal population can be compared to the patterns of a
hypertrophic population. A measure of distance from normality can be used as
a quantifiable parameter specific to a pathology. Other clear opportunity comes
from cardiac remodeling research. The information gathered at different stages
of a CVD can be displayed in a computational model. Ideally, the clinician
could navigate through the multiple computational models, each representing
a point in time, and observe the development of the disease. This scheme could
also be used for evaluation of cardiac surgery outcome, by visualizing pre and
posttreatment models. Finally, surgical procedures (i.e. ablation and CRT) can
be aided by the use a patient-specific computational model. The preoperative
model can be used to optimally plan the treatment and to guide the procedure
with intraoperative information. This presents a wide range of opportunities
along the footsteps towards a multilevel computational model of the heart (see
Fig. 6.2).
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In a clinical environment the multimodal scheme is observed naturally.
The  clinician in charge  will mentally combine all the information to 
diagnose the patient.

3DUS= Three-dimensional ultrasound; CT= Computed Tomography; MRI= Magnetic
Resonance Imaging; SPECT= Single Photon Emission Computed Tomography (p. 12).

Active Shape Models are a robust and accurate approach to quantify cardiac 
parameters from multimodal image data. They can evaluate the spatio-temporal 
variabilityof the heart.

3DUS= Three-dimensional ultrasound; CT= Computed Tomography; MRI= Magnetic
Resonance Imaging; SPECT= Single Photon Emission Computed Tomography (p. 13).

We use a 3D shape model built from CT datasets. The shape information is complemented with intensity information specific 
to each modality by simulating the physics of acquisition (p. 21).
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Axial view of a virtual study for FBP (a-c) and OSEM (d-f) reconstructed images. Edges obtained automatically by 3D-ASM with ST (a,d), GR (b,e), FBP (c) and OSEM (f) boundary models are
shown in white.  True edges are displayed on yellow. ST= step function; GR= maximum gradient; FBP= Filtered Back-projection; OSEM= Ordered-subset Expectation Maximization (p. 34).

Two clinical cases with severe perfusion defects: case one in axial view (a-c) and case two in long-axis view (d-f). Edges obtained automatically by 3D-ASM with ST (a,d), 
GR (b,e) and FBP (c,f) boundary models are shown in white (thick). True edges are displayed on yellow (thin). Abbreviations as in figure above (p. 34).

Interpolated (top) and original (bottom) axial views of a virtual (a-b, d-e) and a clinical (c,f) gSPECT study. They were reconstructed by 
means of OSEM (a,d) and FBP (b-c, e-f). FBP= Filtered Back-projection; OSEM= Ordered-subset Expectation Maximization (p. 28).
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Average segmentation errors for group C1 (end diastole and  end systole). Color-map displayed on the mean shape model  with data range from inter-observer values
in mm (a).  Note the reduction of large errors at the LV base and RV free wall for simulated intensity models with reliability  information (d-e). Top view (top), front view 
(mid) and septal view (bottom). NRL= No reliability; RL= reliability (p. 77).  
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Illustration of a multilevel computational model: the anatomical geometry is complemented with functional information at different levels. WH= Whole heart; 
LV= Left Ventricle; EDV= End diastolic volume; ESV= End systolic volume; EF= Ejection fraction;  deMRI= Delayed enhancement Magnetic Resonance Imaging;
Core= Infarct core; Gray Zone= Area peripheral to the core (p. 90). 




