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Abstract

In the present thesis we address the problems of building and combining active
shape and appearance models. The models are one of the widespread tool for

object modeling and segmentation with a shape and texture prior. When these
models are employed several problems can arise:

1. expensive training process (in terms of time and memory requirements)

2. a training set of images with the delineated object (usually manually) is re-
quired

3. a high degree of uncertainty of the delineations (due to the presence of noise)
including unfeasibility of manual delineations in 3D.

To overcome these problems we propose:

1. A framework for weighted fusion of multiple active shape or active appear-
ance models based on eigenspace combination. Such combination strategy can
be treated as a linear interpolation of the models. The benefit of the fusion
is that the combined model can represent any object, which can be assumed
to be a linear combination of the objects corresponding to the fused models.
In other words, if an object has a number of typical appearances (different
face expressions or different face poses, or different cardiac pathologies), it is
possible to choose the most representative ones and assume any other to be
a linear combination of the representative set. Then the combined model can
be used to accurately segment the object in question and weights can be used
for classification to determine, which representative appearance is closer. The
possible applications of this framework are: batch model construction, object
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classification based on combination weights, reduction of training sets to only
representative appearances.

2. A view-independent face segmentation algorithm based on the fusion of ac-
tive appearance models. This algorithm can be used to segment any facial
pose and also determine the pose angle using the estimated combination
weight. Only the views corresponding to the extreme head poses and the
frontal one are taken for training, all the other poses are assumed to be a lin-
ear combination of these. Estimation of combination coefficients through re-
construction error minimization allows finding the optimal combined model,
which is more specific to the pose under consideration than a single model
constructed for all poses.

3. Combination of computed tomography (CT) and synthetic ultrasound (US)
and single photon emission tomography (SPECT) images to automatically
learn shape variation and voxel intensity variation, where it is demonstrated
how intensity information can be learned for the two modalities where the
resolution or quality is too low to manually annotate the images, especially in
3D. In this case generation of synthetic images through realistic simulation of
the imaging process allows learning the appearance for a given set of shapes
(obtained from high quality CT scans).
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CHAPTER 1

Introduction

When casting pebbles into water,
look at the ripples,

otherwise this activity
will be an empty amusement

(Kozma Prutkov)

1.1 Overview

It all started by a 5× 5cm image of a three-month-old son of Russell Kirsch back
in 1957. The ghostlike black-and-white photo marked the birth of the computer

imaging as we know it today...
As digital images were penetrating every aspect of our lives, growing both in

quantity and quality, the more and more important was becoming the question
of not only improving image quality but also the question of automated image
analysis. Today the problems of computer aided image retrieval and analysis are of
utmost interest to the world market, security and healthcare. They encompass such
areas as image denoising, reconstruction, extraction of imaged objects, analysis of
appearance and behaviour of the extracted object, classification, and many, many
more. The algorithms are being developed to efficiently analyze all kinds of data,
from web searches to security related and medical, in the latter case allowing more
efficient and rapid handling of critical events.

From the day computers started to be used to handle images, the complexity
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of the tasks was rapidly increasing, accompanied by the increasing availability of
computational power. While the earliest problems were essentially related to im-
age enhancement and recognition, nowadays the focus has extended to a high level
analysis of the scenes in images or events in videos. The world today has been
drowned in information that requires processing and humans are not fast enough
to do it by themselves. For example, in the analysis of hours of surveillance videos
there is much effort to reduce human work to a minimum. Motion detectors are
used to reduce the quantity of data to be analyzed. Guards of big buildings have
to constantly monitor the output from many video cameras spread throughout the
place. This work is very tedious and still it is difficult to simultaneously pay atten-
tion to all the cameras. If this still could be handled by a motion detector issuing an
alarm, in the frequented areas like parkings, jewelry stores, or airports what needs
to be detected is not human presence but rather suspicious activity, and much effort
is being carried out in this area.

The basic building block of almost any high level scene analysis is the separation
of any particular object form the rest of an image, or segmentation (note that seg-
mentation also refers to the methods of separating an image into areas with similar
characteristics). Once the object of interest has been extracted, it can be efficiently
analyzed for patterns in its appearance end behavior. Of course extracting only
one object, also eliminates the context in which it has appeared, so perhaps all the
objects in the scene must be identified and separated from each other. But that is
even more complex task and remains generally unsolved.

In the following two sections some light is shed on why model-based seg-
mentation is interesting and where it is applied in the fields of biometrics and
biomedicine.

1.2 Segmentation in facial biometrics

By far the most popular area here is the security. As the world terrorism is on the
rise, it stimulated a lot of investments into the development of systems for human
authentication and identification as well as classification of human activity. The
areas of interest here are the analysis of human activity, which requires separation
of the human body from the background and analysis of its shape in time, and ver-
ification or identification of a person by his face. The latter is typically done using
a database of faces or by comparing to a photo carried by the person. Biometric
passports with a photo on a chip is an example of this. For not requiring almost
any user collaboration, facial biometric is probably the most favored (although one
of the least reliable) identification approach. Very few technologies compete with
faces in this aspect (among which voice and gait are probably the most important)
and the technology is already being used or tested in many airports worldwide.
The technology is still far from perfect, as can be seen from the attempts to inte-
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grate facial biometrics to recognize owners of laptops (typically followed by articles
in press about researchers being able to hack the system by showing it a photo).
The latter is essentially because it is hard to distinguish a live person from a photo
using a webcam. In these contexts, the segmentation of the facial shape probably
will not be able to help detecting the liveliness of the face, but, if accurate, it helps
improving the robustness of the recognition by eliminating background and helping
analyze the shape of the face separately from its texture (as for example is done in
Active Appearance Models). In other words, it is possible to get rid of unnecessary
(for face recognition) face variations such as facial expressions.

Another field of interest is the facial expression and/or pose analysis. In his
works, Darwin claimed that all people, regardless of race or culture, possess the
ability to express some emotions in exactly the same ways through their faces. Only
much later this was confirmed by Paul Ekman in a series of experiments [1–3],
which revealed agreement both within and across cultures for six emotional ex-
pressions - anger, disgust, fear, happiness, sadness, and surprise. These data were
the first systematic evidence for the universality of emotions and their expressions.
This stimulated research in analysis of human emotions for both medical, market-
ing and simply better human-computer interaction. So, for example, in 2006 there
was quite some hype about an "emotionally aware" computer, that uses a camera to
capture images of the user’s face, then determines facial expressions, and infers the
user’s mood. Since then it is being developed in University of Cambridge by Peter
Robinson. Since human emotions usually are portrayed on the face even when we
are alone (of course it does not work for everybody, like, for example, everybody
knows that Chuck Norris has only two facial expressions: with and without the
beard), it seems very attractive to be able to determine them with just a simple
video camera, especially considering that today webcams are easily affordable and
most notebooks come with a built-in one. So the typical approaches to facial expres-
sion recognition are based either on direct classification of images with the cropped
face or classification of features extracted in a more sophisticated way. These fea-
tures can be for instance parameters of a 2D or 3D face model adjusted to match the
face in the image. These shapes can subsequently be analyzed for the presence of
certain expressions. Additionally such model could provide information about the
pose or gaze. The latter is becoming quite popular to help disabled people interact
with computer using essentially their eyes (for instance, gaze tracking is used to
move the mouse pointer and blinking - for clicks).

1.3 Segmentation in biomedicine, in cardiac imaging

Diseases of the heart and circulatory system (cardiovascular decease or CVD) are
the main cause of death in Europe, accounting for over 4.3 million (2.0 million
in the EU) deaths each year (48% of deaths) [4]. Many imaging techniques have
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been developed to perform cardiovascular examinations. Ultrasound (US), single-
photon emission computed tomography (SPECT), computed tomography (CT) and
magnetic resonance imaging (MRI) are by far the most well-known and established
techniques. Among them, cardiac ultrasound still remains the most ubiquitous car-
diac imaging modality, with applications at the bedside and during interventions.
At the same time, it is the best modality in terms of temporal resolution and the
time spent on acquisition. In many cases this is the first modality used to analyze
the patient’s condition.

Cardiac multidetector computed tomography (MDCT) has established itself as
the modality for assessing the structure of the coronary tree in vivo with simul-
taneous acquisition of the dynamic anatomy of the whole heart and great vessels
with great spatial detail (0.5 mm isotropic voxels). Unfortunately, this modality still
involves substantial radiation, which makes it less suitable when follow-up scans
need to be performed.

Cardiac MRI provides an abundant source of detailed, quantitative data on heart
structure and function. It is non-invasive and safe. It is able to provide high-
quality functional information in any plane and any direction, meaning that it is
possible to get views of the entire heart, irrespective of its orientation. Cardiac
MRI has provided detailed information on 3-D ventricular shape and geometry,
regional systolic and diastolic strain, material microstructure, blood flow, perfusion
and viability [5].

As one can see there is an abundance of information obtained from the different
modalities and many of them are complementary. So there is much interest in trying
to combine those data in a single frame of reference. It can afterwards be used to
build cardiac atlases or bio-mechanical and physiological models, personalizing
them to every specific patient. All of these is being fostered by the rapid growth
of accessible computational power. Model-based analysis tools allow calculation
of the global function indices like left ventricular mass and volume. On the other
hand they allow quantitative parametrization of regional heart wall motion which
gives more insight into the wall dynamics and presence of local abnormalities. This
also could provide means for statistical comparison of hearts drawn from different
patient populations.

1.4 Contributions

This thesis is all about one of the most widespread landmark-based statistical shape
representation methods coined Point Distribution Models (PDMs) [6]. There are two
popular modeling and segmentation methods connected to this representation: Ac-
tive Shape Models (ASM) [6, 7] and Active Appearance Models (AAM) [8, 9]. Shortly
after their introduction, these methods became very popular in many applications
and several interesting contributions have been proposed in the literature to extend



1.4. Contributions 19

or improve the original formulation [10–19]. These methods are particularly attrac-
tive for their simplicity, robustness and speed, and gained good acceptance in facial
analysis and biometrics as well as in several medical image analysis applications.

In contrast to their execution efficiency, their training could require large repre-
sentative datasets, which implies:

• The contours of the object of interest in the training set have to be delineated
(manually or by some other automatic or semiautomatic means).

• The training can take a considerable amount of time. This is particularly the
case of the AAM [8, 17], due to the costly estimation of large prediction ma-
trices for parameter updates. Moreover the complexity grows with the size of
the average face (because all the pixels have to be modeled). Another prob-
lem is construction of the model from huge training sets, due to a necessity
to compute the covariance matrix and its eigendecomposition, the memory
requirements can grow very fast.

This brings us to the contributions presented in this thesis:

1. A framework for combining multiple active shape or active appearance mod-
els, Chapter 2. This framework treats the models as a set of eigenspaces (de-
fined by eigenvectors and eigenvalues) and proposes a framework for their
combination with a possibility of assigning weights. Such combination strat-
egy can be treated as a linear interpolation of the models. The benefit of
doing the aforementioned combination is that the combined model can rep-
resent objects modeled by the two models and any intermediate object. In
other words, if an object has a number of typical appearances (different face
expressions or different face poses, or different cardiac pathologies), it is pos-
sible to choose the most representative ones and assume any other to be a
linear combination of the representative set. Then the combined model can
be used to accurately segment the object in question and weights can be used
for classification to determine which representative appearance is closer. The
possible applications of this framework are: batch model construction, object
classification based on combination weights, reduction of training sets to only
representative appearances.

2. A view-independent face segmentation algorithm based on the fusion of ac-
tive appearance models, Chapter 3. With this approach we demonstrate how
the combination of models can be used to segment any facial pose and also
determine the pose angle using the estimated combination weight. Only the
views corresponding to extreme head poses and the frontal one are taken for
training, all the other poses are assumed to be a linear combination of these.
Estimation of combination coefficients through segmentation error minimiza-
tion allows finding the optimal combined model which is more specific to the
pose under consideration than a single model constructed for all poses.
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3. Combination of CT and synthetic US/SPECT images to learn shape variation
and voxel intensity variation, Chapter 4 and 5. Finally, these chapters demon-
strate how different cardiac imaging modalities can be combined to train a
segmentation algorithm and adapt it to a specific imaging modality, which
alone has insufficient quality for that task. In this case generation of synthetic
images through realistic simulation of the imaging process allows learning the
appearance for a given set of shapes (obtained from high quality CT scans).



CHAPTER 2

A Framework for Weighted Fusion of Multiple Statistical Models
of Shape and Appearance

Abstract - This paper presents a framework for weighted fusion of several Active Shape
and Active Appearance Models. The approach is based on the eigenspace fusion method
proposed by Hall, Marshal & Martin [20], which has been extended to fuse more than two
weighted eigenspaces using unbiased mean and covariance matrix estimates. To evaluate the
performance of fusion, a comparative assessment on segmentation precision as well as facial
verification tests are performed using the AR, EQUINOX and XM2VTS databases. Based
on the results it is concluded that the fusion is useful when the model needs to be updated
online or when the original observations are absent.

Adapted from C. Butakoff, A.F. Frangi. A Framework for Weighted Fusion of Multiple Statisti-
cal Models of Shape and Appearance. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(11):1847–1857, 2006.
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2.1 Introduction

Tthis article focuses on one of the most widespread landmark-based statisti-
cal shape representation methods coined Point Distribution Models (PDMs) [6].

There are two popular modeling and segmentation methods connected to this rep-
resentation: Active Shape Models (ASM) [6, 7] and Active Appearance Models (AAM)
[8,9]. Shortly after their introduction, these methods became very popular in many
applications and several interesting contributions have been proposed in the liter-
ature to extend or improve the original formulation (e.g., [10–12, 14–16, 21]). These
methods are particularly attractive for their simplicity, robustness and segmenta-
tion speed, and therefore gained good acceptance in facial analysis and biometrics
as well as in several medical image analysis applications. However, in contrast to
their execution efficiency, their training from large datasets can take a considerable
amount of time, particularly for AAM, due to the costly estimation of large Jaco-
bian matrices. Whenever the model needs to be updated with new data, it has to be
retrained using past and new observations. However, past observations may be no
longer available, or the need to store all past observations may simply be impracti-
cal for on line model updating. Moreover the larger is the database of observations
the more costly will be the process of recomputing the model and, consequently,
an incremental model updating strategy could constitute a valuable alternative. In
dynamic model learning it is useful to introduce mechanisms for "forgetting" past
data [22,23]. This can be accomplished during model retraining by assigning lower
weight to past observations than to new observations. To summarize, in this con-
text it is important to be able to update the model based only on the past model
parameters with a possibility to assign different weights to past and new data.

Taking a look at classical ASM and AAM, one may notice that these models are
essentially eigenspaces. As defined in [20], an eigenspace of a set of observations
is a quadruple consisting of mean, eigenvectors, eigenvalues and the number of
observations. In particular an ASM has one eigenspace and a set of covariance
matrices, and an AAM has three eigenspaces and two Jacobians. This leads to the
hypothesis that, essentially, AAM and ASM fusion could be reduced to eigenspace
fusion.

The solution that we propose is based on the eigenspace fusion framework in-
troduced in [20]. Nowadays there are many applications where eigenspace con-
struction and analysis are involved. These applications include classification, mo-
tion sequence analysis, temporal tracking, segmentation with statistical models, and
many others, and there are already many works on eigenspace updating strategies
in the literature. Reasons for eigenspace fusion are essentially the same as those
mentioned above; the most important being, perhaps, the need to quickly and con-
stantly update the eigenspace to keep it up-to-date with new available data. There
are many methods for updating eigenspaces by one observation at a time [24–27]
and for the fusion of already computed eigenspaces [20, 28]. We use the method
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proposed in [20] because it computes matrices of the smallest possible size thus
minimizing memory requirements and computation speed. Among the newest
publications it is worth to mention a work by Zhou et al. [29], where an eigenspace
fusion framework is employed to efficiently track a shape, represented by a set of
control points in a vector form [7], placed along object’s contour. There, the authors
derive a formulation of a Kalman Filter to track the shape, based on the fusion of
eigenspaces described in [20].

The main contributions of this paper are a generalization of the eigenspace fu-
sion algorithm introduced in [20] and an AAM/ASM fusion framework. Originally,
its authors did not take into account weighting of fused eigenspaces, considered
only fusion of two eigenspaces, and all the covariance matrix estimates were biased
while it is common practice to use unbiased estimates. Therefore we generalized the
algorithm to be able to perform weighted fusion of any number of eigenspaces, and
modified it to use and compute unbiased estimates of covariance matrices. Then,
taking this modified eigenspace fusion as a starting point, we thoroughly develop
the framework for ASM and then AAM fusion. As a consequence, this paper is
primarily concerned with deriving a theoretical framework for fusion, rather than
its particular application to any specific area, and only a set of generic experiments
are performed to evaluate the algorithm and to compare the performance of the
fused model to the model constructed from the original observations.

The paper is organized as follows. Section 2.2 covers the problem of weighted
eigenspace fusion, which is a generalization of the algorithm proposed in [20]. Sec-
tions 2.3, 2.4 and 2.5 introduce the fusion of Active Shape and Active Appearance
Models. Section 2.6 summarizes the steps for fusing AAMs. Then, Sections 2.7 and
2.8 demonstrate the results and draw conclusions. Finally Appendices at the end
of the article provide some additional information and derivations for the reader’s
convenience.

2.2 Weighted eigenspace fusion

Before we begin, let us note that matrices will be written in bold uppercase, vectors
will be column vectors and written in bold lowercase, and that letters with normal
typeface will denote scalars.

Let us consider M eigenspaces. Each i-th eigenspace is computed by Principal
Component Analysis (PCA), applied to the set of Ni observations
Xi =

{
xij|j = 1, . . . , Ni

}
, each being an n-dimensional column vector, and is de-

fined as a quadruple [20]:

Ωi = (x̄i, Φi, Λi, Ni) , i = 1, ..., M (2.1)

where the n-vector x̄i is the mean of the observations, Φi is a n×mi matrix of eigen-
vectors, and Λi is a mi ×mi matrix of eigenvalues (n and mi have been determined
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during construction of eigenspaces to be fused). Note that the number of rows of all
Φi is the same (i.e., all the eigenvectors must have the same number of components).
Each eigenspace is assigned a weight wi such that ∑M

i=1 wi = 1. These weights are
used to change the influence of each eigenspace on the fused one. Without loss of
generality we shall assume that all the weights are positive. Let

pi = wi ·
(

M

∑
j=1

wjNj

)−1

(2.2)

Introducing pi we transfer the model weights wi to the observation level, so each
observation of i-th model has a weight pi. Let us define the full observation set as

X =
M⋃

i=1
Xi, consisting of N = ∑M

i=1 Ni observations, with its elements denoted by

zk ∈ X in order to simplify the notation in several formulas (each zk is equal to xij
for some i and j).

The goal of fusion is to compute such an eigenspace Ω = (z̄, Φ, Λ, N), using the
information from Ωi only, that it is equivalent to the eigenspace computed from the
full set of observations X. Here, z̄ is again a n-vector, Φ is a n×m matrix, and Λ is
a m×m matrix, where m is determined during the fusion.

Let us define the function P
(
xij

)
= pi, which can be thought of as a probability

of observing xij. Then the fused mean is

z̄ =
N

∑
k=1

P (zk) · zk =
M

∑
i=1

Ni

∑
j=1

pixij =
M

∑
i=1

Ni pi x̄i (2.3)

Now let us denote the covariance matrices by Di = ΦiΛiΦ
T
i and the fused

covariance matrix by D. The unbiased estimate of the fused covariance matrix (see
Appendix I) is then :

D =
1

1−
N
∑

k=1
P (zk)

2
· D̃ =

1

1−
M
∑

i=1
Ni p2

i

· D̃

D̃ =
N

∑
k=1

(zk − z̄) (zk − z̄)T P (zk) =

=
N

∑
k=1

P (zk) zkzT
k − z̄z̄T =

M

∑
i=1

pi

(
Ni

∑
j=1

xijxT
ij

)
− z̄z̄T (2.4)
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Rewriting the expression for Di according to the definition

Di =
1

Ni − 1

Ni

∑
j=1

(
xij − x̄i

) (
xij − x̄i

)T =

=
1

Ni − 1

[
Ni

∑
j=1

xijxT
ij − Ni x̄i x̄T

i

]

or
Ni

∑
j=1

xijxT
ij = (Ni − 1) Di + Ni x̄i x̄T

i (2.5)

Substituting (2.5) and (2.3) into (2.4) we obtain

D̃ =
M

∑
i=1

pi

(
Ni

∑
j=1

xijxT
ij

)
− z̄z̄T =

=
M

∑
i=1

(Ni − 1) Di pi +
M

∑
i=1

Ni pi x̄i x̄T
i −

−
M

∑
i=1

Ni pi x̄i ·
(

M

∑
i=1

Ni pi x̄i

)T

=
M

∑
i=1

(Ni − 1) Di pi+

+
M−1

∑
i=1

M

∑
j=i+1

Ni Nj pi pj
(
x̄i − x̄j

) (
x̄i − x̄j

)T

Finally

D =
1

1−
M
∑

i=1
Ni p2

i

·
[

M

∑
i=1

(Ni − 1) Di pi+

+
M−1

∑
i=1

M

∑
j=i+1

Ni Nj pi pj
(
x̄i − x̄j

) (
x̄i − x̄j

)T
]

(2.6)

We wish to compute the eigenvalues and eigenvectors that satisfy D = ΦΛΦT .
The method of solution is as in [20]: construct an orthonormal basis set Υ that spans
all the eigenspaces; use Υ to derive an intermediate eigenproblem, whose solution
provides eigenvalues Λ and eigenvectors R; finally, the eigenvectors of the initial
problem are calculated by Φ = ΥR.

Let us concatenate column-wise into a matrix H all the eigenvector matrices
Φi, i = 1, . . . , M, and the differences of all possible pairs of the means x̄i − x̄j, where
i, j = 1, . . . , M and j > i as in (2.6):

H = [Φ1|Φ2| . . . |ΦM| (x̄1 − x̄2) | (x̄1 − x̄3) | . . . | (x̄M−1 − x̄M)] (2.7)
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By orthonormalizing H the n× p basis Υ is obtained

Υ = Orth (H) (2.8)

where p is determined by any orthonormalization algorithm.
Now, consider the following intermediate problem

D = ΥRΛRTΥT (2.9)

where Υ is the basis and R can be considered as a rotation matrix [20]. Substituting
here the expression for D we obtain

ΥTDΥ
∆= RΛRT

ΥTDΥ =
1

1−
M
∑

i=1
Ni p2

i

ΥT

[
M

∑
i=1

(Ni − 1) Di pi+

+
M

∑
i=1

M

∑
j=i+1

Ni Nj pi pj
(
x̄i − x̄j

) (
x̄i − x̄j

)T
]

Υ =

=
1

1−
M
∑

i=1
Ni p2

i

{
M

∑
i=1

(Ni − 1)
(

ΥTΦi

)
Λi

(
ΥTΦi

)T
pi+

+
M

∑
i=1

M

∑
j=i+1

Ni Nj pi pj

(
ΥT [

x̄i − x̄j
]) (

ΥT [
x̄i − x̄j

])T
}

Note that it is advantageous to calculate ΥTΦi and ΥT [
x̄i − x̄j

]
first, because

Υ and Φi have fewer columns than rows. On the other hand ΥTDΥ is a p × p
matrix, which compared to the n× n matrix D, in general, is smaller and therefore
its eigendecomposition will be faster to perform. Now, using eigendecomposition,
R and Λ can easily be calculated. The resulting eigenvectors are obtained by

Φ = ΥR (2.10)

whereupon zero and small eigenvalues and the corresponding eigenvectors can be
discarded to further reduce dimensionality.

This concludes the section on eigenspace fusion. Fig. 2.1 illustrates the fusion
of three eigenspaces, represented by hyper-ellipses, with equal weights. The largest
hyper-ellipse is the fused eigenspace and the small circles inside the hyper-ellipses
are the observations. The following sections apply the above concepts to develop a
framework for ASM and AAM fusion.
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Figure 2.1: Illustration of eigenspace fusion.
The three smallest ellipsoids are the fused
eigenspaces and the largest one is the result
of their fusion with equal weights. Small cir-
cles inside the ellipsoids are the original ob-
servations.

2.3 ASM Fusion

An Active Shape Model is constructed from a set of aligned shapes by means of
PCA [7]. Shapes are defined by landmark points placed along the contour of the
object of interest. ASM’s main component is a Point Distribution Model (PDM)
defined for the i-th ASM by:

xij = x̄i + Φibs
ij (2.11)

where xij is a n-vector, representing the j-th shape, obtained by concatenating all
the landmark coordinates into a single real-valued vector one after another. In other
words, if landmarks have coordinates (xi, yi) the concatenated vector will be of the
form (x1, y1, x2, y2, . . .)T . Then, the n-vector x̄i is the mean of the aligned shapes in
the training set; the n×mi matrix Φi and the mi-vector bs

ij are the projection matrix
and the corresponding projection coordinates, respectively. Values n and mi have
been determined during the construction of PDMs to be fused.

To fit the model to an image, profiles perpendicular to the contour at landmark
positions are used. From pixels sampled along each profile the mean vector and
covariance matrix are estimated during the model construction. The collection of
such pairs for each landmark constitutes an Intensity Model. They are a part of
the Mahalanobis distance, which is used to drive the model to the best-fit location
during segmentation.

ASM fusion is straightforward. Since each PDM is nothing else than an eigenspace
containing the shapes from the training set, the fusion of several ASMs is reduced
to the fusion of "aligned" PDM eigenspaces (using the algorithm from Section 2.2)
and fusion of statistical information for the shape profiles.

The first step is to align the means x̄i of all PDM’s using the Procrustes Analysis
with the only difference being that, instead of the usual mean, the weighted mean
is estimated according to (2.3). After Procrustes Analysis the aligned means x̄i are
used to estimate the fused mean x̄ as in (2.3). During the alignment, the shapes are
centered and rescaled to unit size and then a d× d matrix accounting for rotation is
estimated, where d is the dimensionality of landmarks (e.g., if landmarks represent
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a shape in 2D then d = 2, if in 3D then d = 3). Let Si be this d× d matrix that aligns
the shape x̄i to the mean x̄, both being centered at the origin. Let Ξi be a n

d × n
d

block-diagonal matrix with repeating Si along its diagonal:

Ξi =




Si 0
. . .

0 Si


 (2.12)

Then, considering that the shapes are already centered, we can write

Ξixij = Ξi x̄i + ΞiΦibs
ij (2.13)

which shows that by aligning x̄i and each eigenvector of Φi we also align the origi-
nal observations xij to the fused mean x̄.

Now, using the transformations Ξi, PDMs are fused by applying the eigenspace
fusion scheme to eigenspaces corresponding to the aligned means Ξi x̄i and eigen-
vectors ΞiΦi.

The fusion of Intensity Models of ASMs is much simpler to perform, for it does
not require the construction of the intermediate problem. The mean profiles of each
model at each landmark are fused using (2.3) and the covariance matrices using
(2.6), which directly uses covariance matrices instead of their eigendecompositions.

One may notice that the center of the fused eigenspace in Fig. 2.1 incidentally
does not belong to any of three clusters of points (in this specific case) and one may
suspect that the fused PDM will thus represent implausible shapes. But it must
be noted that the fusion framework was developed in such a way that fusing two
eigenspaces, constructed from several sets of data, is equivalent to constructing a
new eigenspace from all of the sets. Therefore if constructing the model from all
the observations is meaningful, then the fusion will result in a meaningful model
too. Hence the apparent inconsistency reveals rather a feature of data than of the
fusion technique.

2.4 AAM Fusion

2.4.1 Introduction

Let us assume that we are given M AAMs and that each model has an associated
weight wi such that they altogether add to one. The first component of an AAM
that we are going to consider is a PDM, which describes the shape variation (learnt
from training set) of the object of interest. The classical linear PDM used in AAM
is defined as in the previous section by:

xij = x̄i + Φsibs
ij, i = 1, . . . , M (2.14)
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where the n-vector xij is the j-th training shape instance for the i-th PDM, the n-
vector x̄i is the mean shape for i-th PDM, the n × mi matrix Φsi is the matrix of
eigenvectors, and bs

ij are mi coordinates of xij in the subspace spanned by Φsi. The
eigenspace associated with each PDM is Ωsi = (x̄i, Φsi, Λsi, Ni). The letter "s" in
subscript or superscript of a symbol relates the latter to the PDM. It must be also
mentioned that our technique requires that all the PDMs use the same landmark
placement and, thus, to have the same number of landmarks.

The next component of an AAM is a Texture Model (TM). TMs are constructed
from the intensity values of pixels inside the shape.

A linear TM is defined by

gij = ḡi + Φgib
g
ij, i = 1, . . . , M (2.15)

where the ki-vector gij is the j-th texture instance for the i-th TM, the ki-vector ḡi
is the mean texture for i-th model, the ki × li matrix Φgi is the matrix of eigen-
vectors, and bg

ij are the li projections of gij in the subspace spanned by Φgi. The
corresponding eigenspaces are Ωgi =

(
ḡi, Φgi, Λgi, Ni

)
. The values ki and li have

been determined during the construction of the TMs to be fused. The letter "g" in
subscript or superscript of a symbol relates the symbol to the TM.

Having parameterized shape and texture, a combined AAM is constructed and
defined by:

bij = Φci cij, i = 1, . . . , M; j = 1, . . . , Ni (2.16)

with a (mi + li)× qi eigenvector matrix Φci. The (mi + li)-vector bij is constructed
from the corresponding i-th TM parameters and i-th PDM parameters as follows:

bij =

[
Wci · bs

ij
bg

ij

]
= W̃ci ·

[
bs

ij
bg

ij

]
; W̃ci =

[
Wci 0

0 I

]
(2.17)

Wci being a diagonal mi ×mi matrix of weights, calculated from the eigenvalues of
the PDM and TM, used to make shape and texture parameters commeasurable [8].
The corresponding eigenspaces are defined by Ωci = (0, Φci, Λci, Ni). The value qi
has been determined during construction of the i-th ASM’s combined model. The
letter "c" in subscript or superscript of a symbol relates the symbol to the combined
model.

Matching the above combined AAM to an image is performed in an iterative
manner using the prediction matrices calculated during model construction. These
matrices provide a linear relationship between the differences in texture and the
differences in parameters of the corresponding model. Each of these matrices being
multiplied by the difference between the sampled and modeled texture gives as a
result the difference of the model parameters. The latter provides updates to the
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model driving it to the best fit by minimizing the texture difference [30]. In this
context, the following equalities hold:

Rc · r (c∗, t∗) = ∆c
Rt · r (c∗, t∗) = ∆t

(2.18)

where ∆c = c− c∗ and ∆t = t− t∗ are the differences in model and pose parameters,
c∗ and t∗ are current estimates of the parameters and r (c∗, t∗) = gimage (c∗, t∗) −
gmodel (c∗, t∗) is the texture residual (i.e., the difference between the texture sampled
from the image under the shape generated by the model with parameters c∗, t∗ and
the texture generated by the model with the same parameters). For a more detailed
explanation of the AAM matching process, please refer to [30]. The matrices Rc and
Rt are the inverse of the Jacobians that are calculated during model building, the
former is used for estimating the displacement of model parameters and the latter
for pose parameter displacement. Every j-th column of i-th Jacobian is calculated
by the formula [30]:

∂r
∂qi

j
=

1
Ni

Ni

∑
l=1

∑
k

K
(

δqi
jk

) ∆rl
i

2δqi
jk

(2.19)

where K (·) is a weighting kernel (e.g., Gaussian) and ∆rl
i is the difference between

residuals corresponding to positive and negative parameter displacements in the l-
th image from the i-th training set [30] and δqi

jk is the k-th displacement in parameter
j for the i-th model.

Having considered the above information we come to the conclusion that fusing
several Active Appearance Models involves the following steps:

1. Fusing the Point Distribution Models of different AAMs

2. Fusing the Texture Models of the AAMs

3. Creating a Combined Appearance Model from the fused Point Distribution
and Texture models.

4. Combining the prediction matrices of AAMs

2.4.2 Fusing the Point Distribution Models

The PDMs are fused in exactly the same way as those of ASM, described in Section
2.3. As the result a fused PDM is obtained:

xj = x̄ + Φsbs
j , j = 1, . . . , N (2.20)

with the corresponding eigenspace Ωs = (x̄, Φs, Λs, N), Φs being a n × m matrix
with m determined during fusion.

To simplify notation, in subsequent formulation we will assume that the eigen-
vectors Φsi (but not the means) are already transformed by Ξi.
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2.4.3 Fusing Texture Models

The fusion of Texture Models is more complex because the model deals with tex-
tures in vector form. Therefore all the information about spatial relationships
among the pixels is lost and the texture vector is bound to the shape from which it
was sampled (i.e., to the mean shape of the model x̄i, for some i). As a consequence,
to fuse TMs, all the textures must be warped onto the fused mean shape x̄.

Let us define M warping functions of texture: the i-th warp corresponds to a
mapping of the ki-dimensional texture vector from the mean shape x̄i of the i-th
PDM (2.14) to the k-dimensional texture vector corresponding to the mean shape x̄
of the fused PDM (2.20):

τi
(
gij

)
= g̃ij (2.21)

where k is determined by the the number of pixels within the x̄. Note that the x̄i
are not those aligned to x̄ during PDM fusion, but are the original ones.

The transformations (2.21) are linear functions of texture. This statement follows
from the fact that these warp transformations only move pixels from one place to
another with the help of interpolation when the required intensity does not have
integer coordinates within the image. But any interpolation that is a linear function
of pixel intensities, preserves the linearity of the warp (see Appendix II). Although
linear interpolation is almost ubiquitous, this comment was made just in case some-
one would try to use the nonlinear one.

To fuse the Texture Models (2.15) all the textures have to be warped from their
original shapes to the mean shape x̄. Due to the linearity of the warp

τi
(
gij

)
= τi (ḡi) + τi

(
Φgi

) · bg
ij (2.22)

where τi
(
Φgi

)
is a matrix whose columns are the columns of Φgi warped by τi.

Therefore warping gij is equivalent to warping the mean and the basis vectors,
and the fused texture model is thus obtained by fusing the modified eigenspaces
Ω̃gi =

(
τi (ḡi) , τi

(
Φgi

)
, Λgi, Ni

)
, i = 1, . . . , M. One may note that τi

(
Φgi

)
is, in

general, no longer orthonormal, but this is not required for fusion (see Appendix
III).

Fusing all the Ω̃gi yields a fused TM corresponding to the Point Distribution
Model (2.20)

gj = ḡ + Φgbg
j , j = 1, . . . , N (2.23)

with the eigenspace Ωg =
(
ḡ, Φg, Λg, N

)
, ḡ being a k-vector and Φg a k× l matrix

(l is determined during fusion).
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2.4.4 Creating a Fused AAM

At this point, a fused AAM model has to be constructed from the fused PDM and
TD models:

bj = Φc cj, j = 1, . . . , N (2.24)

where Φc is a (m + l) × q matrix (q is determined during fusion) and bj is the
following (m + l)-vector:

bj =

[
Wc · bs

j
bg

j

]
= W̃c ·

[
bs

j
bg

j

]
; W̃c =

[
Wc 0
0 I

]

The matrix Wc is readily calculated from Λg and Λs as

Wc = I ·
√

tr(Λg)
tr(Λs)

tr (·) standing for the trace of a matrix.
By construction, the mean combined vector zero and, therefore, only Φc and Λc

remain to be estimated.
Let Ci = ΦciΛciΦ

T
ci be the covariance matrices of the corresponding AAMs’

combined models (2.16), and let C = ΦcΛcΦT
c be the covariance matrix of the fused

combined model (2.24).
It is possible to show that the relationships between the bases Φsi and Φs are

given by (see Appendix IV):

bs
j = Φ−1

s Φsibs
ij (2.25)

and similarly, the relationships between the bases Φgi and Φg are given by:

bg
j = Ti · bg

ij, Ti = Φ−1
g · τi

(
Φgi

)
(2.26)

with Ti being a l × li matrix.
Rewriting the expression for Ci (according to the definition of covariance matrix)

we can obtain

(Ni − 1) · Ci = (Ni − 1) ·ΦciΛciΦ
T
ci =

= W̃ci ·




Ni
∑

j=1




bs
ij ·

(
bs

ij

)T
bs

ij ·
(

bg
ij

)T

bg
ij ·

(
bs

ij

)T
bg

ij ·
(

bg
ij

)T





 · W̃T

ci

or, equivalently,

Ni

∑
j=1




bs
ij ·

(
bs

ij

)T
bs

ij ·
(

bg
ij

)T

bg
ij ·

(
bs

ij

)T
bg

ij ·
(

bg
ij

)T


 =

= (Ni − 1) · W̃−1
ci · Ci · W̃−T

ci (2.27)
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Let us write the expression for the unbiased estimate of C (see Appendix I):

(
1−

M
∑

i=1
Ni p2

i

)
· C =

= W̃c ·




N
∑

j=1




bs
j ·

(
bs

j

)T
bs

j ·
(

bg
j

)T

bg
j ·

(
bs

j

)T
bg

j ·
(

bg
j

)T


 · Pr

(
zj

)

 · W̃T

c

substituting the expressions (2.25), (2.26) into the last equation and using (2.27), it
is easy to obtain the following

C =
1

1−
M
∑

i=1
Ni p2

i

·Ψ

(
M

∑
i=1

{
(Ni − 1) · ΓiCiΓ

T
i · pi

})
ΨT (2.28)

where

Ψ =
[

WcΦ−1
s 0

0 I

]
; Γi =

[
ΦsiW−1

ci 0
0 Ti

]

Ψ being a (m + l)× (n + l) matrix (the contained identity matrix I is a l× l matrix),
and Γi being a (n + l)× (mi + li) matrix.

Φc and Λc are finally calculated by eigendecomposition of C:

C ∆= ΦcΛcΦT
c (2.29)

The eigenproblem (2.29) can also be rewritten in the following form

M
∑

i=1

{
(Ni − 1) pi · (ΨΓiΦci) Λci (ΨΓiΦci)

T
}

1−
M
∑

i=1
Ni p2

i

∆= ΦcΛcΦT
c

and solved using the eigenspace fusion algorithm from Section 2.2. To be more pre-
cise, the algorithm should be applied to the eigenspaces Ω̃ci = (0, ΨΓiΦci, Λci, Ni).

2.5 Fusing the Prediction Matrices

Due to (2.19), the j-th column for the fused Jacobian is as follows:

∂r
∂qj

=
M

∑
i=1

pi

[
Ni

∑
l=1

∑
k

K
(

δqi
jk

) ∆rl
i

2δqi
jk

]
=

M

∑
i=1

Ni pi

[
∂r
∂qi

j

]
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or denoting the M model Jacobians by Jci = R−1
ci (each being a ki × qi matrix), the

pose Jacobians by Jti = R−1
ti (ki × 2d matrix each1, where d is the dimensionality of

the landmarks), for i = 1, . . . , M (Rti and Rci are stored with the AAMs), and the
fused model and pose Jacobians by Jc and Jt, respectively, we can write

Jc =
M

∑
i=1

Ni piJci, Jt =
M

∑
i=1

Ni piJti (2.30)

There are several issues that prevent direct application of the formula (2.30): the
Jacobians, in general, have different number of rows and columns. In other words,
different AAMs have different number of parameters and different texture lengths.
First, let us deal with the differences in the texture length. As we already did for
texture models, we must warp the Jacobians. So we warp each column of each
Jacobian (using τi for Ji) to obtain the new ones, such that they are k× q and k× 2d
matrices

J̃ci = τi (Jci) , J̃ti = τi (Jti)

Now we need to handle the problem of different number of parameters. Since
there is a constant number of parameters for the pose, J̃ti requires no special han-
dling.

Let us rewrite the part of (2.18) responsible for i-th model parameters

J̃ci · ∆cij = r (c∗, t∗) (2.31)

By substituting the coordinate transformations (2.25) and (2.26) into the defini-
tion of the combined model (2.16), we can obtain the transformation between cij
and cj

[
Wcibs

ij
bg

ij

]
= Φcicij ⇒

[
WciΦ

−1
si Φsbs

j
T−1

i bg
j

]
= Φcicij

(
WciΦ

−1
si ΦsW−1

c 0
0 T−1

i

) [
Wcbs

j
bg

j

]
= Φcicij

Φ̃ci =
(

WciΦ
−1
si ΦsW−1

c 0
0 T−1

i

)−1

·Φci = ΨΓiΦci

[
Wcbs

j
bg

j

]
= Φ̃cicij

The transformation is as follows

cij = Φ̃−1
ci ·Φc · cj (2.32)

1d translation parameters, d− 1 angles and one scaling parameter



2.6. AAM Fusion Algorithm Outline 35

Substituting (2.32) into (2.31) we obtain

J̃ciΦ̃
−1
ci Φc∆cj = r (c∗, t∗)

Summarizing, we can rewrite (2.18) as

[
τi (Jci) · Φ̃−1

ci Φc

]
· ∆cj = r (c∗, t∗)

τi (Jti) · ∆tj = r (c∗, t∗)

providing a transformation for each Jacobian:

Ĵci = τi (Jci) Φ̃−1
ci Φc, Ĵti = τi (Jti)

and finally the fused Jacobians are

Jc =
M

∑
i=1

Ni pi Ĵci, Jt =
M

∑
i=1

Ni pi Ĵti

The fused prediction matrices are calculated by

Rc = J−1
c =

[(
M
∑

i=1
Ni pi · τi

(
R−1

ci

)
Φ̃−1

ci

)
·Φc

]−1

Rt = J−1
t =

[
M
∑

i=1
Ni pi · τi

(
R−1

ti

)]−1 (2.33)

being q× k and 2d× k matrices respectively.
The obtained prediction matrices are ready to be plugged into the usual AAM

matching algorithm [30] to link pixel intensity differences with the displacements
of model parameters.

2.6 AAM Fusion Algorithm Outline

Let us briefly summarize here the steps required to fuse Active Appearance Models

1. PDM Fusion. Align the mean shapes x̄i by Procrustes Analysis. Compute the
fused mean shape x̄ and the transformations Ξi that align x̄i to x̄ for every i-th
model. Use each of the Ξi to transform the eigenvectors of the corresponding
PDM. Fuse the eigenspaces of the input PDMs with the modified means and
the transformed eigenvectors by the proposed eigenspace fusion algorithm to
obtain a fused PDM (2.20).
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Figure 2.2: The four expressions taken from the AR database (from left to right): neutral,
smiling, angry, and screaming.

2. TM Fusion. Calculate the spatial warps τi (ḡi) and τi
(
Φgi

)
in order to update

the TM eigenspaces to Ω̃gi =
(
τi (ḡi) , τi

(
Φgi

)
, Λgi, Ni

)
, i = 1, . . . , M. Fuse

them using the proposed eigenspace fusion algorithm to obtain the fused TM
(2.23).

3. Fusion of the Combined Models. Calculate Wc and fuse the eigenspaces
Ω̃ci = (0, ΨΓiΦci, Λci, Ni) to obtain the eigenvalues and eigenvectors for the
fused AAM (see Sec. 2.4.4). Remember that Φsi appearing in Γi are the re-
aligned PDM’s eigenvectors.

4. Fusion of the Prediction Matrices. Fuse the prediction matrices using (2.33).

2.7 Results

In this section we will use frequently such terms as fused and full model. Given
a set of observations to use for model construction, by fused model we mean that
the set was split into two subsets, a model was constructed from each subset, and
those models were fused with equal weights. Correspondingly the full model is the
model constructed directly from all the observations of the set at once.

To illustrate and evaluate the developed framework, the AR database [31] has
been chosen. Four expressions of 133 men and women, as in Fig. 2.2, were taken
for testing. All the faces had been landmarked using the 98-point template shown
in Fig. 2.3.

Firstly, we compare the fused and full models on the basis of the compactness,
generalization and specificity measures of the fused AAM (since the PDM is a part
of the ASM, the tests will also demonstrate the equivalence of the fused and full
ASMs). These measures, computed for different number of model modes m, are
formally given by the following formulas [32]:
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Figure 2.3: 98-point landmarking
template used in experiments. Each
landmark has a number associated
with it for the reference.

• Compactness is defined by

C (m) =
1

tr (Λc)

m

∑
i=1

λi

where λi is i-th largest eigenvalue from Λc (2.29).

• Generalization is computed by

G (m) =
1
|U|

|U|
∑
i=1
‖ûi (m)− ui‖

where ‖·‖ is the Euclidean or L2 norm, |·| stands for the cardinality of a
set, U is the training set of observations, ûi (m) is an approximation to the
observation ui obtained by the model, constructed from the set U\ {ui}, using
only the m first modes of variation.

• Specificity is assessed, finally, by

S (m) =
1
|V|

|V|
∑
i=1
‖vi (m)− ũ (vi)‖

where ũ (vi) = arg minu∈U ‖vi (m)− u‖, and V is a set of observations cor-
responding to the random sampling of model’s subspace (parameter space of
PDM or TM defined by eigenvectors).

These measures were originally proposed for PDM evaluation, but we shall use
them to evaluate the combined model of AAM (2.24). Since the latter describes
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Figure 2.4: Specificity of the combined model of the full and fused AAMs: (a) computed
from shape distances and normalized by the distance between the eyes; (b) computed
from texture distances.

Figure 2.5: Generalization of the combined model of the full and fused AAMs: (a) com-
puted from shape distances and normalized by the distance between the eyes; (b) com-
puted from texture distances.

variation in both shape and texture, the specificity and generalization are computed
separately in terms of shape and texture. To make the measurements in terms of
shape independent of the face size, they are normalized by the distance between
the two eye-centers in the manually landmarked face.

To evaluate the above mentioned performance measures the subjects from the
AR database were randomly divided into two subsets of equal size. The full and
the fused model were constructed from these sets, followed by calculating the above
mentioned figures of merit. Figs. 2.4-2.6 provide the plots of specificity, generaliza-
tion and compactness, respectively, of the combined model of the AAMs. The bars
show 95% confidence interval (according to the t-Test) for the hypothesis that the
performance of both full and fused models is equal.

To investigate the performance of the fused model in terms of segmentation accu-
racy, 10 segmentation experiments were performed, each consisting of the following
steps. From the total of 532 AR database images, 266 (one half) were randomly cho-
sen as a training set and randomly split into halves: training subset 1 and training
subset 2. The whole training set of 266 images was used to construct the full ASM
and AAM models. Training subsets 1 and 2 were used to construct two AAM and
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Figure 2.6: Compactness of the combined
model of the full and fused AAMs.

two ASM submodels which were subsequently fused with equal weights to get the
fused AAM and ASM. The remaining 266 images (not used in model construction)
were used to test the segmentation performance of both fused AAM and ASM.
Each image in this testing set was segmented by the full and the fused AAM and
ASM and point-to-point errors were computed with respect to the manual segmen-
tation. To provide a scale independent measurement, every error was normalized
by the inter-eye distance (between the eye centers) of the corresponding manually
landmarked shape. In other words the error is given as a percentage of the inter-eye
distance. The mean point-to-point segmentation errors together with their 95% con-
fidence intervals are presented in Fig. 2.7 for ASM tests and Fig. 2.8 for AAM tests.
As it can be seen from these figures the fused ASM model behaves like a normal
ASM model, while the fused AAM exhibits some very small difference of unlikely
practical relevance.

The performance comparison in terms of speed can be found in Table 2.1. The
first column shows the total number of observations used for model construction.
To construct a fused model this set was split in halves, two submodels were con-
structed and the time it took to fuse them is displayed in the table in "AAM Fusion"
and "ASM Fusion" columns. The total time of constructing the two submodels
and fusing them is shown in the "AAM Fused" and "ASM Fused" columns. The
"AAM Batch" and "ASM Batch" columns display the time of a batch construction
of a corresponding model from all the observations. Note that the comparison was
performed for 200, 400 and 600 images but the table also shows batch construction
time for 100 and 300 images to show the time it takes to construct the submodels.
It can be noted that for AAM there is a significant time saving when the model is
constructed by the fusion of two submodels, while there is no difference for ASM.
Nevertheless in a scenario when different weighting of observations is required (for
example the continuous model update giving the new observations more weight) a
complete batch model construction would be required at each update, while using
the fusion, only one model from the new observations should be constructed and
fused with the already constructed model of the old observations. And in this case
the time saving is even bigger.
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Table 2.1: Fusion Execution-Time Comparison1

# AAM ASM
Images Batch Fusion Fused Batch Fusion Fused

100 2′ 02′′ - - 0′ 25′′ - -
200 7′ 25′′ 0′ 23′′ 4′ 27′′ 0′ 49′′ 0′ 1.0′′ 0′ 51′′
300 12′ 38′′ - - 1′ 06′′ - -
400 21′ 30′′ 0′ 50′′ 15′ 40′′ 1′ 38′′ 0′ 1.2′′ 1′ 39′′
600 41′ 50′′ 1′ 11′′ 26′ 27′′ 2′ 13′′ 0′ 1.3′′ 2′ 13′′

1 Evaluated on P4 2.80GHz, Intel D875PBZ Motherboard, 1Gb
RAM. The time is given in " mm′ ss.s′′ " format.

Figure 2.7: Comparison of the mean segmentation errors, as a percentage of the inter-
eye distance, for ASM fused and full models in 10 experiments using the test sets from
the AR database.
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Figure 2.8: Comparison of the mean segmentation errors, as a percentage of the inter-
eye distance, for AAM fused and full models in 10 experiments using the test sets from
the AR database.

As a second illustration of our technique, we performed an identity verifica-
tion test in order to analyze whether by fusing models constructed from different
databases an increase in verification performance can be obtained. In this experi-
ment two AAMs were constructed from two databases: AR [31] and Equinox [33].
Then these models were fused with equal weights to obtain a fused AAM. Finally
the fused model together with the models constructed from each of the databases
were used to segment images from a third database: XM2VTS [34]. Using the
segmentation results, classification tests were performed on the XM2VTS database.
To extract the features for classification, all the images were segmented by AAMs,
and the texture was sampled from the resulting shapes. These textures were then
projected onto the subspace of the texture model of the corresponding AAM. The
resulting parameters were used for classification. The angular distance between
vectors was taken as a distance measure [35]. DET curves for all three models,
according to two standard configurations [34], are shown in Fig. 2.9. The curve cor-
responding to the fused model is, in principle, between the other two curves and
there is no improvement. This is likely because both AR and Equinox databases
have faces with the same expressions (except for widely open mouths in AR) and
the fusion introduced no additional information. The model constructed from the
Equinox database demonstrated the best performance because it has much less vari-
ation in expression while the AR has screaming faces, which introduce large varia-
tions into the data.

Finally, we demonstrate how fusion can improve segmentation by adding new
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Figure 2.9: DET curves of classification tests on XM2VTS database using the fused
model and the models built from the AR and EQUINOX databases. Classification is
performed according to the configurations 1(a) and 2(b) [34], plotted on logarithmic
scale.

information. To that end, two subsets were extracted from the database: faces
with closed and open mouths (first and fourth expression in Fig. 2.2, 133 images
each). Two AAM models were built from these sets, one from closed-mouth faces
and one from open-mouth faces. Thence the model built from one set should not
be able to segment any expression from the other one (e.g., the model built from
closed mouths, having no open mouths in the training set, cannot represent an open
mouth). Then these models were fused with equal weights to form the fused AAM.
To evaluate the performance, a segmentation of 133 faces with half-open mouth
(second expression in Fig. 2.2) has been performed using both the original models
and the fused one. Mean point-to-point segmentation errors, normalized by the
inter-eye distance, together with 95% confidence intervals are shown in Fig. 2.10.
An example of such a segmentation can be seen in Fig. 2.11. The fused model in Fig.
2.11a exhibits a significant improvement of mouth segmentation when compared
to the AAMs constructed only from the closed-mouth or open-mouth images (Fig.
2.11bc). The fused AAM, having more information about the mouth variability, was
able to segment it with much higher precision than the other two models.

2.8 Conclusions and Future Work

The article presented a method to fuse Active Shape and Active Appearance models,
as well as a generalization of the eigenspace fusion algorithm originally proposed in
[20]. Experiments demonstrate that, in practice, the fused ASM performs similarly
to the full ASM, while the fused AAM slightly differs from the full AAM but with
unlikely practical implications.
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Figure 2.10: Comparison of the mean segmentation errors, as a percentage of the inter-
eye distance, of the open-mouth model, closed-mouth model, and their fusion.

Figure 2.11: Example segmentations by the fused AAM (a) against closed-mouth (b)
and open-mouth (c) models.
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On the other hand, we can conclude that, essentially, the fusion is useful when
either new information (such as new expressions in the last experiment of Section
2.7) can be introduced as a result of fusion, when the model needs to be updated
online, or when the original observations are unavailable to reconstruct the model
from both past and new observations. The proposed technique paves the way for
saving time during AAM model construction by splitting the training set in several
subsets and parallelizing the training procedure on each subset separately. Having
constructed one AAM per subset, they can be fused using the proposed framework.



CHAPTER 3

Multi-View Face Segmentation Using Fusion of Statistical Shape
and Appearance Models

Abstract - This paper demonstrates how a weighted fusion of multiple Active Shape (ASM)
or Active Appearance (AAM) models can be utilized to perform multi-view facial segmen-
tation with only a limited number of views available for training the models. The idea is
to construct models only from frontal and profile views and subsequently fuse these models
with adequate weights to segment any facial view. This reduces the problem of multi-view
facial segmentation to that of weight estimation, the algorithm for which is proposed as well.
The evaluation is performed on a set of 280 landmarked static face images corresponding to
seven different rotation angles and on several video sequences of the AV@CAR database. The
evaluation demonstrates that the estimation of the weights does not have to be very accurate
in the case of ASM, while in the case of AAM the influence of correct weight estimation
is more critical. The segmentation with the proposed weight estimation method produced
accurate segmentations in 91% of 280 testing images with the median point-to-point error
varying from two to eight pixels (1.8%-7.2% of average inter-eye distance)

Adapted from C. Butakoff, A.F. Frangi. Multi-View Face Segmentation Using Fusion of Statistical
Shape and Appearance Models. Computer Vision and Image Understanding, in press, 2009.
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3.1 Introduction

Estimation or identification of the head’s pose, or its separation from other facial
information have attracted much research interest for quite some time. The

3D nature of head rotation poses a great challenge for any 2D face recognition or
segmentation algorithm and, if not accounted for, can cause significant performance
drops. Yet there are applications where it is important to be able to efficiently
process different facial views. For instance, consider surveillance applications (e.g.,
in an airport), where facial pose is usually impossible to be kept under control, or
intelligent human-machine interfaces where head tracking can play an important
role for interaction.

There are a number of strategies to handle multiple facial views, although most
of them are applied to face recognition problems. For example, Gong et al. [36]
represented faces by either normalized intensities or using the composite face rep-
resentation scheme based on the Gabor wavelet transform. The authors investigated
the possibility of identifying facial pose using the facial manifold. They have shown
that images corresponding to pose changes of a continuous face rotation form a
smooth curve in pose eigenspace. The authors also argue that it should be possi-
ble to construct a simple but generic face pose eigenspace, which can be used to
estimate poses of unknown faces. The same idea was considered by Shih et al. [37],
where multi-view face sequence is represented as a B-spline manifold. The Eu-
clidean distance to the manifold is used to estimate the pose of the face in question.
Another work that uses two-dimensional Gabor wavelet features for pose invari-
ant face recognition is that by Gokberk et al. [38]. Support Vector Machines (SVM)
were proposed for the problem of facial pose discrimination by Huang et al. [39].
Although, instead of estimating the head rotation angle, SVM is used to classify
any given image as belonging to one of several available views (three views are
considered: frontal, 33◦ rotation to the left and to the right). A similar approach
was taken by Li et al. [40] but using a multi-class kernel support vector classifier
instead of SVM and adding one extra class to represent non-faces. Another SVM-
based pose estimation strategy can be found in Li et al. [41]. A pose differentiation
by k-means clustering was proposed by Lee et al. [42]. Okada et al. [43, 44] pro-
posed a model, coined PCMAP. It computes bidirectional mappings between facial
images and physical parameters (3D head rotation angles), via parameterized man-
ifold representations of faces in the PCA subspace. The model is subsequently
used for view-independent face recognition. Finally, in a recent publication by
Sanderson et al. [45], non-frontal views are artificially synthesized from the frontal
ones using methods based on maximum likelihood linear regression and standard
multi-variate linear regression.

Less work has been carried out in the area of pose-invariant 2D face segmen-
tation. The most obvious approach to handle that problem is to train the segmen-
tation algorithm with the data extracted from all the possible facial views, as for
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example was done by Gonzalez-Jimenez et al. [46], and then use it to segment any
face. Two other solutions were proposed by Cootes et al. [47]. The first one is
to construct several models corresponding to different facial views. Subsequently,
during segmentation, the one that best corresponds to the image is chosen. The sec-
ond approach is to create a Coupled-View Appearance Model using PCA on pairs
of opposite views, but this approach requires that the views represent exactly the
same expression of the same face rotated by the same angle in opposite directions,
in other words, ideally, they have to be captured simultaneously (the authors cir-
cumvented this difficulty using a mirror). The work by Gross et al. [48] proposed
a modification of AAM to handle occlusions. The AAM was trained on faces with
artificially generated occlusions. The head rotation was treated as partial occlusion
of the face. Some work has been done in the area of ASMs as well. Wan et al. [49]
proposed to decouple ASM of facial features from the ASM of facial contour and
use genetic algorithm to match the model to an image. The method was evalu-
ated on the ORL face database featuring left-right rotations of up to 45◦. Buxton et
al. [50] used projective geometry to adapt ASM to different viewpoints. Restricting
the method to affine imaging conditions the pose variation is removed based on
two reference views. Only the contours of facial features (without the contour of
the face) are considered by the authors. In another work, Zhou et al. [51] consider
one of the profile and the frontal views and use the Generalized Procrustes Analysis
to estimate the two clusters in the shape space. The local texture models (which is
similar to ASM) are learned for each cluster separately. During segmentation the
updates to the shape are computed using each model and summed with appropri-
ate weights to yield the final segmentation. The parameters of the shape model and
shape regularization are performed using EM algorithm.

The strategy we propose here bears some resemblance to the approach of Zhou et
al. [51]. The majority of aforementioned segmentation approaches require as many
facial views as possible in the training set. What we suggest is a way to reduce
the training set needed for multi-view face segmentation by applying a recently
proposed multiple ASM and multiple AAM fusion algorithm [52]. The idea is to
construct a number of models from some predefined facial views, and then segment
any view using a model obtained by the weighted fusion of these pre-built models.
Note that this is different from the approaches of Lee and Okada [42–44], who de-
compose the whole range of head motion into a number of subranges, which are in
turn approximated by linear subspaces.

In this paper we will consider only horizontal head rotations due to limitations
of the landmarked databases we had access to, but the framework can be extended
to handle head tilting as well. Following this idea, the models for left, right and
frontal views are constructed. Left and right head rotations must not exceed ap-
proximately 60◦ to avoid significant occlusions that induce topology changes in the
facial shape (defined by landmarks). Then, given any view of a face, the models are
fused with appropriate weights and the face is segmented by the fused model. In
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this fashion we limit our training set to only three views.
To evaluate the proposed approach, in the first place, we investigate the ideal

case when the optimal fusion weights are known, thus allowing us to measure the
potential of the method independently of the weight estimation techniques. Sub-
sequently, a method to estimate the weights is proposed. The experiments demon-
strate that the fused model has higher segmentation accuracy than the pre-built
models corresponding to the fixed views and the model constructed from all avail-
able views. The weight estimation method is tested on the set of manually land-
marked images as well as on video sequences.

The remainder of the paper is organized as follows. Section 3.2 briefly describes
active shape and appearance models as well as steps required for their fusion. Sec-
tion 3.3 provides an algorithm for weight estimation for the problem of multi-view
face segmentation. Section 3.4 evaluates the proposed method in terms of segmen-
tation and weight estimation accuracy. The paper is concluded by a discussion of
some aspects of the approach and conclusions in Sections 3.5 and 3.6, respectively.

3.2 Weighted fusion of several active shape and ap-
pearance models

3.2.1 Weighted eigenspace fusion

We will follow the same notation as in [52]. The matrices are written in bold up-
percase; vectors are column vectors and written in bold lowercase; the letters with
normal typeface denote scalars.

Let us consider M eigenspaces. The i-th eigenspace is computed by Principal
Component Analysis (PCA), applied to the set of Ni observations
Xi =

{
xij|j = 1, . . . , Ni

}
. It is defined as a quadruple [20]:

Ωi = (x̄i, Φi, Λi, Ni) , i = 1, ..., M (3.1)

where the n-vector x̄i is the mean of the observations, Φi is a n×mi matrix of eigen-
vectors, and Λi is a mi ×mi matrix of eigenvalues (n and mi have been determined
during construction of eigenspaces to be fused). Note that the number of rows of all
Φi is the same (i.e., all the eigenvectors must have the same number of components).
Each eigenspace is assigned a weight wi such that ∑M

i=1 wi = 1. These weights are
used to change the influence of each eigenspace on the fused one. Without loss of
generality we shall assume that all the weights are positive. Let

pi = wi ·
(

M

∑
j=1

wjNj

)−1

(3.2)
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Introducing pi we transfer the model weights wi to the observation level, so each
observation of i-th model has a weight pi. Let us define the full observation set as

X =
M⋃

i=1
Xi, consisting of N = ∑M

i=1 Ni observations, with its elements denoted by

zk ∈ X in order to simplify the notation in several formulas (each zk is equal to xij
for some i and j).

The goal of weighted fusion is to compute such an eigenspace Ω = (z̄, Φ, Λ, N),
using the information from Ωi, i = 1, . . . , M, only, that it is equivalent to the
eigenspace computed from the full set of weighted observations X (should we have
had access to them). Here, z̄ is again an n-vector, Φ is an n×m matrix, and Λ is an
m×m matrix, where m is determined during the fusion.

The fusion of the eigenspaces Ωi, i = 1, ..., M is given by the following steps [52]:

1. Compute the fused mean by

z̄ =
M

∑
i=1

Ni pi x̄i (3.3)

2. Concatenate column-wise into a matrix H all the eigenvector matrices Φi, i =
1, . . . , M, and the differences of all possible pairs of the means x̄i − x̄j, where
i, j = 1, . . . , M and j > i:

H = [Φ1|Φ2| . . . |ΦM| (x̄1 − x̄2) | (x̄1 − x̄3) | . . . | (x̄M−1 − x̄M)] (3.4)

3. Orthonormalize H to get an n× p basis Υ

Υ = Orth (H) (3.5)

where p is determined by an orthonormalization algorithm.

4. Compute the eigenvectors R and eigenvalues Λ of

1

1−
M
∑

i=1
Ni p2

i

[
M

∑
i=1

(Ni − 1) D̃i pi +
M

∑
i=1

M

∑
j=i+1

Ni Nj pi pjEij

]
(3.6)

where

D̃i =
(

ΥTΦi

)
Λi

(
ΥTΦi

)T
, Eij =

(
ΥT [

x̄i − x̄j
]) (

ΥT [
x̄i − x̄j

])T
(3.7)

5. The eigenvalues of the fused eigenspace are given by Λ and the eigenvectors
are obtained by Φ = ΥR.
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3.2.2 ASM Fusion

An Active Shape Model is constructed from a set of aligned shapes by PCA [7].
Shapes are defined by landmark points placed along the contour of the object of
interest. ASM’s main component is a Point Distribution Model (PDM) defined for
the i-th of M ASMs by:

xij = x̄i + Φsibs
ij, i = 1, . . . , M (3.8)

where xij is a n-vector, representing the j-th shape corresponding to the i-th PDM. It
is obtained by concatenating all the landmark coordinates into a single real-valued
vector one after another. In other words, if landmarks have coordinates (xi, yi) the
concatenated vector will be of the form (x1, y1, x2, y2, . . .)T . Then, the n-vector x̄i is
the mean of the aligned shapes in the training set; the n×mi matrix Φsi and the mi-
vector bs

ij are the projection matrix and the corresponding projection coordinates,
respectively. The values of mi have been determined during the construction of
PDMs to be fused. The letter “s” in subscript or superscript of a symbol relates
the latter to the PDM. It must be mentioned that our technique requires that all the
PDMs use the same landmark placement and, thus, to have the same number of
landmarks.

To fit the model to an image, profiles perpendicular to the contour at landmark
positions are used. From pixels sampled along each profile the mean vector and
covariance matrix are estimated during the model construction. The collection of
such pairs for each landmark constitutes an Intensity Model. They are a part of
the Mahalanobis distance, which is used to drive the model to the best-fit location
during segmentation.

ASM fusion is straightforward. Since each PDM is nothing else than an eigenspace
describing the shapes from the training set, the fusion of several ASMs is reduced
to the fusion of “aligned” PDM eigenspaces (using the algorithm from Section 3.2.1)
and fusion of statistical information for the shape profiles.

To fuse ASMs with weights wi (∑ wi = 1):

1. Align the means x̄i of all PDM’s using the Procrustes Analysis estimating the
mean according to (3.3).

2. For each x̄i a d× d matrix Si, that aligns this shape to the mean x̄, is computed.
Here d is the dimensionality of landmarks. Note that the shapes are centered
at origin so the matrix accounts only for rotation and scaling.

3. Construct a matrix Ξi, which is a n
d × n

d block-diagonal matrix with repeating
Si along its diagonal:

Ξi =




Si 0
. . .

0 Si


 (3.9)
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4. Fuse PDMs by applying the eigenspace fusion scheme to eigenspaces corre-
sponding to the aligned means Ξi x̄i and eigenvectors ΞiΦsi.

5. Fuse the Intensity Models. For each landmark:

(a) Fuse the mean profile using (3.3)

(b) The fused covariance matrix is given by

1

1−
M
∑

i=1
Ni p2

i

[
M

∑
i=1

(Ni − 1) Di pi+

M−1

∑
i=1

M

∑
j=i+1

Ni Nj pi pj
(
x̄i − x̄j

) (
x̄i − x̄j

)T
]

(3.10)

3.2.3 AAM Fusion

Let us assume that we are given M AAMs and that each model has an associated
weight wi such that ∑ wi = 1. The first component of an AAM that we are going
to consider is a PDM, which describes the shape variation of the object of interest.
The classical linear PDM used in AAM is again defined by (3.8). The eigenspace
associated with each PDM is Ωsi = (x̄i, Φsi, Λsi, Ni).

The next component of an AAM is a Texture Model (TM). TMs are constructed
from the intensity values of pixels inside the shape.

A linear TM is defined by

gij = ḡi + Φgib
g
ij, i = 1, . . . , M (3.11)

where the ki-vector gij is the j-th texture instance for the i-th TM, the ki-vector ḡi
is the mean texture for i-th model, the ki × li matrix Φgi is the matrix of eigen-
vectors, and bg

ij are the li projections of gij in the subspace spanned by Φgi. The
corresponding eigenspaces are Ωgi =

(
ḡi, Φgi, Λgi, Ni

)
. The values ki and li have

been determined during the construction of the TMs to be fused. The letter “g” in
subscript or superscript of a symbol relates the symbol to the TM.

Having parameterized shape and texture, a combined AAM is constructed and
defined by:

bij = Φci cij, i = 1, . . . , M; j = 1, . . . , Ni (3.12)

with a (mi + li)× qi eigenvector matrix Φci. The (mi + li)-vector bij is constructed
from the corresponding i-th TM parameters and i-th PDM parameters as follows:

bij =

[
Wci · bs

ij
bg

ij

]
= W̃ci ·

[
bs

ij
bg

ij

]
; W̃ci =

[
Wci 0

0 I

]
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Wci being a diagonal mi ×mi matrix of weights, calculated from the eigenvalues of
the PDM and TM, used to make shape and texture parameters commeasurable [8].
The corresponding eigenspaces are defined by Ωci = (0, Φci, Λci, Ni). The value qi
has been determined during construction of the i-th AAM’s combined model. The
letter “c” in subscript or superscript of a symbol relates the symbol to the combined
model.

Matching the above combined AAM to an image is performed in an iterative
manner using the prediction matrices calculated during model construction. The
following equations are used to update model parameters:

Rc · r (c∗, t∗) = ∆c, Rt · r (c∗, t∗) = ∆t (3.13)

where ∆c = c− c∗ and ∆t = t− t∗ are the differences in model and pose parameters,
c∗ and t∗ are current estimates of the parameters and r (c∗, t∗) = gimage (c∗, t∗) −
gmodel (c∗, t∗) is the texture residual (i.e., the difference between the texture sampled
from the image under the shape generated by the model with parameters c∗, t∗ and
the texture generated by the model with the same parameters). The matrices Rc
and Rt are the inverse of the Jacobians that are calculated during model building.

Fusing Active Appearance Models requires the following steps [52]:

1. PDM Fusion. Align the mean shapes x̄i by Procrustes Analysis. Compute the
fused mean shape x̄ and the transformations Ξi (3.9) that align x̄i to x̄ for
every i-th model. Fuse Ωsi = (Ξi x̄i, ΞiΦsi, Λsi, Ni) , i = 1, . . . , M to obtain a
fused PDM Ωs = (x̄, Φs, Λs, N).

2. Texture Model Fusion.

(a) Calculate the spatial warps τi (ḡi) and τi
(
Φgi

)
, such that the i-th warp

corresponds to a mapping of the ki-dimensional texture vector from the
mean shape x̄i of the i-th PDM (3.8) to the k-dimensional texture vector,
corresponding to the mean shape x̄ of the fused PDM. Note that τi

(
Φgi

)
is a matrix whose columns are the columns of Φgi warped by τi.

(b) Fuse Ω̃gi =
(
τi (ḡi) , τi

(
Φgi

)
, Λgi, Ni

)
, i = 1, . . . , M using the proposed

eigenspace fusion algorithm to obtain the fused TM Ωg =
(
ḡ, Φg, Λg, N

)
.

3. Fusion of the Combined Models.

(a) Compute Wc = I ·
√

tr(Λg)
tr(Λs)

.

(b) Fuse the eigenspaces Ω̃ci = (0, ΨΓiΦci, Λci, Ni), where

Ψ =
[

WcΦ−1
s 0

0 I

]
, Γi =

[
ΦsiW−1

ci 0
0 Φ−1

g · τi
(
Φgi

)
]

(3.14)
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4. Fuse the prediction matrices Rci and Rti, i = 1, . . . , M of all the AAMs accord-
ing to the following formulas:

Rt =
[

M
∑

i=1
Ni pi · τi

(
R−1

ti

)]−1

Rc =
[(

M
∑

i=1
Ni pi · τi

(
R−1

ci

)
(ΨΓiΦci)

−1
)
·Φc

]−1 (3.15)

3.3 Weight estimation for multi-view face segmenta-
tion

In the previous section we have briefly described a framework for the fusion of
Active Shape and Appearance Models. From now on we will concentrate on its
application to multiview facial analysis. The goal of this work is to show how
fusion can be used to reduce the training set of the models and how to extend the
capabilities of classical 2D ASMs and AMMs to handle views absent in the training
set. In a typical scenario these models have to be trained with many views of a
face in order to segment any facial view. In this study we would like to investigate
whether it would be possible to limit the required views to frontal and lateral only
while still be able to perform the segmentation of any intermediate view. The
proposed method relies on the fusion of models corresponding to these three views
with an optimal weight.

In this section we would like to describe one of the possible approaches for
weight estimation based on iterative segmentation. The idea is to find such a weight
that, after segmenting an image with the fused model, the difference between the
modeled and the sampled textures is minimized (in the least squares sense). A
similar approach has been adopted by Cootes et al. [47] to determine which AAM is
best suited for each particular image. We will treat only the case of AAM, for ASMs,
as it will be demonstrated, are not very sensitive to accurate weight estimation.

Let us construct three AAMs from three sets of views: frontal view, left and
right views with 60◦ head rotation each. They will be referenced by frontal, l60
and r60 views and models, respectively.

Let w ∈ [−1, 1]. Let MF, ML and MR denote the frontal, l60 and r60 models.
Since during head rotation the head rotates either to the left or to the right there
is no need to fuse all three models simultaneously, therefore let us formulate the
fused model as follows:

M (w) =
{

[(−w)⊗ MR]⊕ [(1− |w|)⊗ MF] , w < 0
[(1− |w|)⊗ MF]⊕ [w⊗ ML] , w ≥ 0

(3.16)

where w is the weight, “⊗” represents weighting the model and “⊕” represents
fusion. As we can see the problem of finding the optimal model for segmenting
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a specific facial pose is reduced to optimization of a function of one parameter,
varying from −1 to 1. When the fused model is used to segment a specific image,
the result is the shape of the face (the contours, defined by landmarks) and two
texture vectors: one is the real texture inside the shape, sampled from a given
image and normalized, and the other is the texture estimated by the model as the
best matching facial appearance. The objective of optimization is to find a weight
that minimizes root mean square error (RMSE) between these two texture vectors. It
is not an easy task to formulate the gradient for such a function, so it was decided to
use an optimization algorithm without derivatives [53, p. 72], that combines golden
search and successive parabolic interpolation to avoid some local minima.

The weight estimation can be summarized by the following steps:

Algorithm 1: Pose-independent model-based segmentation with simultaneous
fusion weight estimation.

Data: Models ML, MR, MF, image with a face
Result: Fitted shape and texture, optimal weight
Initialize the weight w0 according to the optimization algorithm of [53];
k = 0;
while not converged do

Fuse ML, MR, MF with the weight wk according to (3.16);
Match the fused model M(wk) to the image;
Compute the error between the sampled and modeled textures;
wk+1 = wk updated according to the optimization algorithm;
k = k + 1;

end

3.4 Experiments

For our tests we have used the AV@CAR [54] database (image size 768× 576). From
this database we have chosen manually landmarked images of seven different facial
views corresponding to 0◦, ±20◦, ±40◦, ±60◦ horizontal head rotations of forty
subjects. Larger angles were not considered as many landmarks become occluded
and the model required for its analysis would have a different topology. Views
corresponding to left rotations can be seen in Fig. 3.1.

Before proceeding, to simplify the description of experiments, we would like
to introduce a number of conventions. Firstly, when speaking about a model we
will mean, unless specified otherwise, both AAM and ASM models as most of the
considerations equally apply to both of them. Secondly, the considered dataset is
separated into seven subsets according to the angle. We shall call them frontal,
l20, l40, l60, r20, r40, r60 where “l” and “r” mean left and right rotations and
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Figure 3.1: Sample images of the frontal and three left views used for model construc-
tion and testing.

the number stands for the corresponding rotation angle. We will use the same
names for the models constructed from the corresponding datasets (e.g., frontal
model, l60 model). And thirdly, we are always going to fuse the frontal model
with either l60 or r60, so MR in (3.16) corresponds to r60 and ML to l60. The
model matching always starts from the mean model instance rescaled to fit into
the smallest rectangle containing the face. The rectangle is defined manually but
could be estimated as output of any face detection algorithm [55, 56]. Whenever
the manually landmarked shapes are available, the accuracy of segmentation is
evaluated using the point-to-point error:

ε =
d
n

n/d−1

∑
i=0

√√√√ d

∑
j=1

(
x̂i·d+j − xi·d+j

)2
(3.17)

where xi is the i-th element of the fitted shape, n-vector x, and x̂i is the i-th element
of the manually defined shape x̂, and d is the number of dimensions as defined in
Section 3.2.2.

In the following sections we will evaluate the fusion framework in itself, when
the optimal weight is known (to separate the error introduced by the weight esti-
mation), and altogether with the weight estimation scheme.

3.4.1 Fusion framework evaluation with a known optimal weight

In the first experiment we want to demonstrate how the fusion of models can be
used to segment the views absent in the training set. To that end, the optimal
fusion weights for l20, r20, l40 and r40 datasets have been determined. To deter-
mine these weights all the images have been segmented by the model M(w) with
w varying from −1 to 1 in steps of 0.05. For each image, the weight resulting in the
smallest point-to-point error with respect to the manual landmarks was declared
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Figure 3.2: The influence of weight estimation on point-to-point segmentation error.
Plotted are the average point-to-point error curves of segmenting the l20, r20, l40 and
r40 sets by the fused AAM (a)-(b) and ASM (c)-(d) for different weights against |w|.
Each plot shows pairs of errors corresponding to left and right view. The errors are
estimated with respect to manual landmarks.

optimal. Therefore, a sequence of weights was obtained for each dataset. The op-
timal weight for each dataset was estimated by averaging the weights from each
sequence. The graphs of all the error-weight relationships for all four views and
both ASM and AAM models are presented in Fig. 3.2. The error is plotted against
the absolute value of the weight to verify the similarity of the graphs corresponding
to left and right views. It can be noted that ASM appears to be much less sensitive
to the accuracy of weight estimation. The AAM in its turn demonstrates no signifi-
cant reduction in segmentation accuracy within ±0.05 interval around the optimal
weight. As it can be seen from that figure (in the case of AAM) the optimal weights
are ±0.7 for l40 and r40 sets and ±0.25 for l20 and r20 sets.

Fig. 3.3 presents a comparison of accuracy of segmentation performed according
to various strategies with 95% confidence intervals. The meaning of the labels
depends on the testing set and is presented in Table 3.1. Each cell of this table
explains how the model is constructed for each particular testing set.

The point-to-point errors are computed with respect to manual landmarks. It is
worth to note that normal is the typical approach when all the available views are
used to train the model (in this case only right and frontal or left and frontal; using
all three of them significantly distorts the mean shape and the segmentation error
is quite large), and closest is the same approach as that of Cootes et al. [47]. As a
reference, the figure shows the baseline segmentation results obtained by models
constructed from the test sets themselves, thus providing the best possible results.
It can be seen that, in all the cases, the model obtained by the fusion performed
better or in the case of ASM equally well as the best of the other models (except the
baseline). An example of segmentation using each of the mentioned models can
be seen in Fig. 3.4.

Considering the presented results we can conclude that:
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Table 3.1: The types of the evaluated models

Model
Type

Test Set
l40 l20 r20 r40

Normal Single model
trained on
frontal and
l60 sets

Single model
trained on
frontal and
l60 sets

Single model
trained on
frontal and
r60 sets

Single model
trained on
frontal and
r60 sets

Fused Fusion of
frontal, l60
and l60 mod-
els with the
weight equal
−0.7

Fusion of
frontal,
l60 and l60
models with
weight equal
−0.25

Fusion of
frontal, l60
and l60 mod-
els with the
weight equal
0.25

Fusion of
frontal, l60
and l60 mod-
els with the
weight equal
0.7

Closest l60 model frontal
model

frontal
model

r60 model

Baseline l40 model l20 model r20 model r60 model

• Using different weights the fusion provides a way to linearly “interpolate”
active shape and appearance models. The approach when the closest model
is chosen could be considered as zero-order or nearest neighbor interpolation.

• The segmentation of any facial view, corresponding to a horizontal head ro-
tation, can be improved by fusion of the two closest views, provided that
the weights are estimated correctly. In this particular case, having only three
models corresponding to frontal, left and right views, fusion could be used to
interpolate these models and use the result to segment any other view.

• Active Appearance Models are much more sensitive to the correct weight esti-
mation. Which means that while for ASM it would be enough to fuse frontal
and l60 models with equal weights to segment any left view, AAM requires
more accurate weight estimation.

3.4.2 Fusion framework evaluation with unknown optimal weight

In this section we would like to evaluate how the fusion benefits the accurate seg-
mentation when the weight has to be estimated, using the approach proposed in
Section 3.3. The goal is to find a weight for the model M (w) in (3.16) such that
it provides the best possible reconstruction of the facial texture after segmentation.
In other words, the RMSE between the sampled and generated textures should be
minimal. An example of this objective function for all the sets has been plotted
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Figure 3.3: Comparison of accuracy of different segmentation approaches for known
optimal fusion weight. Plotted are the average point-to-point errors of segmenting the
testing sets by the fused AAM (a) and ASM (b) with 95% confidence intervals. The
errors are estimated with respect to manual landmarks.

Figure 3.4: An example of segmenting one of the l40 images using different AAM
models. (a) manual segmentation; (b) best possible segmentation with AAM built from
the testing set; (c) fused AAM with the optimal weight; (d) AAM built from the frontal
and l60 sets; (e) l60 AAM; (f) frontal AAM.
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Figure 3.5: Texture errors of segmentation by a fused AAM (3.16), computed for the
weight varying from -1 to 1 in steps of 0.05. Plotted are the 1st, 2nd (median) and 3rd
quartiles for all the sets. The ordinate is scaled logarithmically.

Table 3.2: Percentages of correctly estimated weights

Set l20 r20 l40 r40 l60 r60 frontal Total

0.05 24 34 22 32 30 30 35 207 (73.9%)
0.10 32 34 27 33 36 30 38 230 (82.2%)
Diverged 4 0 4 3 5 9 0 25 (8.9%)

in Fig. 3.5 on a logarithmic scale. The error is computed for each weight sampled
from the interval [−1, 1] in steps of 0.05. It can be seen that these functions are not
strictly unimodal, nevertheless the minimization algorithm is robust to certain local
minima [53].

Firstly, to evaluate the accuracy of the weight estimation, the algorithm was
applied to all the landmarked sets: frontal, l20, l40, l60, r20, r40, r60. For
every image the estimated weight was compared to the optimal value, estimated by
exhaustive search. The distributions of the absolute differences between the optimal
and estimated weights are presented in Fig. 3.6. Table 3.2 shows how many images
from the data sets (40 images in each) had the weight estimation error smaller than
0.05 and 0.10. The last row shows the number of images where the model diverged
completely due to incorrect weight estimation. The boxplot of the point-to-point
errors corresponding to the Table 3.2 is shown in Fig. 3.7a, where crosses (outliers)
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Figure 3.6: Histograms of weight estimation errors per testing set for AAM fusion.
The errors are computed with respect to the optimal weights, estimated by exhaustive
search.

correspond to the cases of divergence. In general it can be seen that the most
successful estimations were achieved for the frontal images. On the other hand in
some cases when the weight estimation error was slightly larger than 0.1 the model
still was able to correctly segment the images.

Finally we evaluate the algorithm on several video sequences. Since in these, the
faces have not been manually delineated, the only quantitative way to evaluate the
performance is to show the accuracy of weight estimation. To make the plots more
meaningful we investigated the relationship between the weight and the angle. In
other words an optimal weight has been determined, by an exhaustive search, for
every image in every set: frontal, l20, l40, l60, r20, r40, r60. The average opti-
mal weight with its 95% confidence interval for every available angle is shown in
Fig. 3.7b. As it can be seen the relationship is approximately linear.

To evaluate the algorithm on video sequences, seven sequences (about 17 frames
each) of horizontal head rotation have been taken from the AV@CAR database. Each
video frame has been segmented separately. For each frame the optimal weight for
fusing the three AAMs was estimated by exhaustive search as described in Sec-
tion 3.3. But in this case, in the absence of manual landmarks, the weight corre-
sponding to the smallest texture error was considered optimal. The fused model
was initialized as in Section 3.4.1 by fitting the mean model instance into the manu-
ally defined rectangle which contained the face. On average the convergence of the
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Figure 3.7: (a) Evaluation of segmentation accuracy by the fused AAM in terms of the
point-to-point segmentation errors on the testing sets with respect to manual landmarks,
the size of each image is 768× 576. (b) Relation between the fusion weight and pose
angles, with error bars representing 95% confidence intervals of the mean.

Figure 3.8: Evaluation of the pose estimation accuracy (assuming linear relationship
between the weight and pose angle) on testing sets (a) and video sequences (b). The
pose errors are computed as the difference between the optimal and estimated weight
multiplied by 60. The optimal weight is estimated by exhaustive search. The size of
each image and video frame is 768× 576. Error bars represent 95% confidence interval
of the mean.
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Figure 3.9: Sample video frames wherein the AAM has diverged.

Figure 3.10: Landmark correspondence between the frontal and profile views. The
landmarks that do not correspond to prominent facial features stay approximately in
the same relative position with respect to the prominent ones.

optimization scheme was achieved in 8 iterations.

In order to evaluate the accuracy of weight estimation on video sequences, the
optimal weight for each frame was compared to that determined by the optimiza-
tion algorithm. The resulting weight estimation errors are plotted in Fig. 3.8b. For
a reference, Fig. 3.8a shows the weight estimation accuracy on the testing set of the
static images. Note that these plots use the linearity of the relationship between the
angle and the weight to map the weight difference to angle difference. The model
diverged only in 2 frames of one video sequence corresponding to an extreme rota-
tion to the right, the corresponding weight estimation errors were 0.6 and 0.7 (the
minimization converged to a local minimum near w = 0). These two frames can be
seen in Fig. 3.9.
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Figure 3.11: Texture obtained by AAM segmentation: (a) an original from the l20 set
and the matched model; (b) an original from the l40 set and the matched model.

3.5 Discussion

We would like to address a number of issues directly related to the problem of
multi-view face segmentation from images.

The first one is landmark placement. The principal role of landmarks is to de-
fine contours of a face and its features (eyes, nose, mouth, etc.). It can be noted that,
as the head rotates, some landmarks, if maintained fixed, would become occluded.
At the same time the visible contours of the face changes. Therefore, during head
rotations the landmarks must stay on the contour of the features they outline (just
as it is done in many other studies [47, 48]). Since both ASM and AAM model the
displacements of points, we tried to keep the number of irrelevant displacements
(along the contour) to the minimum by keeping the landmarks that do not corre-
spond to the prominent facial features approximately in the same relative position
with respect to the prominent ones. Fig. 3.10 illustrates the correspondence between
landmarks in two facial views.

Another problem is the absence of texture information in occluded areas. Since
there is only one camera, there is no way of getting information about the occluded
cheek of the rotated head. Therefore, when the texture is warped from the rotated
face to the mean shape of the fused model, there will be texture distortions. The
views with more occlusions will have their texture stretched depending on the ro-
tation angle between that view and the view corresponding to the mean shape. In
spite of this problem, AAMs recover the texture quite well and most facial features
are still distinguishable as demonstrated in Fig. 3.11. Of course this effect can be
reduced by including more views of faces but that is contrary to our goal, which
was to reduce the number of training views.

Now we would like to put our proposed method in the context of related work.
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Among the existing approaches to pose-independent 2D face segmentation based
on AAM and ASM there are several approaches that are worth noting. Cootes et
al. [47] constructed separate models for a number of viewpoints and segmented a
given face by the model corresponding to the closest viewpoint. This case was con-
sidered in Section 3.4.1, where it was shown that this approach can be improved
by fusion without requiring additional training data. The authors also proposed
another approach, the Coupled-View Appearance Models, where the model is con-
structed from pairs of different facial views taken simultaneously. But the latter
approach requires that all the facial views are captured simultaneously. The papers
by Gross et al. [48] and Hu et al. [57] proposed alternative approaches, one based
on a modified AAM matching algorithm and the other using an AAM based on
wavelets. All of these approaches require more than just frontal and two lateral
views for training. Our goal was to develop a strategy for model interpolation that
allows creating facial appearances unavailable during training. As a consequence
the training set can be reduced to only a minimum set of views. Another paper, by
Zhou et al. [51] reported all the errors as difference between the methods giving the
percentages of images where their method outperformed the other ones.

In spite of the aforementioned difficulties, we can compare our method to that of
Wan et al. [49] who used the ORL face database [58] for evaluation. Since the results
are reported in pixel unit, we expressed the results as percentage of average inter-
eye distance (distance between eye centers). In AV@CAR database this distance is
approximately 111 pixels and in the ORL – 35 pixels. It should be noted as well that
most subjects from the ORL database have only two lateral views (left and right)
per face, each corresponding to a rotation angle smaller than 45◦. The normalized
segmentation accuracy results, presented in Table 3.3, seem to be comparable for
both algorithms, although those corresponding to the frontal view are substantially
better in our case. On the other hand it should be noted that our model was trained
on 60◦-rotated and frontal faces, and tested on other facial views of the same peo-
ple, while Wan et al. [49] used the same views for both training and testing, but
corresponding to different people. Thence, in the latter case it can be concluded
that the view-specific information has been learned by the model and it is not clear
how it would handle views unavailable during the training.

Our evaluation is limited to only horizontal head rotations. That is related to
the unavailability of landmarked multiple-view databases. Therefore the approach
was adapted to that particular problem, nevertheless it can be easily generalized to
any head pose by minimizing the following function

M (w1, w2) = MUD (w1)⊕ MLR (w2)⊕ (1− |w1| − |w2|)⊗ MF (3.18)
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Table 3.3: Segmentation accuracy comparison between different algorithms in terms of
point-to-point error

Our approach Wan et al. [49]
Set Mean Error(%) Set Mean Error(%)

l20 7.1 left 7.6
l40 8.3
r20 5.5 right 6.3
r40 7.5
frontal 2.6 frontal 7.1

where

MUD (w) =
{ −w⊗ MU , w < 0

w⊗ MD , w ≥ 0
(3.19)

MLR (w) =
{ −w⊗ MR , w < 0

w⊗ ML , w ≥ 0
(3.20)

and MU , MD are the models constructed from the faces looking upwards and
downwards, respectively. To optimize this function, any minimization algorithm
that does not require analytic derivatives or any derivative at all can be used. One
possible candidate is Powell’s algorithm (an alternative could be evolutionary algo-
rithms). Most databases have only faces looking strictly upwards and downwards
without intermediate angles. Evaluating our framework on extreme views would
be equivalent to evaluating the standard AAM (since we fuse models corresponding
to these extreme views).

Finally, we would like to comment on performance. As it was mentioned, it
takes about eight iterations to converge to the optimal weight and to segment an
image. Normally, it takes a couple of minutes to perform these eight matchings and
fusions (for 768× 576 images with the face occupying approximately a rectangular
area of 240 × 200 pixels) with our non-optimized matching routines. But if the
images are reduced four times to a still reasonable size, when the face occupies
approximately 60× 50 pixels the whole process takes about 5 seconds (on the Intel
Pentium Q6600 2.40GHz). It is worth to mention that the proposed optimization
approach relies on interval partitioning and since all the possible partitionings are
easily predictable, all the models can be fused a priori and stored. In this case the
whole segmentation takes about 0.4 seconds (including loading and saving data).
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3.6 Conclusions

In this work we have presented an application of AAM and ASM fusion to multi-
view face segmentation. The fusion can be casted into a model interpolation prob-
lem, allowing to obtain a better segmentation for views absent in the training set.
The latter leads to a possibility of reducing the amount of manually landmarked
facial views required for training and keeping them to a minimum: frontal and two
lateral (60◦) facial views. Then if the fusion weight is estimated correctly, any facial
view can be segmented by the fused model. In Section 3.3 we presented a simple
algorithm for weight estimation. The estimation failed only in 8.9% of 280 testing
images, which converged to incorrect local minima resulting in incorrect segmen-
tation. Since each image was segmented independently the weight estimation in
video sequences could be significantly improved by tracking the weight dynamics
along the sequence. As the future work we would like to test our methodology on
the CAS PEAL R1 [59] database.



CHAPTER 4

Left-ventricular Epi- and Endocardium Extraction from 3D
Ultrasound Images Using an Automatically Constructed 3D-ASM

Abstract - There is great interest in automating the diagnosis of cardiac pathologies through
segmentation. Majority of the proposed algorithms in 3D ultrasound (3DUS) cover only
left-ventricular (LV) endocardium analysis. Here, we propose an automatic method for
constructing an Active Shape Model (ASM) to segment the complete LV. The automatic
construction of the Point Distribution Model, a part of the ASM, has been already addressed
in the literature and can be handled through image registration. But high level of noise and
poor spatial resolution hampers the direct application of these techniques to 3DUS. Therefore,
to automatically construct an ASM for US segmentation, we constructed the PDM from
multidetector computed tomography data where the registration is much more accurate and
robust. To automatically learn the appearance of the US images we have used artificially
generated ones using two approaches: one that assumes a uniform point spread function and
does not take into account the geometry of the transducer, and a more comprehensive one,
implemented in Field II Matlab toolbox. The epi- and endocardium segmentation accuracy
of our ASM was evaluated on 20 cardiac resynchronization therapy patients. Apart from
accuracy evaluation, we also show that for ASM training it is beneficial to use the simple
US modeling technique which is fast and avoids costly manual landmarking.

Adapted from C. Butakoff, S. Balocco, F.M. Sukno, C. Hoogendoorn, C. Tobón-Gómez, G. Avegliano,
A.F. Frangi. Left-ventricular Epi- and Endocardium Extraction from 3D Ultrasound Images Using an
Automatically Constructed 3D ASM. Medical Image Analysis, submitted, 2009.
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4.1 Introduction

Ultrasound (US) is known to be the fastest, least expensive and least invasive
screening modality for imaging the heart. Because of the 3D structure and

deformation of the heart muscle during the cardiac cycle, analysis of irregularly
shaped cardiac chambers or description of valve morphology using 2D images is
inherently limited. Developments in 3D echocardiography started in the late 1980s
[60]. During the last two decades it evolved from free-hand scanning, replaced
later by mechanical scanning of several planes using a linear transducer, to matrix
phased-array transducers that are able to acquire a 3D volume of the whole heart
almost in real time.

The appearance of this new modality brought in new challenges and the need for
new analysis tools, many of which rely on correct segmentation of the myocardium.
However, the quality of the data is not sufficient yet, essentially due to poor spa-
tial resolution of the hardware. As a matter of fact, the suboptimal quality forced
many studies to reject up to one third of the data [61, 62]. An extensive survey of
traditional approaches to ultrasound segmentation can be found in Noble et al. [63],
Frangi et al. [64], Lelieveldt et al. [65], and Angelini et al. [66, 67]. The classifications
of approaches to modeling cardiac geometry can be found in Montagnat et al. [68]
and Frangi et al. [64].

Let us start with approaches using explicit surface representation. To introduce a
shape constraint on a segmentation algorithm, Hong et al. [69] proposed to use a set
of prototype shapes. The resulting shape is a Nadaraya-Watson kernel-weighted av-
erage of the prototypes. The authors propose to use 2D Haar-like features to detect
the myocardium and require manual annotation in four-chamber view to reduce
the search space of the optimization algorithm. The alignment of the prototypes
uses as well the known apical four-chamber view (A4C) plane. To compute the 2D
Haar-like features, the authors propose to cut the 3D volume into several long-axis
slices. It might be useful to note that the segmentation accuracy is evaluated in
voxels, and their conversion to millimeters is not straightforward.

A fully automatic registration-assisted segmentation approach with a wiremesh
was proposed in Zagrodsky et al. [70]. Rigid registration based on mutual informa-
tion is used to initialize the segmentation. External forces are generated using a 3D
extension of the Sobel edge detector with clamped intensities to remove strong and
weak edges. Subsequently the zone of influence of the edges is enlarged by a 3D
extension of the generalized gradient vector field.

Ping et al. [71] proposed an active contour approach on a multilevel cubic B-spline
grid for segmenting both epi- and endocardium on echocardiographic images with
contrast agent. The movement of the contour is performed by displacing vertices
of the grid. The segmentation combines fuzzy feature information and a multilevel
freeform deformation model into the objective function that has to be minimized
in order to obtain accurate segmentation. This is the only study on Real Time 3D



4.1. Introduction 69

(RT3D) ultrasound data that demonstrates segmentation of epicardium. The idea
is to segment the endocardium and use it as a constraint for epicardium segmenta-
tion. The essential drawback of the paper is that the algorithm is evaluated only on
four ultrasound volumes with contrast agent and the results are provided in terms
of the overlap between the true shapes and those obtained by segmentation, giving
thus no possibility to compare it to other studies.

A segmentation of triplane echocardiograms by 2D constrained active appear-
ance motion models (AAMM) [72, 73] is presented in Hansegård et al. [74]. The
authors demonstrate a method of constraining AAMM to known positions of a
number of points. The AAMM is used to learn the statistics of the shape, repre-
sented by contours in three planes, along the whole cardiac cycle, preserving the
shape-time correspondence. This is achieved by concatenating the shapes in all
temporal phases into a single vector. The points to constrain the AAMM are esti-
mated by dynamic-programming-based active contours, and are searched for in the
vicinity of the contour provided by the AAMM. Such a fusion of AAMM and active
contours in an iterative scheme demonstrates better segmentation accuracy than if
these segmentation algorithms were used separately.

Finally, we briefly mention several works on cardiac wall tracking. Orderud et
al. [75] and Hansegård et al. [76] use similar methodology: the cardiac contour is de-
formed by integrating the search for cardiac boundaries along contour normals into
the extended Kalman filter. Essentially, the difference is that in [76] a shape prior
based on Principal Component Analysis (PCA) is incorporated into the framework.
Another publication from the same group [77] has shown how both epi and endo-
cardium can be coupled in the tracking framework. A classical correlation-based
tracking was investigated by Crosby et al. [78] and Duan et al. [79]. The first one
applied normalized correlation to envelope detected beam data directly while a cu-
rious feature of the second one is that evaluation has been performed using the
open-chest setup (canine hearts).

Among level-set based approaches it is worth to mention a work by Corsi et
al. [80], who modified the Malladi-Sethian equation for gradient-based image seg-
mentation. They removed the inflationary term to avoid the propagation of the
evolving surface beyond regions with missing boundaries (boundary leaking). Since
the shape cannot inflate any more, the evolution has to start close to the true bound-
ary. The authors suggested that initialization by placing 5-7 points in 5 short-axis
view slices is enough. Three years later a homogeneity-based active contour, inte-
grated into a level-set framework, that does not use image gradient was proposed
by Angelini et al. [66]. The authors start by denoising the RT3D ultrasound image
using brushlets. The idea behind the method is to deform the surface looking for
an optimal partitioning of the voxels into homogeneous regions (inside and outside
the surface). An interesting fact about the approach is that it extracts highly-curved
surfaces with minimal boundary leaking. Another level-set based approach was
proposed by Corsaro et al. [81]. It is an unconditionally stable 3D semi-implicit
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time discretization scheme for solving the level-set formulation of the Riemannian
mean curvature flow problem, which allows for fast image segmentation. Using the
combination of finite element and finite volume methods they achieved ten times
speed-up in comparison to the classical level-sets. Another important contribution
is the elimination of the orientation effect (the authors show that the evolved sur-
face that uses left or right oriented triangulation differs from the exact solution and
propose their solution to that problem). The proposed framework appears to be
robust to vanishing gradients, with a highly curved resulting surface just as in [66].
On the downside there is no evaluation on a database of clinical cardiac images.

Considering the above mentioned methods one can note that many of them use
a predefined shape model, which is matched to a 3D image. The benefit of using
a predefined shape is that it simplifies establishing links between the model and
the cardiac anatomy and allows to easily correlate data between different studies,
patients or modalities. It is also easy to subdivide such a model into 17 segments
as defined by the American Heart Association (AHA) [82]. The latter will allow
to better correlate the results of the algorithm in question to the other algorithms
implemented in current echocardiographic systems. From the algorithmic point of
view, imposing shape regularity constraints on the predefined model, instantiated
to the data, would allow to robustly recover the correct shape even in the areas
of ill-defined borders, which are typical for 3DUS. Another interesting problem
not addressed by most papers is the segmentation of the epicardium. Being able
to segment both epi- and endocardium could provide an interesting insight into
myocardial deformation and wall thickening, which is already being measured in
other imaging modalities.

In this article we consider the problem of automatic construction of a 3D Active
Shape Model (ASM) [7] and using it to segment the epicardium and endocardium
of a cardiac left-ventricle (LV) in 3DUS images. Building an ASM would require
constructing a model of plausible shape variations (a Point Distribution Model or
PDM) and a model of local image appearance in the vicinity of each shape point.
These requirements lead to the necessity of having a database of images with delin-
eated myocardial contours. In the imaging modalities which provide high-quality
images, such as multidetector computed tomography (MDCT), the process of ob-
taining shapes, corresponding to the images, can be automated through registra-
tion [83], but it is not easy to do in every modality. 3DUS images are rather noisy
and have poor level of detail, which might render any registration algorithm in-
effective. Therefore we cannot rely only on ultrasound data and propose to auto-
matically construct the PDM from MDCT images as in Ordas et al. [83]. The local
appearance model, on the other hand, can be automatically learned from synthetic
ultrasound data. Having the LV geometry defined by the PDM allows generating
a collection of plausible shapes and the corresponding 3DUS images. In this case
the cardiac boundaries will be in the positions given by the shape and the size of
the set is limited only by the available computational resources. The synthetic data
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were generated using a simplified model of ultrasound image formation [84–86] ex-
tended to 3D and a more comprehensive approach implemented in Field II [87,88].
The first of these two models, we shall call it FastGen for convenience, assumes a
uniform Point Spread Function (PSF), is very fast, and generating one 3D image
takes seconds. The second one has a more realistic model of sound propagation, is
computationally expensive and requires approximately 30 hours on a single CPU
(Intel Xeon 5140, 2.33GHz). In this work we compare the segmentation accuracy of
an automatically constructed ASM, trained on real data and on images generated
using both ultrasound models.

The paper is structured as follows. We start by a brief description of ASM in
Section 4.2, which is used both for providing an ultrasound image generator with
the information about cardiac geometry and segmentation of ultrasound images.
Section 4.3 introduces the models employed to generate the data for our study.
These are used to generate 3DUS images corresponding to given cardiac shapes.
Section 4.4 presents the evaluation of the automatically constructed ASM on the
sets of synthetic and real images, followed by conclusions in Section 4.6.

4.2 Active Shape Model

The linear Active Shape Model consists of a Point Distribution Model (PDM) and
image intensity model. The PDM is constructed by applying PCA to a set of aligned
shapes [7] and retaining eigenvectors corresponding to a predefined percentage of
shape variability. Shapes are defined by landmark points placed along the contour
of the object of interest. The learned shape variability can be modeled by varying b
in the following equation:

x = x̄ + Φb (4.1)

where x is an n-vector, representing the shape, obtained by concatenating all the
landmark coordinates into a single real-valued vector. In other words, if landmarks
have coordinates (xi, yi, zi) the concatenated vector will be of the form
(x1, y1, z1, x2, y2, z2, . . .)T . The n-vector x̄ is the mean of the aligned (by Procrustes
analysis) shapes in the training set; the n× m matrix Φ is the eigenvector matrix.
Controlling the retained variability (or in other words the number m of retained
eigenvectors) controls the level of allowed shape deformation. If the retained vari-
ability (usually expressed as percentage of total variability) is low, the model will
only provide for the most frequently appearing and strong shape deformations, as
learnt from the training set.

The classical approach of matching the model to an image utilizes the profiles
perpendicular to the shape at landmark positions. The gradient amplitude of im-
ages from the training set of image-shape pairs is sampled along each profile to
both sides of the landmark, normalized and used to estimate the mean profile and
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covariance matrix. The collection of such pairs for each landmark constitutes an
Intensity Model. During matching each landmark of the current shape estimate is
displaced along the corresponding shape normal as to minimize the Mahalanobis
distance between the sampled pixels and the mean profile. The classical approach
finds the best position for each landmark among a limited number of candidates
Nc: the profile is sampled in Nc equidistant locations along the perpendicular and
the best is chosen.

After displacing all the landmarks, the resulting shape is constrained such that
its i-th PCA parameter bi belongs to the interval determined by the corresponding
eigenvalues:

[−β
√

λi, β
√

λi
]
. The value of β is typically set to 3 or established

experimentally.
The PDM used in our experiments was constructed from a set of high resolu-

tion CT images as in [83]. The total training set consisted of 100 MDCT studies of
pathologic and asymptomatic patients, 15 temporal cardiac phases each. The ASM
intensity model was constructed with 11 samples per profile with 0.5mm distance
between the samples. The matching was performed using 95% of retained variabil-
ity, Nc = 7 candidates for landmark displacement, and the regularization parameter
β equal to 3.

4.3 Generating 3D Ultrasound Images

4.3.1 Fast image generation with FastGen

This ultrasound image generation method follows an approach originally proposed
by Bamber and Dickinson [86]. It is assumed that the imaging system can be mod-
eled by a linear, space-invariant point spread function (PSF). Let t (x, y, z) be an
echogenicity model (an image with different intensity values corresponding to dif-
ferent tissues, see Fig. 4.1b) of the object being imaged (Fig. 4.1a). The x, y and z are
lateral, elevation and axial coordinates. First, scatterer distribution is modeled by
multiplying the echogenicity model by a Gaussian white noise G (σn; x, y, z) with
zero mean and variance σ2

n (Fig. 4.1c):

T (x, y, z) = t (x, y, z) · G (σn; x, y, z) (4.2)

The 3D ultrasonic echo dataset V (x, y, z) can then be obtained by a convolution

V (x, y, z) = h (x, y, z) ∗ T (x, y, z) (4.3)

where

h (x, y, z) = h1 (x, σx) · h1
(
y, σy

) · h2 (z, σz) (4.4)

h1 (u, σu) = exp
[
−u2/

(
2σ2

u

)]
(4.5)

h2 (v, σv) = sin (2π f0v/c) exp
[
−v2/

(
2σ2

v

)]
(4.6)
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c is the speed of sound in a soft tissue (assumed 1540 m/s) and f0 is the center
frequency of the transducer. f0 = 3MHz is used throughout this article, being a
typical frequency for cardiac imaging.

The image of the envelope-detected amplitude, A (x, y, z) (shown in Fig. 4.1d),
is given by

A (x, y, z) =
∣∣∣V (x, y, z) + iV̂ (x, y, z)

∣∣∣ (4.7)

where V̂ (x, y, z) is the Hilbert transform of V (x, y, z) and i is the imaginary unit.

Figure 4.1: Ultrasound image gen-
eration by FastGen. The shape (a)
is used to generate an echogenic-
ity model (b) where different voxel
intensities represent different tis-
sues. Subsequently Gaussian noise
is added to introduce scatterer vari-
ations (c), the result is convolved
with the PSF (4.4) and the envelope
of the convolution result is com-
puted (d).

4.3.2 Image generation using Field II

This approach relies on linear systems theory to find the ultrasound field for the
cases of both pulsed and continuous wave. The latter is performed using the spatial
impulse response, which, when the transducer is excited by a stimulus, modeled
by the Dirac delta function, gives the emitted ultrasound field at a specific point in
space as a function of time. The field for any kind of excitation can then be found
by convolving the spatial impulse response with the excitation function. The mod-
eling program allows for any transducer geometry (unlike that from the previous
subsection) and apodization, and uses a far-field approximation, to keep the pro-
cess realistic and simple. The approach assumes a homogeneous bounded medium,
where the pressure is sufficiently small to ensure linear wave propagation.

The method can be described using Huygens’ principle, where the impulse re-
sponse is calculated from a summation of all spherical waves from the aperture area
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S as:

h (r1, t) =
∫

S

δ
(
t− |r1 − r2|

/
c
)

2π |r1 − r2| dS (4.8)

where |r1 − r2| is the distance from the transducer at position r2 to the field point
r1, δ (t) is the Dirac delta function, and c is the speed of sound. For a number
of apertures (like round piston, circular convex element, rectangular element) the
calculation can be done analytically. However it is not possible for a general aper-
ture. Field II therefore divides the aperture into smaller mathematical elements to
describe advanced shapes. Subsequently, any kind of linear ultrasound field can be
calculated using spatial impulse responses. The emitted pressure field p (r1, t) is
given by

p (r1, t) = ρ0
∂v (t)

∂t
∗ h (r1, t) (4.9)

where ρ0 is the density of the medium and ∂v(t)/∂t is the acceleration of the front
face of the transducer. The received voltage signal for the pulse echo field is:

vr (r1, t) = vpe (t) ∗ fm (r1) ∗ hpe (r1, t) (4.10)

fm (r) =
∆ρ (r1)

ρ0
− 2∆c (r1)

c
(4.11)

where the scattering signal fm (r) arises from spatial variations in density ∆ρ (r1)
and speed of sound ∆c (r1). Here hpe (r1, t) is the two-way spatial impulse response,
which is a convolution between the impulse response of the transmitting and receiv-
ing aperture. The impulse response vpe (t) includes the excitation convolved with
the transducer’s electro-mechanical impulse response in both transmit and receive.
For further details, please, refer to Jensen et al. [87, 88].

The image generation process is similar to that of FastGen (see Fig. 4.2) with
an exception that the echogenicity model is not defined on a uniform grid any-
more. It is created by populating the 3D space with randomly positioned point
scatterers, each having an amplitude that characterizes the strength of the reflected
signal. Subsequently, Field II uses this echogenicity model together with a custom
transducer definition to obtain the ultrasound image.

4.4 Evaluation datasets

4.4.1 Synthetic Training and Testing Sets

The FastGen generated training set for the intensity model consisted of 270 vol-
umes. The following parameters were chosen to introduce variability in both shape
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Figure 4.2: Ultrasound image generation using Field II. The shape (a) is used to ran-
domly populate a 3D space with point scatterers (b), each of them having an assigned
value that characterizes strength of response. The image is obtained by modeling sound
wave propagation (c). The black points in (b) correspond to myocardium. Note that
different densities of points have been used only for better visualization.

Table 4.1: Model parameters for FastGen.

Parameter Training Set Testing Set

σz [mm] 0.30, 0.50, 0.70 0.30
σx, σy [mm] 0.50, 0.75, 1.00 0.70
σn 0.75, 1.00, 1.25 0.70
Myocardium intensity 250 60, 75, 90, . . ., 255
Blood pool intensity 60 40
Background intensity 70 50
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Table 4.2: Model parameters for Field II.

Parameter Training Set Testing Set

Number of scanlines 40, 60, 80 80
Active elements 128, 256, 512 512
Number of scatterers (×103) 500, 1000, 1500, 2000 2000
Myocardium intensity 250 60, 75, 90, . . ., 255
Blood pool intensity 60 40
Background intensity 70 50

Probe size [mm] 20× 15
Field of view [◦] 120
Speed of sound [m/s] 1540
Center frequency [MHz] 3
Sampling frequency [MHz] 100
Focus depth [mm] 70
Probe matrix dimensions [mm] 15× 20
Depth of cardiac apex [mm] 20
Piezoelement matrix [elements]1 32× 64
1 Dimensions of each element were computed as the physical size of the

probe divided by the number of elements in rows and columns. The dis-
tance between elements was computed as dimensions of an element divided
by 1000. Most of the parameters are the same as in the examples coming
with Field II.
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(a) (b)

Figure 4.3: Sample images, created by FastGen, corresponding to the low (a) and high
(b) intensity differences with superimposed shapes, which were used to generate these
images.

geometry and speckle appearance pattern. Ten shapes corresponding to the ran-
dom variations (within ±1.5

√
λ) of the first five principal components (PC) of the

PDM were generated. The SD of Gaussian envelope over the sine wave in axial
direction σz was taken equal to 0.30mm, 0.50mm, 0.70mm. The SDs of Gaussian
envelope over sine wave in lateral and elevation directions (σx and σy) were taken
equal 0.50mm, 0.75mm, 1.00mm. The SD of the Gaussian noise σn was taken equal
0.75, 1.00, 1.25. In order for the training set to have only noise pattern variation the
intensities were kept constant. Their values have been chosen empirically to have
good visual contrast between tissues and are equal to 270 for the myocardium, 70
for the background and 60 for the blood pool. Due to the profile normalization, the
model trained on these data should be able to deal with images that have different
tissue contrast.

The testing was performed on both synthetic and real data. The synthetic test-
ing set was generated with an idea of providing images of different tissue contrast.
It consisted of 280 volumes. For generating the synthetic images 20 shapes cor-
responding to the random variations (within ±1.5

√
λ) of the first five PCs of the

PDM were generated. Noise variances have been chosen empirically to reproduce
the real images as much as possible. They are: σz = 0.30mm for axial direction,
σx = σy = 0.70mm for lateral and elevation, σn = 1.20mm for the Gaussian noise.
Intensities t (x, y, z) (from 0 to 255) are 60, 75, . . . , 255 for myocardium; 50 for back-
ground (40 for the blood pool). So the myocardium contrast (difference in intensities
between the myocardium and the background) varies from 10 to 205 in steps of 15.
Two sample images can be seen in Fig. 4.3.

The generation of the training and testing sets with Field II followed similar
guidelines, taking into account its specifics. Since there were more parameters to
tune, the training set was slightly larger and consisted of 360 images while the
testing again contained 260 images. All the parameters are summarized in Tables 4.1
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Figure 4.4: Short axis and long
axis views of the points used for
model initialization superimposed
on an image. The white point corre-
sponds to the aortic valve and pro-
vides an orientation cue.

and 4.2.
The initial shape for the segmentation of synthetic images was the mean shape

of the PDM (consisting of 2677 points) aligned to the ground-truth shape by a
similarity transform.

4.4.2 In-vivo Training and Testing Sets

The in-vivo set consisted of manually landmarked end-systole(ES) and end-diastole(ED)
LV 3D volumes of 20 cardiac resynchronization therapy (CRT) patients. The data
were acquired using a Philips IE33 echograph (Philips Ultrasound Inc., Andover,
USA) with X3-1 transducer and exported into accessible format using Philips QLAB
v6.0 quantification software. The exported data are envelope detected 224× 208×
208 images with voxel size approximately 1.0× 1.0× 0.7mm. Sample images can be
seen in Fig. 4.5.

Due to the small quantity of data, the experiments that involved in-vivo training
set used a leave-one-out cross validation (all the images of the same patient had
been excluded).

The initial shape for the segmentation of in-vivo images was the mean shape
aligned by an affine transform to six points: four points on the endocardium in the
basal plane, the center of the aortic valve, and the apex, as illustrated in Fig. 4.4.

4.5 Experiments

4.5.1 Validation on synthetic data

To start, we wanted to verify that ASM trained on the synthetic data can successfully
segment the synthetic data of different contrast produced by the same algorithm.
For this purpose FastGen and Field II generated testing sets have been segmented
by the ASM trained on the corresponding training sets. The results are shown
in Fig. 4.6. The segmentation algorithm is not completely invariant to the image
contrast variation, as it could be expected due to intensity normalization, and the
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Figure 4.5: Real ultrasound images (from 2 patients) from our testing set with superim-
posed manual delineations.

Figure 4.6: Accuracy of segmenting the simulated images with varying tissue contrast.
The contrast is expressed as difference of scatterer amplitudes. Shown are the symmetric
P2S errors for endocardium and epicardium.
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images with higher tissue contrast have higher segmentation accuracy. Nevertheless
the ASM trained on Field II set appears to have slightly inferior performance on the
low-contrast data.

The symmetrical point-to-surface error is defined for two shapes (surface meshes)
s1 and s2 as:

ε (s1, s2) = [d (s1, s2) + d (s2, s1)] /2 (4.12)

where

d (s1, s2) =
1
N

N

∑
i=1

∥∥∥∥∥s1 (i)− arg min
p∈s2

‖s1 (i)− p‖2

∥∥∥∥∥ (4.13)

is an asymmetric point-to-surface error, which is the mean distance between each
vertex of the mesh s1 and mesh s2 (s1(i) refers to the i-th vertex of the mesh s1); ‖·‖
is the l2 norm.

4.5.2 Evaluation on real images

In this section we compare the ASM trained on real images and artificially generated
images and see whether there is any benefit of using the latter. In the case when real
images had been used for training a leave-one-out strategy was employed (training
on 38 images, corresponding to 19 patients, and segmenting the ED and ES of the
remaining patient). The segmentation accuracy is shown in Fig. 4.7. The results
of the volume and ejection fraction (EF) estimation by the best approach (the ASM
trained on FastGen data) are summarized in Table 4.3. The accuracy was measured
with respect to manually delineated contours. As one can note from the confidence
intervals, the difference between the different training sets is not statistically signif-
icant (with 95% confidence level) although there seem to be an improvement when
FastGen is used. There are of course several issues that are worth commenting, as-
suming that all the approaches perform equally well. It would be expected for the
Field II to be superior to FastGen due to being a more realistic model. Nevertheless
Field II has many more parameters to tune and generating a representative training
set would require sweeping over all of them (when the parameters of the equip-
ment are unknown, which is the usual case). The latter would lead to an enormous
database, but Field II in 3D is very computationally demanding. It takes about half
an hour to generate one 3D volume on a 60-processor cluster fully dedicated to
the task. Theoretically this would imply one week for a set of 280 volumes. Using
real data for ASM training has its own downside in that it requires a lot of manual
delineating in 3D, which is very time consuming. It is also very difficult to produce
consistent delineations across different phases (like ED and ES) mostly due to the
noisiness and rather poor quality of the images. FastGen is free from both of these
disadvantages.
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(a)

(b)

Figure 4.7: Accuracy of segmenting the real images by an ASM trained on different
training sets in terms of (a) the mean symmetric point-to-surface error for endocardium
and epicardium and (b) mean absolute volume difference for LV cavity. Error bars
represent 95% confidence interval of the mean.
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Figure 4.8: Bland-Altman plot of the volume estimation accuracy on the real images by
an ASM trained on FastGen training set.

The Bland-Altman and scatter plots for the best approach (FastGen) are shown
in Figs. 4.8, 4.9 and some segmentation examples can be seen in Fig. 4.10. The
scatter plot suggests a nice linear relationship with high correlation between the
measurements and ground truths. The slope of the fitted line is smaller than 1.0
and intercept greater than 0.0 as is expected when there is no relation between the
error and magnitude [89].

An interesting question that can be answered using the image generation is
how much data in the training set is actually needed for accurate segmentation.
The size of the training sets in the experiments has been chosen from practical
considerations, trying to make the Field II training set in a reasonable time. But
since FastGen is really fast, we can use it to increase the size of the training set and
see how it affects the segmentation accuracy. To generate larger training set with
FastGen we used the same parameters as before but with more shapes (40 different
shapes in total). The biggest training set consisted of 1080 image-shape pairs. 36
training sets have been generated: starting from 4 random shapes, all variations
of all the parameters (27 images per shape), and randomly adding one shape per
training set.

The results can be seen in Fig. 4.11. As expected, the error on the artificial test-
ing set is decreasing with the size of the training set and stabilizes around 1000, but
with acceptable results already around 500. Of course these numbers are bound to
the training and testing sets used and after 1000 images the training fails to offer
more information to the intensity model. On the other hand the training set size
does not seem to have much effect on real data, although very wide confidence in-
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Figure 4.9: Comparison of volumes estimated by the proposed algorithm and ground
truths. The solid black line is the fitted one, dashed line is the equality line, gray lines
represent a 95% confidence interval of the fit. The CI is the 95% confidence interval of
the correlation coefficient.

Figure 4.10: Segmentation examples. Shown are three hearts, one per column, two
perpendicular views per heart. The cut planes chosen are shown in the thumbnail in
the upper left corner and are aligned with the long axis. Thin line represents manual
delineation while thick - automatic one, by the ASM trained on FastGen data.
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Figure 4.11: Segmentation accuracy measured in terms of mean absolute volume dif-
ference for different sizes of the FastGen training set evaluated on the real and FastGen
generated test data. Error bars correspond to 95% confidence interval of the mean.

terval hampers drawing any conclusions from the plot. The possible reason could
lie in the combination of insufficient image quality (which in general results in high
interobserver variability and our results are not far from it) and simplified ultra-
sound model of FastGen. Nevertheless, although there is no evidence to support
the use of more training data, the computational simplicity of the image generation
algorithm allows to easily obtain large quantity of training data and therefore the
segmentation algorithm can easily benefit from it.

Table 4.3: Evaluation results on the real datasets by an ASM trained on FastGen data.
Together with the measurements 95% confidence intervals are shown.

LV Volume [ml] LV EF [%]
Mean Difference 2.66± 2.19 −5.84± 2.93
Limits of Agreement ±20.24(±5.54) ±18.55(±2.59)
RMSE 10.54 10.92

P2S Error [mm]
Epicardium 2.15± 0.20
Endocardium 1.87± 0.16
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4.5.3 Comparison to other methods

To put our work in the context of other contemporary papers, Tables 4.4 and 4.5
present the results of several techniques recently reported in the literature. Shown
is the mean with 95% limits of agreement (mean ± t · SD, where t is taken from
the Student’s t Table, whenever authors of these articles reported the accuracy as
mean ± SD we multiplied SD by the corresponding t). The value in the column
Volume means that the authors did not classify volumes into EDV/ESV. An excep-
tion is the work by Angelini et al. [66], who provided both estimated and ground
truth volumes, which allowed us to compute the values we needed. In the latter
case in the column Volume we merged the results for ESV and EDV in order to
compare the result with other papers. It can be seen from the table that our results
are consistent with those of the state-of-the-art algorithms (considering accuracy of
EF estimation) and better in estimating the volumes themselves (on average). Nev-
ertheless, in terms of EF, the results are still much worse than those corresponding
to the intra- and interobserver variability reported in other studies (See Table 4.6).
On the other hand it is interesting to note that the accuracy of volume estimation
reported by other clinical studies is also on the same level [90], for instance Jenk-
ins et al. [91] reported the scatter of EDV at the level of ±29ml and ESV - ±18ml for
50 patients (although the measurements were compared to those in MR and the er-
ror could accumulate) nevertheless the EF was significantly smaller - 0± 7% which
indicates consistency in inaccuracies between ED and ES. In our case the scatter of
EF was rather large and the consistency has to be improved.

Let us go over all the approaches presented in Table 4.4 and start with the con-
strained AAMM fused with active contours and unconstrained AAMM of Hansegård et
al. [74]. The major disadvantage of the approach is that AAMM represents both the
shape deformation at a certain time instant and the motion pattern. In order to
build a representative model, the training set should have not only all the possible
cardiac shapes but all the possible deformation patterns as well. This calls for a
large training set with manual delineations in every temporal phase, which is diffi-
cult to obtain. An automatic generation of such a training set using an ultrasound
image generator combined with realistic LV deformations, extracted from MDCT
data, or using a biomechanical model, would really benefit the approach. On the
other hand, the way the constraints are imposed on the points requires to know the
point correspondence and combining AAMM with Active Contours requires tuning
both their parameters plus a coupling weight. On the positive side, AAMM allows
for realistic modeling of both shape and cardiac deformation (and texture of course
if needed).

The level-set based segmentation, that partitions the image into homogeneous
regions without advection term and gradient information of Angelini et al. [66].
The approach depends on spatiotemporal brushlet denoising which adds additional
parameters to tune to the level-set specific parameters. Since there is no prior,
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leaking is possible and the resulting boundary lacks smoothness. The advantage is
that the algorithm does not require any training set and can be initialized anywhere
in the image (the algorithm tracks only one closed blob centered around the center
of mass of the object of interest).

The wiremesh of Zagrodsky et al. [70] employs 3D Sobel edge detector which
relies on Median filtering. Although these two filters do not require any significant
tuning, the median filter is probably not the best choice for ultrasound images,
and many spurious edges might still remain on the image. The algorithm requires
balancing internal and external forces and the execution speed is very low: 3 min
for registration, 8 min for segmentation on a dual 1.7GHz Pentium. On the other
hand the approach does not require a training set and the initialization is automated
through registration.

Finally, a modified Malladi-Sethian equation to avoid leaking of Corsi et al. [80]
is rather a typical level-set segmentation. It is automatic and no training set is
required. It does not use any shape prior and leaking is prevented essentially by
removing the advection term.

What we have proposed is an approach that uses explicit shape representation
with automatically constructed models of the shape and local appearance. If we
compare it to the above approaches there is no limitation on the complexity of the
shape; user interaction is reduced only to model initialization during segmentation
and tuning of ASM parameters (which can usually be left unchanged). For example,
introducing epicardium into segmentation pipeline is much easier than in the above
approaches, except for the AAMM (it would only require more work on manual
delineations). It is done simply by merging meshes of both structures.

Another advantage of our approach lies in using multi-modal data. The shape
model, automatically created from a large amount of MDCT images, provides an ac-
curate shape model as opposed to the one that might have been constructed from ul-
trasound images, where the boundaries are poorly defined and have to be guessed.
The generation of artificial ultrasound images, on the other hand, avoids having
incorrect LV delineations in real data.

4.6 Conclusions

In this paper we proposed an approach to automatically construct an ASM for
3DUS segmentation. In contrast to the majority of 3DUS segmentation algorithms,
our model includes both epi- and endocardium, providing simultaneous segmen-
tation of a complete left ventricle. The approach is based on the combination of
automatically constructed shape model from MDCT and local appearance learned
from data sets automatically generated using two commonly accepted models of ul-
trasound. One of them, FastGen, is fast and assumes uniform PSF, while the other,
Field II, has more realistic, but linear, sound propagation model. It has been shown
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Table 4.5: Accuracy of the LV segmentation algorithms. The errors are given as mean±
t · SD with the 95% confidence of the mean in the parenthesis. t was chosen according
to the number of images to provide 95% limits of agreement.

Ref Algorithm Year EDV [ml] ESV [ml] EF [%] Volume [ml]

Our approach,
automatically
constructed
ASM.

0.1± 21.1
(±4.7)

5.2± 21.1
(±4.7)

−5.8± 18.5
(±2.9)

2.6± 20.2

[74] DP-CAAMM,
constrained
AAMM fused
with active
contours

2007 −3.1± 40.6
(±6.8)

0.61± 26.4
(±4.4)

−1.3± 12.8
(±2.1)

n/a

[74] Unconstrained
AAMM

2007 −7.3± 40.6
(±6.8)

−2.5± 44.7
(±7.4)

−1.5± 22.3
(±3.7)

n/a

[66] Homogeneity-
based active
contour

2005 16.1± 57.8
(±18.3)

6.6± 39.7
(±12.5)

0.6± 25.6
(±8.1)

11.4± 45.8

[70] Wiremesh 2005 −0.1± 49.3
(±15.6)

−4.2± 32.3
(±10.2)

2.6± 21.1
(±6.7)

−2.1± 37.8

[80] Modified
Malladi-Sethian
equation

2002 n/a n/a n/a −15.6± 41.1

Table 4.6: Intra- and interobserver variabilites as reported in other studies.

Ref Authors Year EDV ESV EF

Interobserver Variability

[74] Hansegård et al. 2007 13.0± 38.6ml 9.9± 30.5ml −1.7± 12.8%

[92] Sugeng et al. 2006 11.2± 17.6% 14.2± 24.1% 10.5± 17.0%
Sugeng et al., adapted to our data 10.3± 15.6ml 13.1± 21.4ml 5.5± 8.5%

Intraobserver Variability

[92] Sugeng et al. 2006 3.9± 4.0% 5.6± 8.0% 5.6± 6.9%
Sugeng et al., adapted to our data 3.6± 3.6ml 2.5± 3.4ml 2.9± 3.5%
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that although using synthetic images to train an ASM demonstrates a similar seg-
mentation accuracy as training ASM from manually delineated images, the former
are much faster to obtain if FastGen is used. It is also much easier to control the
image quality of the generated data, while with real data the quality depends a lot
on the patient and many of them do not have a good acquisition window.

The best segmentation results were obtained by FastGen, resulting in the vol-
ume estimation accuracy with limits of agreement across the whole population of
2.6± 20.2ml. The average point-to-surface segmentation errors for epicardium and
endocardium were 2.15± 0.20mm and 1.87± 0.16mm, respectively.

The synthetic 3DUS images have two clear benefits over the real ones: high
quality and detail and an already solved correspondence problem between a shape
and an image. The latter avoids any manual landmarking, which is error prone,
complicated in 3D and shows high interobserver variability (approximately 10.3±
15.6ml for EDV and 13.1 ± 21.4ml for ESV) [92]. On the other hand, it is very
difficult to obtain a large set of good quality real 3DUS images, while by generating
them artificially we can obtain a set of any size. The choice of the ultrasound
propagation model is dependent on the segmentation algorithm. In the case of
the classical linear ASM, the advanced model of Field II does not seem to improve
the intensity model and FastGen can be beneficial in terms of time, computational
resources and implementation effort.

The high computational cost of Field II and lack of accurate information about
the employed ultrasound probe did not allow us to fully investigate the construc-
tion of an optimal synthetic training set. Still, the biggest drawback of the proposed
methodology is its lack of consistency when segmenting the data of the same pa-
tient (as can be observed from EF errors) and it would benefit from borrowing
some ideas from the tracking algorithms such as adaptation to the observed data.
Automating the initialization would also be convenient. Currently we have seen
automatic initialization based on registration and Hough transform. Registration,
though, takes too much time and is unreliable in ultrasound. Hough transform,
on the other hand, combined with filtering and edge detection could be a viable
approach as shown by Stralen et al. [93].
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CHAPTER 5

Automatic Construction of 3D-ASM Intensity Models by
Simulating Image Acquisition: Application to Myocardial Gated

SPECT Studies

Abstract - Active shape models bear a great promise for model-based medical image analy-
sis. Their practical use, though, is undermined due to the need to train them on large image
databases. Automatic building of Point Distribution Models (PDMs) has been already suc-
cessfully addressed in the literature. However, the need for strategies to automatically build
intensity models has been largely overlooked. This work demonstrates the potential of cre-
ating intensity models automatically by simulating image generation. We show that it is
possible to reuse a 3D PDM built from Computed Tomography (CT) to segment gated Sin-
gle Photon Emission Computed Tomography (gSPECT) studies. Training is performed on a
realistic virtual population where image acquisition and formation have been modeled using
the SIMIND Monte Carlo simulator and ASPIRE image reconstruction software, respec-
tively. The dataset comprised 208 digital phantoms (4D-NCAT) and 20 clinical studies.
The evaluation is accomplished by comparing point-to-surface and volume errors, against a
proper gold standard. Results show that gSPECT studies can be successfully segmented by
models trained under this scheme with sub-voxel accuracy.

Adapted from C. Tobon-Gomez, C. Butakoff, S. Aguade, F.M. Sukno, G. Moragas, A.F. Frangi. Au-
tomatic Construction of 3D-ASM Intensity Models by Simulating Image Acquisition: Application to
Myocardial Gated SPECT Studies. IEEE Transactions on Medical Imaging, 27(11):1655–1667, 2008.
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5.1 Introduction

In spite of the high technological developments in medical imaging systems for
diagnostic cardiology, cardiac function is still mostly analyzed through visual

assessment or manual delineation, which are both time consuming, subjective and
error prone. This fact has generated the need for automated analysis tools to sup-
port diagnosis with reliable and reproducible image interpretation. However, the
success of currently available commercial packages is modest and their use under-
diffused.

On the one hand, automated delineation of the cardiac chambers from 3D and
4D image datasets is challenging. Recent surveys have pointed out the prevalence
of model-based approaches to accomplish this task [65, 94]. Typically, they require
a generic template which undergoes adaptation to fit specific image data. This
strategy enables introducing a priori knowledge of shape of the structure of inter-
est into the segmentation process. In particular, Active Shape Models (ASMs) [6]
have been successfully employed in image segmentation [21, 95]. Unfortunately,
construction of these models requires several training steps based on a target image
database (ideally a rather extensive one). This is simply unachievable by sole man-
ual processing on 4D datasets due to the huge amount of data involved. These steps
include: i) manual outlining of target boundaries, ii) consistent distribution of land-
marks across sample shapes, iii) statistical shape decomposition yielding a Point
Distribution Model (PDM) [6], and iv) learning a statistical model of the intensity
around the target object. Substantial efforts have been carried out to automatically
construct PDMs by autolandmarking surface [32,96,97] or volumetric [98,99] repre-
sentations of already segmented structures. Some authors have shown techniques
which circumvent the need for segmenting all sample volumes and work directly
from the raw images [83, 100].

To the best of our knowledge, no work has attempted to automate the process
of creating intensity models. This is precisely the focus of this work, which we
use to complement our fully automatic ASM construction strategy initiated with
the autolandmarking method by Frangi et al. [98], and more recently by Ordas et
al. [83]. We show that it is possible to build a 3D-ASM, suitable for segmentation
of gated Single Photon Emission Computed Tomography (gSPECT) images, with a
PDM previously built from a large database of cardiac Computed Tomography (CT)
data [83]. The use of a virtual population provided access to known LV surfaces for
training purposes and accuracy evaluation.

On the other hand, imaging simulators are currently a mature field of research
providing tools for a variety of modalities: SPECT [101–103], CT [104, 105], Ultra-
sound (US) [88], and Magnetic Resonance Imaging (MRI) [106, 107]. Among them,
SPECT simulators have the longest trajectory, hence they now offer straightforward
tools for cardiac applications. This has motivated the use of gSPECT as a show case
for the usage of our approach. Nonetheless, the underlying concepts regarding
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automatic building of statistical models can be applied to other major diagnostic
imaging modalities.

Segmentation of the LV cavity from SPECT imaging is a challenging problem
owing to limitations inherent to the modality (i.e. low resolution, blurred bound-
aries, high noise levels, signal drops, absence of anatomical landmarks, etc) [108].
Model-based post processing algorithms are quite widespread in clinical practice [109,
110]. Yet their quantifications are affected by intrinsic imaging drawbacks, specially
in patients with small or hypertrophic hearts [111]. Similarly, less accurate calcula-
tions have been found in the presence of extracardiac activity, low-dose studies or
severe perfusion defects [112, 113]. Hence, new approaches able to cope with these
constraints are highly desirable. Deformable models [114] and level set based [115]
algorithms are more sophisticated approaches previously applied to SPECT seg-
mentation, giving promising results on simulated data. Still, further validation on
real clinical cases is needed.

This manuscript is organized as follows: The theoretical background of ASMs
is explained in Section 5.2. The datasets used for our experiments are presented in
Section 5.3. A detailed description of the methodology for automatic construction
of 3D-ASM intensity models is provided in Section 5.4. Section 5.5 presents the
experimental setup of this work, followed by its results in Section 5.6. Section 5.7
aims to further discuss the obtained results. Finally, the last section exposes the
clinical contribution and outlook of our work.

5.2 Background

A concise explanation of Active Shape Models (ASM) is provided in the current
section. An extended description can be found in [6].

Basically, three main parts constitute the backbone of an ASM: A shape model,
an intensity model, and a matching algorithm. The shape model (PDM) represents
the shape variability of the object under study. For a three dimensional space, a
linear PDM constructed from n aligned shapes, {xi; i = 1, . . . , n}, of m landmarks
each, {lj = (lxj, lyj, lzj); j = 1, . . . , m}, is a linear model defined by:

x = x̄ + Φb (5.1)

where x is a 3m-element vector obtained by concatenating all landmark coordinates
in the form (lx1, ly1, lz1, lx2, ly2, lz2, · · · , lxm, lym, lzm). Then, x̄ is the mean of aligned
shapes in the training set, b is the shape parameter vector of the model, and Φ is a
matrix whose columns are the principal components of the covariance matrix:

S =
1

n− 1

n

∑
i=1

(xi − x̄)(xi − x̄)T (5.2)



94 Chapter 5. 3D SPECT Image Segmentation

Obtaining the m 3D landmarks and their correspondence for all points on every
dataset is not a trivial task. Our methodology was inspired on the method proposed
by Frangi et al. [98]. Because of our particular application, a one chamber model
(LV) was used. Such configuration is a subpart of our recently constructed whole
heart model, trained from a high-resolution CT dataset [83]. Its training included
100 subjects in 15 temporal phases. Thus, 1500 sample volumes were considered in
total.

Once the shape model has been established, the second component (intensity
model) comes into action. It aims to grasp the intensity distribution typically found
near the object’s boundaries. It does so by sampling the gradient of the intensity
profiles along the perpendiculars to the mesh. From pixels sampled along each
profile, the mean vector and covariance matrix are estimated and stored for later
use during matching. An intensity model was calculated for each endocardial and
epicardial wall of the 17 LV AHA’s segments [82]. Hence a total of 33 regions were
obtained, corresponding to 17 epicardial and 16 endocardial.

Finally, the third element (matching algorithm) has the role of deforming the
mesh to match image data. Our approach is based on the sparse fitting method,
SPASM, put forward by van Assen et al. [21]. We modified this technique by using
an intensity model where each candidate point is obtained by selecting the minimal
Mahalanobis distance between the sampled profiles and the mean profiles of the
intensity model. Candidate points operate as deformation forces propagated to
neighboring nodes with a weight function

w(λ, ω) = e
− ‖λ−ω‖2

2σ2
p (5.3)

where (‖λ−ω‖2) is the geodesic distance between nodes, and σp is the width of
the normalizing Gaussian kernel. Deformation forces drive the mesh to a best-
fit location after several iterations. The steps of the algorithm are illustrated in
Algorithm 2.

5.3 Materials

Two main datasets were used for this work: a virtual and a clinical population. The
virtual population consisted of digital phantoms (see Section 5.4.1 for details) and
was considered for 3D-ASM intensity model training. Afterwards, it was employed
to evaluate performance of the trained models by means of leave-one-out approach:
Each case was segmented by a model trained with all cases but itself (in total n− 1
cases).

The clinical population, on the other hand, was only used for performance eval-
uation. It included 20 subjects of which 2 were healthy, 2 hypertrophic, 11 infarcted
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Algorithm 2: Matching Algorithm: SPASM
InitialMesh←Initialize mean Mesh;
repeat

Intersect (ImageStack, InitialMesh );
for all intersection points do

Find closest mesh vertes;
end
CountourStack←Create 2D contours;
Candidates (CountourStack,LearnedProfiles);
for all possible profile positions do

Mahalanobis (LearnedProfiles,SampledProfiles);
end
CandidatePoints←Smallest Mahalanobis;
ForcePropagation (CanditatePoints);
for all CandidatePoints do

UpdateVectors←Calculate weight function w;
end
Forces←Project UpdateVectors to surface normals;
DeformedShape←Apply forces to mesh;
NewValidInstance (DeformedShape);
BestFit←Best parameters to fit DeformedShape;

until iterations completed or convergence achieved ;
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(a) (b) (c)

(d) (e) ( f )

Figure 5.1: Interpolated (top) and original (bottom) axial views of a virtual (a-b, d-e)
and a clinical (c,f) gSPECT study. They were reconstructed by means of OSEM (a,d) and
FBP (b-c, e-f).

and 5 dilated. A rest gSPECT study and an MRI study were obtained for each
subject with a mean interval of 53 days given no change in clinical condition.

Gated SPECT studies were acquired at a rate of eight frames per cardiac cycle.
Patients were imaged one hour after administration of 99mTc-tetrofosmin using
a Siemens ECAM SPECT system (Siemens Medical Systems, Illinois, USA) or an
ADAC CardioEpic system (Philips Medical Systems, Best, NL) both with a double-
detector at 90◦ with high resolution collimators. Sixty-four projections of a 64×64
matrix over 180◦ arc were obtained with a 6.60 mm/pixel resolution. Image data
was reconstructed with Filtered Back-projection (see Figure 5.1). MRI studies were ac-
quired using a General Electric Signa CV/i, 1.5 T scanner (General Electric, Milwau-
kee, USA). Datasets contained short-axis image stacks at 30 temporal phases. The
slice thickness was 8 mm with an in-plane pixel resolution of 0.78mm × 0.78mm.

5.4 Methods

In the current section our methodology for automatic construction of intensity
models for 3D-ASM is described thoroughly. For an overall view of the complete
pipeline, refer to Figure 5.2.
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Figure 5.2: Overall description of the pipeline for construction of 3D-ASM intensity
models. Main steps are represented in grey blocks and complementary steps in white
ones.

5.4.1 Digital Phantoms

To ensure a realistic representation of a clinical population, several anatomical pa-
rameters were modified in a random manner, as proposed by He et al. [116], resem-
bling a normal distribution obtained from the Emory PET thorax model database [117].
The minimal population size, n, was calculated following the criteria exposed by
Jain et al. [118]. In our case, close to twenty parameters were modified during pa-
tient generation, yielding nmin = 200. Detailed description of modified parameters
follow.

Anatomical Variations

Aiming to include anatomical variations which induce usual attenuation artifacts
(i.e. breasts or high diaphragms) [119], three main anatomical groups were imple-
mented (see Figure 5.3):

• Normal Subjects: Featuring males with a flat diaphragm and females with
small breasts.

• Male Subjects with High Liver Dome: Half the male subjects present a high liver
dome, creating strong edges which may attract segmentation algorithms.
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Table 5.1: Torso parameters of female and male subjects.

Gender Model Body Ribcage
LA SA LA SA
cm cm cm cm

Female

F1 29 18 22 14
F2 31 21 23 16
F3 33 24 24 19
F4 32 26 26 20

Male

M1 39 22 25 17
M2 37 26 22 18
M3 35 27 25 21
M4 38 28 27 19

• Female Individuals with Large Breasts: Breast size, position and orientation were
modified in order to represent possible attenuation effects.

In order to generate the population, eight representative individuals were cho-
sen from the Emory PET thorax model database [117]. With these eight anatomical
models, four male (M1, M2, M3, M4) and four female (F1, F2, F3, F4), a total of
208 subjects were created, for which half the males present a high liver dome and
half the females were attributed large breasts. Figure 5.4 presents a graph which
illustrates the general distribution of the virtual population. Parameters used as
NCAT input are summarized in Table 5.1.

Heart Variations

The heart of each subject was varied by modifying its length and left ventricular
basal radius. Global position was altered by inducing different orientation angles
and translations of the heart along posterior-anterior (P-A) and lateral (Lat) direc-
tions. Specific parameters are summarized in Table 5.2.

Organ Uptake Ratios

Tracer uptakes of organs differ from patient to patient. To mimic this physiological
condition, heart, liver, lung, kidney, spleen and background isotope uptake ratios
were also modified in a random manner resembling a normal distribution of a
typical clinical population [116]. Parameter values are displayed in Table 5.3.
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Table 5.2: Anatomical parameters for heart variation according to gender. Adapted
from [116].

Gender Measure Size Orientation Translation
Length Ratio Angle φ Angle ψ Lat P-A

cm ◦ ◦ cm cm

Female

Mean 7.4 3.20 27 40 5.2 -5.0
SD 0.9 0.30 9 13 1.1 2.6

Max 10.5 4.00 54 76 8.5 0.2
Min 5.7 2.44 8 16 3.0 -10.6

Male

Mean 8.3 3.17 21 36 5.6 -6.4
SD 0.9 0.40 9 12 1.1 2.6

Max 11.6 4.32 41 73 8.0 1.2
Min 6.6 2.29 0 15 3.5 -11.6

Table 5.3: Typical distribution of tracer uptake ratios on different organs. Adapted from
[116].

Measure Intensity Ratio
Heart Liver/ Lung/ Background/
Value Heart Heart Heart

Mean 1419 0.44 0.14 0.11
SD 810 0.19 0.04 0.05

Max 4236 1.30 0.25 0.29
Min 490 0.16 0.05 0.02

Phantom Generation

Each voxel phantom included activity and attenuation files for 8 phases of a normal
(1 second) cardiac cycle. Each set consisted of 98 slices of 64×64 pixels with a 6.25
mm isotropic voxel size. This low resolution matches the usual conditions present
in our clinical studies.

Up to this point the anatomical models included a full thorax model that incor-
porates structures other than the heart, which are important for realistic gSPECT
simulation. Aiming to extract LV true surfaces, higher resolution images with only
the LV structure were generated. They consisted of 321 slices of 512×512 pixels
each, with a 0.78 mm isotropic voxel size. Once true surfaces were extracted from
these datasets, our 3D model was aligned to them using a similarity transformation
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through Procrustes Analysis [120]. Subsequently, nodes of the true surfaces acted
as exact candidates to deform our mean shape using one iteration of the ASM al-
gorithm. This process allowed warping the atlas model to all the training shapes in
order to assure: i) control over the distribution of clinical parameters in our training
database of heart shapes based on published data, ii) the same number of nodes and
mesh topology for all true LV surfaces, and iii) the inclusion of high inter-subject
and inter-phase variability during the matching process since the PDM is based on
a larger database of real patient data.

5.4.2 Monte Carlo Simulation

In order to generate gSPECT studies for the virtual population, Monte Carlo sim-
ulation was employed using SIMIND code [101]. Details regarding the simulation
set-up are given below.

Collimator Parameters

SIMIND allows for modeling different types of collimators. A Siemens Low Energy
High Resolution (LEHR) collimator was chosen since it resembles our current clin-
ical conditions [121]. Characteristics of such a collimator include: hexagonal shape,
parallel hole collimator, radius of rotation of 20 cm, hole size of 1.24 mm, septal size
of 0.90 mm and thickness of 23.6 mm.

Projection Parameters

Noise free projections were obtained by simulating 107 photon histories per pro-
jection. Sixty-four of them were obtained over a 180◦ arc, from 45◦ left posterior
oblique to 45◦ right anterior oblique. Each projection consisted of a 64×64 matrix
with 6.25 mm/pixel resolution. Energy resolution was set to 9% Full-Width-at-Half-
Maximum (FWHM) at 140 KeV and energy window threshold to 15% photopeak at
140 KeV.

System Characterization

Ordered-subset Expectation Maximization (OSEM) reconstruction requires FWHM pa-
rameters to be determined (see Section 5.4.3). This was accomplished by measuring
point-sources at different distances from the collimator surface. The point source
response was approximated to a symmetric Gaussian by means of nonlinear least
squares fitting [122].
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Image Generation

Simulations were run using grid computing on a cluster facility of 20 dual-processor
dual-core SGI Tezrix 210/2, 3Ghz/1333 Mhz, Intel Woodcrest processors. InnerGrid
v5.0 (GridSystems, Palma de Mallorca, Spain) was employed as grid middleware.
Distribution was achieved in the following manner: Each subject corresponds to
eight digital phantom datasets (one for each cardiac phase), totalling 1664 digital
phantom (208 subjects × 8 time frames). Each dataset includes sixty-four projec-
tions, which were distributed to different nodes of the cluster such that one node
will simulate only one projection of one digital phantom. The whole set of projec-
tions was then concatenated to obtain full projection volumes. This methodology
allowed us to reduce computation time from 16 hours to 48 minutes per subject.
For the whole database it represented trading 5 months of calculations for about 7
days.

5.4.3 Tomographic Reconstruction

Aiming to obtain datasets with different intensity features for our model training
(see Section 5.2) tomographic reconstruction after simulation was performed in two
approaches: Filtered Back-projection (FBP) and Ordered-subset Expectation Maximiza-
tion (OSEM).

FBP Reconstruction

Reconstruction was performed with a Butterworth filter. Its cut-off frequency was
visually inspected on a range from 0.30 to 0.80 pixels−1 with step 0.2. Selected
parameters were order 4 and cut-off frequency of 0.66 pixels−1.

OSEM Reconstruction

Reconstruction was carried out using 4 subsets and 20 iterations. It also applied
a quadratic penalty function using the 4 nearest neighbors of each pixel within a
plane, along with the pixels adjacent to it on the slices above and below, as sug-
gested by Fessler [122].

5.4.4 Post Processing

Following reconstruction, images were automatically masked for truncation arti-
fact removal. Subsequently, they were scaled to a 100 grey level window, setting
negative values to zero. Finally, they were saved in DICOM format in order to be
processed by our 3D-ASM algorithm as a regular patient.
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Table 5.4: Parameters used for ASM Segmentation

Description Symbol Value
Allowed Mode Variation β 2σ

Number of Nodes m 2677
Profile Length n.a. 7
Profile Sampling Interval n.a. 3 mm
Shape Variability n.a. 75%
Gaussian Kernel Width σp 7
Maximum Iterations n.a. 15

5.4.5 3D-ASM Segmentation

Automatic segmentation of LV cavity was performed by means of 3D-ASM (see
Section 5.2). Implementation details are provided next.

ASM Parameters

A uni-ventricular model of 2677 points (1835 for endocardium and 842 for epi-
cardium) was used. The algorithm was set to run for 15 iterations or until the
change in LV volume was not substantial between iterations (∆Volume < 0.01 mL).
New model instances were generated with 75% of the total shape variability. This
constrain was imposed to obtain a smooth fit to match the sparse data obtained
from SPECT imaging, as apposed to CT imaging which allows for finer details.
Other ASM parameters are summarized in Table 5.4.

Dynamic Studies Segmentation

Cardiac dynamics add to our segmentation process yet another challenge: Intensity
profile variation per cardiac phase. The most intuitive scheme to approach this
matter would be to obtain a model trained for each cardiac frame.

An alternative strategy is to perform ASM fusion [52], which has proven to be an
effective technique for intensity model generation [123]. Under this methodology,
only End Diastolic (ED) and End Systolic (ES) models were generated, since they
represent the two most extreme circumstances on cardiac dynamics. Missing phases
were obtained through a weighted fusion of ED and ES models. Weights used
for each cardiac phase were set by the current heart phase index (LV contraction
percentage) as logged by NCAT [124].
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Model Initialization

We followed a very simple mechanism to roughly scale and position the mean shape
of the model. The operator defines two epicardial points at the basal level and a
third one at the apex. Corresponding anatomical landmarks of the mean shape
were previously tagged by an experienced investigator. Consequently, the mean
shape is aligned to the landmarks through a similarity transform. The manual
interaction required for this procedure lasts about 30 seconds. In complex cases (i.e.
large perfusion defects) longer interaction may be required, up to 1.5 minutes, for a
correct depiction of basal and apical planes.

For the virtual population, initialization points were extracted automatically
from the true shapes, thus eliminating initialization bias for a better analysis of
segmentation accuracy. The clinical database, instead, was initialized by an experi-
enced investigator, hereafter referred to as Obs1.

Functional Analysis

Once the shape model is correctly matched to specific image data, LV volumes both
in End Diastole (EDV) and End Systole (ESV) can be calculated. Ejection Fraction
(EF) can be derived from these measurements in order to evaluate systolic function
of a patient.

5.5 Experimental Evaluation

5.5.1 Segmentation Accuracy

• Idealized vs. Simulated Boundary Model: To evaluate the advantage of using ad-
vanced simulations during training, a comparison with two idealized bound-
ary models was performed. The first model consisted of a step function (ST),
ranging from zero to one corresponding to a normalized intensity profile. The
second model located the boundary at the maximum gradient (GR) of a sam-
pled profile, as initially proposed by Cootes et al. [6]. Both virtual and clinical
populations were segmented with these models.

• True vs. Fitted Geometry: Unsigned point-to-surface (P2S) errors were com-
puted between the fitted meshes obtained with idealized and simulated bound-
ary models and the gold standard LV surfaces. Mean±SD values of all subjects
in all temporal phases were computed.

• Trained-tested Analysis: To examine the influence of using the same reconstruc-
tion method both in training and segmentation stages, we performed an ex-
periment combining trained-tested models. That is, a model trained with FBP
reconstructed datasets was tested on an OSEM reconstructed dataset during
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segmentation, and vice versa. A Mann-Whitney U-test [125], with a 95% con-
fidence interval, was carried out to determine statistical significance of the
differences.

• Clinical Dataset: Location of LV borders in SPECT datasets is quite subjec-
tive due to the blurred nature of these images (see Figure 5.1). However, to
generate a proper gold standard for accuracy evaluation, LV contours were
manually drawn according to a standard criterion: LV borders should be lo-
cated at 40% of the maximum myocardial intensity. This value was obtained
based on reported studies [126] and our clinical experience. In case of exten-
sive perfusion defects, the human observer could modify the threshold down
to 20%. Endocardial and epicardial border delineation of the LV, at ED, was
performed by two observers (Obs1, Obs2) in two individual sessions (S1, S2).
The resulting traces were used to: i) evaluate intra and inter-observer variabil-
ity, and ii) obtain P2S errors of automatically segmented surfaces.

5.5.2 Sensitivity to Initialization

To evaluate the influence of initialization on our segmentation approach, the fitting
process was performed 10 times for each virtual subject. Each set of initialization
points was generated by adding a random error to the true landmarks of up to 6.25
mm (voxel size) along the X, Y and Z axis. P2S errors between true LV surfaces and
the 10 fitted meshes with initialization error were computed. Also, volume errors
were measured as the absolute difference between true volumes and calculated
volumes.

5.5.3 LV Function Calculations

• True vs. Measured Volume: For the virtual population, volume error was
measured with respect to true LV volumes at ED and ES. For the clinical
population, gold standard volumes were obtained from manually traced LV
contours on the paired MRI datasets.

Agreement of measurements with gold standard values was assessed by means
of Bland-Altman (B&A) plots [127]. Accuracy error was calculated as the
percentage of absolute volume difference (diff(True,Measured)) relative to true
volume.

• Clinical Tool: For the clinical dataset, a comparison with the most widespread
clinical analysis tool, Quantitative Gated SPECT (QGS), was made. Results
were analyzed taking into account previously published studies which de-
scribe QGS performance (see Table 5.8).
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• Population Subgroups: In order to analyze the effect of perfusion defects on
3D-ASM volume calculations, we separated our clinical population into three
subgroups. Categorization was performed by an expert clinician, Obs2, ac-
cording to severity of the perfusion defect: i) none, ii) mild to moderate, and
iii) severe.

5.6 Results

5.6.1 Quantitative

Segmentation Accuracy

Figure 5.5 shows LV edges obtained with 3D-ASM for the ST, GR, FBP and OSEM
boundary models. Figure 5.6 displays two clinical cases with severe perfusion de-
fects. LV edges obtained with 3D-ASM for all boundary models are displayed as
well. Corresponding true surfaces are included on both figures.

Table 5.5 shows the results for the Trained-tested Analysis and the Idealized vs.
Simulated Boundary Model analysis. The P2S errors of the segmentations performed
with the idealized models are noticeably larger than the ones of the simulated bound-
ary models. Endocardial errors were 28% larger than those of the FBP model and
20% larger than those of the OSEM model. Epicardial errors were 89% larger than
those of the FBP model and 66% larger than those of the the OSEM model.

Sub-voxel accuracy was obtained with our segmentation method for both recon-
struction techniques (See Table 5.5). For FBP reconstructed datasets, epicardial bor-
ders were segmented 35% more accurately than endocardial ones, while in OSEM
reconstructed datasets the difference was 38%.

Figure 5.7 displays the statistical significance evaluation of the Trained-tested
Analysis. All compared groups generated significantly different P2S errors, except
for endocardial errors of FBP-FBP vs. OSEM-FBP and ST-FBP vs. GR-FBP, and
epicardial errors of ST-OSEM vs. GR-OSEM.

Figure 5.8 displays P2S errors for each cardiac phase, with ED being t = 1 and
ES being t = 5. Endocardial errors obtained at ED were 21% larger with respect to
ES for both FBP and OSEM reconstructed datasets. On the other hand, epicardial
errors were 18% smaller at ED for FBP reconstructed datasets and only 3% lower
for OSEM reconstructed datasets.

Figure 5.9 shows P2S errors for each of the 17 LV AHA’s segments [82]. For the
FBP reconstructed datasets, errors corresponding to the basal plane were 43% larger
than those of the medial plane and 56% larger than those of the apical plane. For
the OSEM reconstructed datasets, the same comparison generated a 39% and 52%
difference, respectively.

For the clinical population, intra and inter-observer variabilities are summarized
in Table 5.6. P2S errors between 3D-ASM fitted shapes and manual delineations are
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Table 5.5: Point-to-surface errors for the virtual population

Trained Tested ENDO EPI
Mean SD Mean SD
mm mm mm mm

IDEALIZED
ST

FBP 4.57 0.24 4.33 0.23
OSEM 4.35 0.25 3.67 0.24

GR
FBP 4.57 0.22 4.49 0.20
OSEM 4.27 0.24 3.67 0.22

SIMULATED
FBP

FBP 3.56 0.27 2.33 0.22
OSEM 3.70 0.29 3.00 0.29

OSEM
FBP 3.61 0.26 2.69 0.14
OSEM 3.57 0.27 2.21 0.17

Table 5.6: Point-to-surface errors for the clinical population

Variability ENDO EPI
Mean SD Mean SD
mm mm mm mm

MANUAL
INTRAOBS 4.52 0.96 3.15 0.57
INTEROBS 4.70 1.01 3.45 0.77

3D-ASM
FBP 4.69 0.78 4.15 0.75
ST 5.11 0.93 6.16 1.52
GR 5.26 0.98 4.88 1.20
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Table 5.7: Sensitivity to Initialization

Dataset Measure P2S LV Function
ENDO EPI EDV ESV EF
mm mm mL mL %

FBP

Mean 3.73 2.54 3.65 3.29 4.79
SD 0.28 0.25 1.23 1.12 1.16
Max 21.1 21.9 73.9 40.7 24.6
Min 0.25 0.66 0.01 0.00 0.01

OSEM

Mean 3.74 2.40 3.85 3.17 4.70
SD 0.28 0.20 1.22 1.18 1.2
Max 17.90 9.43 52.9 45.8 26.9
Min 0.29 0.31 0.01 0.00 0.00

also displayed. For endocardial errors, intra- and inter-observer variabilities were
not significantly different than those obtained automatically with the FBP and ST
boundary models. The GR boundary model, instead, generated significantly higher
P2S errors than intra-observer variability. They were also significantly higher than
those of the FBP boundary model. Epicardial errors, on the other hand, were found
to be significantly different for all schemes.

Sensitivity to Initialization

Table 5.7 shows the results regarding initialization sensitivity for FBP and OSEM
reconstructed datasets. For both of them, the added inaccuracy caused by initial-
ization error was 5% for endocardial borders and 8% for epicardial ones. Volume
calculations presented an average error of 3.5 mL affecting the EF measurements
in 4.7%. However, maximum errors came to be as large as 22 mm for accuracy
measurements and 74 mL for volume calculations.

LV Function Analysis

Figure 5.10 displays B&A plots of volume calculations for the virtual population.
FBP reconstructed datasets produced EDV measurements with a 94.4% accuracy,
ESV measurements with a 90.0% accuracy and EF measurements with a 90.8% ac-
curacy. For the OSEM reconstructed datasets, accuracy calculations were: 94.5% for
EDV, 90.2% for ESV, and 90.9% for EF. A further analysis of EF error relative to EDV
is presented in Figure 5.11.

For the clinical population, B&A plots are displayed in Figure 5.12. 3D-ASM
obtained accuracy levels of 89.5% for EDV, 87.0% for ESV, and 88.1% for EF. QGS
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measurements obtained accuracy levels of 81.7% for EDV, 83.5% for ESV, and 83.9%
for EF. In concrete, the B&A plots for EF calculated with 3D-ASM displayed no bias
and smaller variance than those of QGS.

Figure 5.13 displays accuracy errors for the clinical population subgroups. Er-
rors showed no obvious correlation to severity of perfusion defect. Only ESV of
the none subgroup shows a high inaccuracy for both post processing algorithms. It
must be noted that half the patients in this group (ntotal=4) presented hypertrophic
LVs with collapsing walls at ES, hence the larger errors in ESV calculations.

5.6.2 Critical Analysis

Segmentation Accuracy

Idealized models demonstrated not to be robust enough for the segmentation task
evaluated during this work. Figure 5.14 illustrates this fact by displaying a bar
plot of the gradient profile averaged over all landmarks and all datasets of each
population (i.e. nvirtual = 208 and nclinical = 20). Position zero in the horizontal
axis indicates the location of the boundary. Due to the absence of OSEM clini-
cal datasets, only the FBP datasets are presented. Comparisons were performed
against the corresponding gold standard which is represented with dark bars. Light
bars represent the profile with respect to the best-fit boundary position according to
the FBP, GR and ST boundary models. It is interesting to observe that in all cases (vir-
tual and clinical datasets) the actual best-fit profiles are more alike to the simulated
profiles than to the idealized profiles. This is achieved in spite of the limitations
of a simulated training set, which may not capture all the details of an actual clin-
ical database. Similarly, the standard deviation of the difference between the gold
standard and the simulated boundary models were smaller than those of the two
idealized boundary models. In practical terms, it reduced P2S segmentation errors
by at least 20% for endocardial borders and 66% for epicardial borders.

The Trained-tested Analysis showed that more accurate segmentation results are
obtained when the same reconstruction method is used both in training and seg-
mentation stages. Despite the fact that OSEM reconstruction allows for better def-
inition of LV structures, endocardial borders are located with errors of the same
magnitude as those obtained with FBP. We suspect that a substantial increase in
image resolution is necessary before the apparent visual improvement of OSEM
reconstructed datasets has a real impact on global quantitative parameters.

Overall decreased accuracy found on endocardial border segmentation is rea-
sonable as the relative image resolution is lower for the inner surface of the LV.
That is, the correct position of a large contour (epicardium) can be found more pre-
cisely than the position of a smaller contour (endocardium), given the same pixel
size.

Greater P2S errors found at basal level are quite understandable since a correct
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depiction of LV basal plane is a well known complication of cardiac imaging post-
processing for most modalities [128]. SPECT images are specially challenging on
this matter owing to the lack of commonly used anatomical landmarks such as the
mitral valve or the left atria.

As can be observed in Figure 5.9, P2S errors are larger at the inferoseptal basal
segment. Because of the presence of the membranous septum, this region displays
almost no tracer activity. Hence, during fitting the mesh is not actively deformed
at this area the LV wall. This is represented in the virtual phantoms as thinner
septal structures. It is particularly noticeable at ED where the difference in activity
between the basal portion of the lateral wall and the basal portion of the septal wall
is quite visible. At ES, though, due to thickening and shortening of the LV walls,
the septum can be better defined at basal levels.

For the cardiac phase analysis, the larger epicardial P2S errors found at ES phase
are natural (lower resolution and partial volume effect). However, the decrease
in error observed for endocardial borders is counterintuitive. Visual inspection
suggests this is caused by the higher segmentation inaccuracy at basal level, as
mentioned above.

For the clinical studies, 3D-ASM errors for endocardial borders are comparable
to inter-observer variability. However, epicardial boundaries presented 20% larger
errors than inter-observer variability. This might be due to overestimation of wall
thickness in places of extensive perfusion defects. Regardless of lack of data, a hu-
man observer may deduct a thinning of the LV walls caused by chronic infarcted
myocardium. ASM, on the other hand, will try to conserve the wall thickness
present on the remaining sampled data. It must noted that intra and inter-observer
variability under uncontrolled circumstances (i.e. without a standardized criterion)
will most likely be larger than the ones measured during our experiments.

Sensitivity to Initialization

The evaluation of initialization sensitivity illustrated the extent of inaccuracy caused
by initialization error. Yet, in average, this inaccuracy was rather small. The maxi-
mum errors revealed noticeable bias in case of very improper initialization points.
However, in clinical dataset processing, initialization would be performed by a
trained technician capable of efficiently and correctly defining basal and apical po-
sitions.

LV Function Analysis

For the virtual population, the scatter distribution of the B&A plots showed a de-
pendency of the error on the LV volume. B&A plots also revealed that our algo-
rithm tends to underestimate EDV, a tendency also present on QGS (See Table 5.8).
The most extreme case of overestimation was found for the largest heart. Yet its
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difference is within reported limits of discrepancy (30 mL from gold standard mea-
surements) [136].

For ESV, a slight overestimation is revealed through the B&A plots, previously
stated for QGS as well (Table 5.8). For EF, the confidence intervals in the B&A plots
are wider than those for EDV and ESV, probably caused by the higher dispersion
observed on lower EF values. Note in Figure 5.11 that many of the large discrepan-
cies in EF calculations are located around small hearts (50 mL EDV). This parameter
is known to be overestimated for this type of hearts when calculated from perfu-
sion studies [137]. This is attributed to artificially increased counts in the LV cavity,
complicating a proper calculation of ESV volumes.

For the clinical population, overall patterns of B&A plots were comparable to
those of QGS. Calculated parameters showed less biased underestimations. Smaller
confidence intervals were found for 3D-ASM for all calculated parameters. Simi-
larly, accuracy levels were higher than those obtained with QGS for all measured
parameters.

No obvious correlation between perfusion defect severity and segmentation in-
accuracy was found for our clinical database. Inaccuracy could be more related to
low image quality or segmentation difficulty depending on pathology. For instance,
the group with no perfusion defects was composed of hypertrophic patients and
one dilated patient with Left Bundle Branch Block, both difficult cases to segment
even for a human observer.

5.7 Discussion

5.7.1 Clinical Contributions

Our method obtained higher accuracy compared to QGS, one of the most widespread
commercial packages. Although this result is obtained in a small population, this is
quite encouraging for a simulation based approach since it bypasses the labor of clini-
cal database collection and, furthermore, the underlying methodology is potentially
applicable to other modalities.

The employed segmentation method could either be applied on transaxial slices
or on reformatted short axis images. The use of the transaxial slices is preferable
since time consuming operator assistance is required to define the LV long axis.

As can be concluded from previous works (see Table 5.8) the tendencies of QGS
for small hearts still needs further review. Virtual populations with specific heart
sizes may be useful for investigating this matter.

5.7.2 Outlook

The feasibility of our approach has been illustrated in the context of one clinical
application (viz. cardiac image analysis) and one specific imaging modality (viz.
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gSPECT). Nevertheless, the potential of this approach is much broader.
To start off, it can help decoupling the sample size requirements of building

relevant statistics for the intensity models. Shape models could be built based on
a high-resolution imaging modality (e.g. CT) and the derived PDM be sampled to
generate a virtual population from which simulated images of other modalities can
be produced (e.g. MR, SPECT or US). Regarding sample size, only few real clinical
images might be available for extreme anatomical variants (e.g. very small or very
large hearts). However, they can be sampled uniformly when creating the virtual
population for simulated data.

Another problem in learning intensity models directly from real images is re-
lated to the rapid evolution of most imaging technologies. Handling this problem
would become simpler with our technique as we can regenerate the intensity mod-
els, as long as the employed simulator allows for it. The upgrades can be related to:
i) improvement of spatial resolution (i.e. smaller pixel size), ii) increase of temporal
resolution (i.e. more frames per cycle), iii) development of better reconstruction
techniques (e.g. iterative algorithms), iv) isotropic voxels (i.e. for MRI or CT), v)
variation on physical parameters used during acquisition (e.g. modification of MRI
sequences), etc.

As the final advantage, we would like to mention that avoiding the need to use
shapes derived from manually contoured shapes prevents expert dependency as
the true boundary information is known by construction. Moreover, the possibility
to build intensity models in every major modality based on a high-resolution PDM
pave the way for handling more consistently multimodal datasets.

This approach, however, may present a number of disadvantages, depending
on the realism and accuracy of the image acquisition simulator, such as: computa-
tionally expensive processing, large amount of input parameters sometimes hard to
determine, use of theoretical noise which may not resemble clinical conditions, etc.

5.8 Conclusion

This paper introduced the notion of using advanced imaging simulators to enable
automatic creation of intensity models. Results show that gSPECT studies can be
successfully segmented by models trained under this scheme with sub-voxel accu-
racy. The accuracy in estimated LV function parameters range from 90.0% to 94.5%
for the virtual population and from 87.0% to 89.5% for the clinical population. These
results are within the intervals reported by other widespread clinical segmentation
tools.

Our future efforts along the generic approach we presented here is to extend this
technique to other imaging modalities. Efforts are underway to apply this approach
to 3D US data [138] and we do not foresee fundamental issues not to extend this
technique to MRI and CT.
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 5.3: Sample of the three anatomical groups: Normal subjects (a-c), male subjects
with high liver dome (d-f) and female individuals with large breasts (g-i). Images were
generated with NCAT (left), SIMIND (middle) and ASPIRE (right), respectively.
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Figure 5.4: General distribution of the virtual population, subdivided into anatomical
groups. See Section 5.4.1 for details.

(a) (b) (c) (d) (e) ( f )

Figure 5.5: Axial view of a virtual study for FBP (a-c) and OSEM (d-f) reconstructed
images. Edges obtained automatically by 3D-ASM with ST (a,d), GR (b,e), FBP (c) and
OSEM (f) boundary models are shown in white (thick). True edges are displayed on
yellow (thin).

(a) (b) (c) (d) (e) ( f )

Figure 5.6: Two clinical cases with severe perfusion defects: Case one in axial view (a-c)
and case two in long-axis view (d-f). Edges obtained automatically by 3D-ASM with ST
(a,d), GR (b,e) and FBP (c,f) boundary models are shown in white (thick). True edges
are displayed on yellow (thin).
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Figure 5.7: Box-and-whisker plot of the Trained-tested Analysis for FBP, OSEM, ST and
GR boundary models. Connecting lines illustrate compared groups. The stars represent
statistically significant differences. p values of the statistically nonsignificant differences
are also displayed.
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Figure 5.8: Bar plot of mean point-to-surface errors per cardiac phase for FBP and OSEM
reconstructed datasets. ED corresponds to t = 1 and ES to t = 5. Error bars represent
SD of the measurements.
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3D-ASM ON FBP RECONSTRUCTED 3D-ASM ON OSEM RECONSTRUCTED
DATASETS DATASETS

(a) (d)

(b) (e)

(c) ( f )

Figure 5.10: Virtual population: Bland-Altman plots for EDV (a,d), ESV (b,e) and EF
(c,f) comparing gold standard and measured values estimated with 3D-ASM for the
datasets reconstructed by means of FBP (top) and OSEM (bottom).
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Figure 5.11: Plot of Ejection Fraction
(EF) error vs End Diastolic (ED) volume
for FBP (o) and OSEM (*) reconstructed
datasets of the virtual population.
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3D-ASM ON CLINICAL QGS ON CLINICAL
DATASET DATASET

(a) (d)

(b) (e)

(c) ( f )

Figure 5.12: Clinical population: Bland-Altman plots for EDV (a,d), ESV (b,e) and EF
(c,f) comparing gold standard and measured values estimated with 3D-ASM (top) and
QGS (bottom).
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Figure 5.13: Accuracy errors on volume calculations for the three population subgroups
according to perfusion defect severity. EDV and ESV errors for 3D-ASM and QGS. Error
bars represent SD.

VIRTUAL CLINICAL

Figure 5.14: Bar plot comparing the underlying gold standard and the best-fit profiles us-
ing the three boundary models in both virtual (top) and clinical (bottom) populations.
Plots show the gradient profiles with respect to the gold standard boundary position
(zero abscissa). Dark and light bars stand for the mean gold standard gradient pro-
file (around and along the normal to expert surfaces) and the best-fit gradient profiles
(around and along the normal to candidate surfaces based on FBP, GR and ST boundary
models), respectively. Error needles on the light bars represent the SD of the difference
between the gold standard and model gradient profiles. Means and SDs were com-
puted over all landmarks and all datasets for both populations. Experiments show that
the higher accuracy achieved with our proposed technique is consistent with a more
accurate modeling of gradient profiles.
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Unbiased covariance matrix estimate in the general case

The unbiased estimate of the covariance matrix of a set of N independent random
observations zi (i = 1, . . . , N) is

S =
1

1−
N
∑

i=1
p2

i

·
N

∑
i=1

pi (zi − z̄) (zi − z̄)T (A.1)

where z̄ =
N
∑

i=1
pizi and pi is the probability associated with the i-th observation zi.

This result is easily obtained following the same steps as in [27], without assuming
all the probabilities being equal to 1

N . Note that when pi = 1
N , the estimate (A.1)

reduces to the usual unbiased estimate used in statistics and derived in [27].
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Linearity of the Warp

Lemma 1. Given an arbitrary set of linear transformations Li : Rn → R, i = 1, . . . , K of
a n-dimensional vector x into the set of real numbers, the transformation ϕ : Rn → RK,
such that ϕ (x) = [L1 (x) , L2 (x) , . . . , LK (x)]T , is a linear transformation.

Proof. Let α ∈ R. Then

ϕ (αx) = [L1 (αx) , L2 (αx) , . . . , LK (αx)]T =

= α · [L1 (x) , L2 (x) , . . . , LK (x)]T = α · ϕ (x)

Let y ∈ Rn. Then

ϕ (x + y) = [L1 (x + y) , L2 (x + y) , . . . , LK (x + y)]T =
= ϕ (x) + ϕ (y)

The lemma is proven.

The transformation ϕ can be, without loss of generality, considered a texture
warp with an interpolation, that is a linear function of pixels, and x a texture vector.
Then Li will be the pixels obtained by interpolating between some of the elements
of x.
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Orthonormality of eigenvectors

Our goal is to demonstrate that there is no need to recompute the eigendecompo-
sition of the matrix τi

(
Φgi

)
Λgi

[
τi

(
Φgi

)]T in order to fuse the eigenspaces Ω̃gi =(
τi (ḡi) , τi

(
Φgi

)
, Λgi, Ni

)
, i = 1, . . . , M. In other words it is irrelevant for the fusion

whether τi
(
Φgi

)
is orthonormal or not.

Let us start with mentioning that since τi
(
gij

)
is linear with respect to gij then

there exists a matrix Ai such that [28]:

τi
(
gij

)
= Aigij

Let the covariance matrix of gij, for a given i, be

Gi = ΦgiΛgiΦ
T
gi

Now let us obtain a covariance matrix for the warped observations (2.22).

G̃i =
1

Ni − 1

Ni

∑
j=1

[
τi

(
gij

)− τi (ḡi)
] [

τi
(
gij

)− τi (ḡi)
]T =

=
1

Ni − 1

Ni

∑
j=1

Ai
[
gij − ḡi

] [
gij − ḡi

]T AT
i =

= AiGiAT
i = AiΦgiΛgi

(
AiΦgi

)T (C.1)

By eigendecomposition

G̃i
∆= Φ̃giΛ̃giΦ̃

T
gi



124 Chapter C. Orthonormality of eigenvectors

Let us demonstrate that

Lemma 2. For any matrix A and any nonsingular diagonal matrix Λ

r
[
AΛAT

]
= r (A)

Proof. It is known that r
[
BBT

]
= r [B] for any matrix B [29]. It is also known [29]

that multiplication of a matrix by a nonsingular matrix does not change the rank of
that matrix. Let B = AΛ

1
2 . Then

r
[
AΛAT

]
= r

[
BBT

]
= r [B] = r

[
AΛ

1
2

]
= r [A]

The lemma is thus proven.

Looking at (2.6) one can see that the fusion is essentially a linear combination
of covariance matrices, so, taking into account the need of warping each texture
onto the fused mean shape, each of these covariance matrices will be transformed
(as in (C.1)), which is equivalent to transforming only the eigenvectors in their
eigendecomposition. The only place where the eigenvectors are used specifically is
in the construction of the matrix H. But

1. H is orthonormalized;

2. Φ̃gi and AiΦgi span the subspace of the same dimensionality (directly follows
from the above lema);

3. equation (2.6) does not require that the factorization of the covariance matrices
is carried out by the eigendecomposition;

4. from (2.22) it follows that any warped observation can be represented by the
warped eigenvectors. In other words, warped eigenvectors span the subspace
of the warped observations.

Therefore, there is no specific need to recompute the eigendecomposition of the
transformed covariance matrices.
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Coordinate Transformation in Vector Spaces

Let L : V → W be a linear transformation of an n-dimensional vector space V

into an m-dimensional vector space W (m 6= 0, n 6= 0). And let matrices V =
[v1|v2| . . . |vn] and W = [w1|w2| . . . |wm] be the bases for V and W respectively.
Then, there exists a m× n matrix A such that [28], [29]

[L (x)]W = A · [x]V , x ∈ V

where

A = [[L (v1)]W , [L (v2)]W , . . . , [L (vn)]W ] (D.1)

Notation [x]V means that vector x is represented in the basis V, the same for [x]W .
In other words, (D.1) means that columns of the transformation matrix are the

basis vectors of V transformed by the linear map L and written in the basis of W.
If V = Rn and W = Rm, then for x ∈ V and y = L (x) ∈ W there exist two

vectors a and b such that x = V · a and y = W · b.
What is needed is the relationship between a and b, which are the coordinates

of vectors x and y in the bases of V and W. Therefore, recalling (D.1) it can be
written:

A = W−1 · [L (v1) , L (v2) , . . . , L (vn)] (D.2)

b = A · a

If L is the identity transformation then y ≡ x and obviously A = W−1 ·V.
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Resumen

La presente tesis se centra en los aspectos de construcción y combinación de modelos
activos de forma y de apariencia. Estos modelos representan una herramienta amplia-

mente utilizada para la segmentación y modelado de objetos mediante restricciones de forma
y textura basadas en la estadística aprendida de un conjunto de entrenamiento. Sin embargo,
estos modelos tienen varios problemas:

1. el costoso proceso de entrenamiento (tanto en relación al tiempo necesario como a la
demanda de memoria);

2. la necesidad de un conjunto de entrenamiento de imágenes con el objeto delineado
(por lo general de forma manual);

3. el alto grado de incertidumbre de dichos delineados (por la presencia de ruido), e in-
cluso la imposibilidad práctica de realizar demarcaciones manuales cuando se trabaja
en tres dimensiones.

Para resolver estos problemas se propone:

1. Un framework para la fusión ponderada de varios modelos activos de forma y aparien-
cia basado en la combinación de autoespacios. Esta estrategia de combinación puede
ser entendida como una interpolación lineal de los modelos. El modelo fusionado
permite segmentar los objetos cuya apariencia se puede representar aproximadamente
como una combinación lineal de los objetos que corresponden a los modelos fusiona-
dos. En otras palabras, si un objeto tiene una serie de apariciones típicas (diferentes
expresiones o vistas faciales o diferentes patologías cardiacas), es posible elegir las
apariciones más representativas y asumir que cualquier otra es una combinación lin-
eal de dicho conjunto representativo. De este modo, la fusión de modelos se puede
utilizar para segmentar la imagen y los pesos de la combinación pueden ser utilizados
para determinar cual modelo representa mejor al objeto. Las posibles aplicaciones de
este framework son: construcción incremental del modelo, clasificación basada en los
pesos de la combinación y reducción del conjunto de entrenamiento hasta tener solo
las apariencias características.
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2. Un algoritmo de segmentación de caras de varias vistas basado en la fusión de modelos
activos de apariencia. Este algoritmo se utiliza para la segmentación de cualquier vista
facial y también para determinar el ángulo de la vista a partir de los pesos de la fusión.
Se construyen sólo los modelos que corresponden a las vistas extremas y se supone que
el resto de las vistas son combinación lineal de las extremas. Estimación de los pesos
de fusión mediante la minimización de error de reconstrucción permite encontrar el
modelo combinado óptimo que mejor se adapta a la imagen segmentada.

3. La combinación de imágenes de tomografía computada (CT), ultrasonido (US) y to-
mografía computarizada por emisión de fotones individuales (SPECT) para crear au-
tomaticamente un modelo activo de forma. Se demuestra cómo la estadística de la
apariencia puede ser aprendida para dos modalidades donde la resolución o calidad
son demasiado bajas para obtener marcaciones manuales fiables de los contornos del
objeto, especialmente en 3D. En este caso la generación de imágenes sintéticas, a través
de la simulación del proceso de formación de la imagen, permite sintetizar un conjunto
de entrenamiento para la apariencia a partir de un conjunto de formas obtenidas de
las imágenes de alta calidad que ofrece CT.
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