Computational cardiac atlases: from patient to population and back

Alistair A. Young and Alejandro F. Frangi

1 Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
2 CISTIB, Department of Information and Communication Technologies, Universitat Pompeu Fabra University, Barcelona, Spain
3 Networking Center on Biomedical Research – Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
4 Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain

Integrative models of cardiac physiology are important for understanding disease and planning intervention. Multimodal cardiovascular imaging plays an important role in defining the computational domain, the boundary/initial conditions, and tissue function and properties. Computational models can then be personalized through information derived from in vivo and, when possible, non-invasive images. Efforts are now established to provide Web-accessible structural and functional atlases of the normal and pathological heart for clinical, research and educational purposes. Efficient and robust statistical representations of cardiac morphology and morphodynamics can thereby be obtained, enabling quantitative analysis of images based on such representations. Statistical models of shape and appearance can be built automatically from large populations of image datasets by minimizing manual intervention and data collection. These methods facilitate statistical analysis of regional heart shape and wall motion characteristics across population groups, via the application of parametric mathematical modelling tools. These parametric modelling tools and associated ontological schema also facilitate data fusion between different imaging protocols and modalities as well as other data sources. Statistical priors can also be used to support cardiac image analysis with applications to advanced quantification and subject-specific simulations of computational physiology.

A major strategy of Cardiac Physiome projects is to develop mathematical and computer models to integrate the observations from many laboratories into quantitative, self-consistent and comprehensive descriptions (http://www.physiome.org.nz). Many groups have begun to construct physiological databases, linked with anatomical, functional and clinical data gleaned from a variety of sources. This information must be integrated across many scales, from molecular interactions to organ system function. There have been several initiatives begun in this endeavour, centred on different organ systems and pathology targets. Projects include the Integrative Biology Project (http://www.integrativebiology.ox.ac.uk), the ECG signal database (http://www.physionet.org), the Cardiac Gene Expression database (http://www.cage.wbmei.jhu.edu), the Medical Image File Archive Project (http://dpi.radiology.uiowa.edu/mifar/index.php), anatomical ontology databases, such as the Foundational Model of Anatomy (http://sig.biostr.washington.edu/projects/fm/AboutFM.html), and Informatics for Integrating Biology and the Bedside (http://www.i2b2.org/). In particular, the Biomedical Informatics Research Network (http://www.nbrin.net) provides a number of tools to facilitate collaborative research among neuroscientists and medical scientists, making use of computational and networking technologies and addressing issues of user authentication, data integrity, security and data ownership. These tools, and those of the Cancer Biomedical Informatics Grid (https://cabig.nci.nih.gov/) are being exploited by the Cardiovascular Research Grid (http://www.cvgrid.org) to create an infrastructure for sharing cardiovascular data and data analysis tools. For the brain, the infrastructure for building atlases and computational anatomy tools are well developed. For example, the Center for Computational Biology at UCLA (http://www.cabranch.net) provides
'middleware' applications and software required to provide secure, Web-based access to the underlying computational and network resources, including the International Consortium for Brain Mapping (http://www.loni.ucla.edu/ICBM). At the same time, a number of initiatives worldwide are looking at the research and implementation challenges inherent to all the various organ systems, for example, the IUPS Physiome Project (http://www.physiome.org.nz) and the Virtual Physiological Human European Network of Excellence (http://www.vph-noe.eu).

The vast expansion in the use of the Internet has been instrumental in bringing together a growing number of Physiome centres. These centres provide databases on the functional aspects of biological systems, including the genome, molecular form and kinetics, and cell biology, up to complete functioning organ systems. The databases provide some of the raw information needed to develop models of physiological systems and to simulate whole organs. Data on the physiological functions of cell and tissue structures as well as whole organ systems are growing at dramatic rates, aided by technical advances, such as improved biological imaging techniques. Similarly, modelling resources and software are developing at a rate fast enough to enable the development of realistic computer models of whole organs to commence. At the cellular level, electrophysiological, excitation–contraction coupling, contractile and metabolic processes have been described and modelled mathematically. At the tissue level, the myocardial microstructure and its effects on the mechanical and electrical properties of the heart have been characterized. At the organ level, state-of-the-art finite element analysis methods have been developed to model the complex geometry, non-linear material properties and large deformations of the heart, to enable solution of the biophysical conservation laws linking stress, strain and energy expenditure.

Since multimodal imaging of both structure and function at multiple scales is undoubtedly an excellent technology set for exploring the function of organ systems, the establishment of large imaging databases is essential for the development and validation of these physiological models. Multidimensional image data provide the ability to customize biomechanical and physiological parameters to a particular patient’s anatomy and cardiac performance. Large population-based databases also enable statistical models of normal and pathological function to be developed, which in turn facilitates better tools for construction of computational models from image data.

An atlas is an alignment of data maps from different domains, either population (statistically) or individualized (subject specific), which enables querying of relations from multiple domains to construct ‘the big picture’. In the brain, for example, atlases have been successfully developed from spatial representations of brain structure and/or function, using registration and warping techniques to align maps between modalities and representations, and relying on indexing schemes and nomenclature systems for standardized classification. Atlases comprised of multiple data sources and many individuals provide the ability to describe shape and functional data with statistical and visual power. A computational cardiac atlas should map the structure and function of the heart across different domains, e.g. different scales of observation, multimodal information sources, across in silico and in vivo data and/or across patient populations. In this way, computational cardiac atlases integrate huge amounts of otherwise disconnected information to discover the patterns that represent their internal logic or relationships. In this article, we confine ourselves primarily to computational cardiac atlases as a methodology for: (a) analysing anatomical phenotypes across subject populations; (b) performing multimodal image analysis and fusion based on statistical structural constraints for diagnostic or prognostic purposes; and (c) deriving subject-specific physiological models, which could be used to link in vivo and in silico information about individuals and populations.

Cardiovascular imaging

Many imaging techniques exist to perform cardiovascular examinations (Goldin et al. 2000; Reeder et al. 2001). Ultrasound (US), single-photon emission computed tomography (SPECT), computed tomography (CT) and magnetic resonance imaging (MRI) are the most well-known and established techniques. However, many recent advances in hardware, contrast agents and postprocessing algorithms are empowering these methods by extending the frontiers of their applicability.

For instance, hardware improvements in MRI, CT and US nowadays allow faster imaging protocols, resulting in (near) real-time dynamic three-dimensional (3-D) imaging of the heart. This has been demonstrated with parallel MRI acquisition strategies (Sodickson & Manning, 1997; Sodickson, 2000; Pruessmann et al. 1999; Weiger et al. 2000), with multislice CT imaging (Taguchi & Aradate, 1998; Hu, 1999; Klingenstein-Regn et al. 1999, 2002) and with piezoelectric two-dimensional arrays or 3-D probe tracking systems in US (Lees, 2001; Fenster & Downey, 2000; Lange et al. 2001). Cardiac ultrasound still remains the most ubiquitous cardiac imaging modality, with applications at the bedside and during interventions. At the same time, it is the best modality in terms of temporal resolution and the only one able to capture specific features of cardiac dynamics. Albeit with lower temporal resolution, three-dimensional ultrasound has recently received substantial attention in cardiology, particularly in cardiac valve
diseases, which require the imaging of valvular dynamics in three dimensions.

Cardiac multidetector computed tomography (MDCT) has established itself as the modality for assessing the structure of the coronary tree in vivo with simultaneous acquisition of the dynamic anatomy of the whole heart and great vessels with great spatial detail (0.5 mm isotropic voxels). Unfortunately, this modality still involves substantial radiation, which makes it less suitable when longitudinal or follow-up scans need to be performed.

Cardiac MRI provides an abundant source of detailed, quantitative data on heart structure and function. Advantages of cardiac MRI include its non-invasive nature, well-tolerated and safe (non-ionizing) procedures, ability to modulate contrast in response to several mechanisms, and ability to provide high-quality functional information in any plane and any direction. Its 3-D tomographic nature allows excellent views of the entire heart, irrespective of cardiac orientation and cardiac chamber shape (Fig. 1). Cardiac MRI has provided detailed information on 3-D ventricular shape and geometry (Reichek, 1991; Pattynama et al. 1994), regional systolic (Young et al. 1994) and diastolic strain (Fonseca et al. 2004), material microstructure (Hsu et al. 1998; Scollan et al. 1998), blood flow (Kilner et al. 2000), perfusion (Panting et al. 2002) and viability (Kim et al. 2000; Wagner et al. 2003). It is considered to be the most accurate method for measurement of ventricular volumes and systolic function (Pattynama et al. 1994). The high precision and accuracy of cardiac MRI (Myerson et al. 2002; Bottini et al. 1995) has led to its increasing application worldwide in cardiac research trials and clinical practice.

The Society for Cardiovascular Magnetic Resonance (SCMR) teaching atlas (http://atlas.scmr.org), created in 1999 and updated in 2007, is an example of a single annotated case and consists of a comprehensive range of cardiac MR images of a healthy volunteer, including cine function images, myocardial tagging images, T1 weighted anatomical images and phase contrast flow images (Fig. 1).

Analysis of shape and motion

Analysis of the ~500 images which result from a typical functional study has been typically limited to global estimates of mass and volume, and qualitative evaluation of local wall motion. However, these images provide detailed information on regional wall motion during diastole and systole, which can be combined with other imaging or clinical data to yield greater understanding of underlying disease processes.

Model-based analysis tools (Fig. 2) allow the calculation of standard cardiac performance indices, such as left ventricular mass and volume, by efficient customization of a mathematical model to patient images (Young et al. 2000). However, they also allow quantitative parameterization of regional heart wall motion, in a way that facilitates statistical comparison of cases drawn from different patient populations (Augenstein & Young, 2001). The mathematical model also provides a mechanism for the integration and comparison of information from different imaging protocols, such as late gadolinium...
enhancement (Oshinski et al. 2001; Rehwald et al. 2002; Setser et al. 2003) and displacement encoding (Young & Axel, 1992; Young et al. 1995). For a review of work in this area, see Frangi et al. (2005).

In addition to the traditional mass and volume analysis, the mathematical model allows detailed evaluation of regional wall motion and shape characteristics, in relation to a standardized co-ordinate system. Figure 3 shows a bullseye map of regional wall thickness at end-systole, together with plots of wall thickness against time. The software enables users to interactively define a region of interest for wall thickening calculations. Figure 3B shows an example of remodelling in infarcted and remote zones in a patient 1 week and 3 months after myocardial infarction.

Another application of the combination of advanced cardiac imaging and statistical anatomical modelling is the evaluation and quantification of asynchronous contraction of the left ventricle (LV) with applications in planning and evaluating pacing treatments, such as cardiac resynchronization therapy (CRT). Figure 4 shows an anatomical model of the heart where the various nodes have been labelled according to the standard bullseye sectorization. Next to it, the time course of wall motion (WM, upper row) and wall thickening (WT, middle row) for the various circumferential sectors are displaced for the basal, medial and apical levels, respectively (in columns). The indices WM and WT attempt to quantify the effect of the passive and active forces acting on the myocardial wall. As shown by this figure, these parameters exhibit a dramatic difference between healthy volunteers and CRT candidates. The lower row shows how it is possible to combine the former indices in a WM versus WT plot, which facilitates the integration of the two pieces of information for better discrimination of patients and therefore may aid patient selection for CRT.

Population models

Model-based image analysis procedures provide a powerful mechanism for the fast, accurate assessment of cardiac data and facilitate biophysical analyses and standardized functional mapping procedures. Since the mathematical models employed for motion analysis are registered to the anatomy of the heart, they can be used to derive statistical descriptions of characteristic patterns of regional wall motion in health and disease. This leads to the identification of differences in the characteristic pattern of regional heart wall motion between disease or treatment groups.

However, the differences in regional wall motion parameters between groups are difficult to characterize...
succinctly, owing to their multidimensional nature. Many parameters are required to describe regional performance (including regional strain, rotation and displacement). One powerful technique is principal component analysis (PCA), which describes the major sources of variation within a multidimensional data set by decomposing the variability into a set of orthogonal components or ‘modes’ (Cootes et al. 1994). Thus, a database of models of heart shape and motion can be characterized by a set of orthogonal modes and their associated variance. The modes are ranked in order of highest to lowest variability, thereby showing which variations are most strongly present in the data and which variations can be neglected. This reduces the number of significant parameters by distinguishing the modes that truly differentiate the groups and eliminating modes that are insignificant. Given two such database distributions, describing different patient groups, statistical comparisons can then be made to determine the differences in shape and motion between the two groups. Similarly, given a new case, a comparison could be made with the database distributions to see which database best describes the patient’s cardiac performance.

Construction of cardiac atlases, comprising probabilistic maps of heart shape and motion in health and disease, is now an active area of research. Frangi et al. (2002) and Lotjonen et al. (2004) developed right and left ventricle statistical shape models. Ordas et al. (2007) have developed a whole heart computational atlas using registration-based techniques for anatomical correspondence estimation across the population. Perperidis et al. (2005) and Hoogendorn et al. (2007, 2008) described the construction of a four-dimensional (space and time) probabilistic atlas from cardiac MRI examinations. The information about statistical distributions can then be used to guide image analysis problems, such as segmentation of the heart from MR images, by allowing high-level information on the expected shape and motions of the heart to guide the segmentation problem. For example, Rueckert & Burger (1997) developed a method to maximize the posterior probability of obtaining a model, given an observed data set, based on the prior likelihood of obtaining the model from the historical population and the likelihood of obtaining the data, given the model. van Assen et al. (2006), in turn, have used high-level statistical anatomical constraints to recover cardiac models based on a sparse set of image cross-sections. Beg et al. (2004) developed a large deformation diffeomorphic metric mapping strategy to build statistical atlases from MRI. To date, although these methods have demonstrated their potential, they have been limited by the relatively small size of the databases available for training, which might therefore bias subsequent image analysis, particularly in pathological situations.

Figure 3. Wall thickness in all regions of the heart can be determined from the mathematical model

A bullseye plot of wall thickness in each region of the LV, with user-defined regions (arrows) allowing interactive calculation of wall thickness within a non-standard region. _B_ wall thickness plotted versus time in a patient at 1 week and 3 months after a first-time myocardial infarction, showing wall thinning in the infarct zone owing to remodelling, together with functional augmentation in the remote zone (Sutton & Sharpe, 2000).
Figure 4. Model-based indices of asynchronous contraction
The left-hand panel shows a diastolic frame of a cardiac MRI sequence where the left ventricle has been segmented through model-based image analysis. Overlaid on the model are the various sectors of a bullseye representation. The right-hand panels show contractility patterns of a healthy subject and a cardiac resynchronization therapy candidate. The upper row plots the wall motion (WM) against time, while the middle row provides the curves of wall thickening (WT) against time. The lower row plots WM versus WT, showing clearly distinct patterns in both subject groups, which might aid in patient selection for therapy (Ordas et al. 2006).
Parametric distribution models

By customizing mathematical models of the anatomy and function of the heart to individual cases, it is possible to construct parameter variation models describing the distribution of regional cardiac shape and function across patient subgroups. Cootes et al. (1994) pioneered the application of Point Distribution Models (PDM) in computer vision problems. Homologous landmarks (i.e. the points which are aligned to match corresponding features in the shape) were used to characterize shape and shape variations with the aid of a principal component analysis. Since mathematical models, represented by the model parameters, are a complete and efficient characterization of cardiac shape and motion, a principal component analysis of the cardiac shape and motion models can be formed.

For example, in R dimensions, a set of M parameters can be defined in homologous locations around the heart. Bezier control points can be used as the global finite element parameters, since the scales of these parameters are all the same (unlike, for example, cubic Hermite parameters). Scaling between hearts can be corrected by scaling the parameters with respect to the apex–base length of the model. The pose (rotation and translation) is registered with each model due to the definition of the cardiac co-ordinate system. A database of N shapes is constructed, each represented by a vector of global nodal parameters \(X_n \), \(n = 1, \ldots, N \), of length M. These parameters can then be used to construct a Parameter Distribution Model in the same manner as the traditional Point Distribution Models (Remme et al. 2005). The mean shape, \(X_m \), is:

\[
X_m = \frac{1}{N} \sum_{n=1}^{N} X_n
\]

The modes of variation about the mean can be found by forming an \(M \times N \) matrix of deviations from the mean:

\[
B = \begin{bmatrix} X_1 - X_m & X_2 - X_m & \cdots & X_N - X_m \end{bmatrix}
\]

from which the covariance matrix, \(C \), can be calculated: \(C = N^{-1}BB^T \). The eigenvalues and vectors of the covariance matrix can be found by singular value decomposition: \(C = QDQ^T \), where \(D \) is a diagonal matrix of eigenvalues and \(Q \) is an orthogonal matrix of eigenvectors. If the data are distributed normally, the eigenvectors are the variances of the multidimensional normal distribution, and the eigenvectors determine the modes associated with the corresponding variance. The eigenvectors of the covariance matrix corresponding to the largest eigenvalues describe the most significant modes of variation in the dataset. Typically, most of the variation can be explained by a small number of modes, \(K < \min(M, N) \), due to noise and redundancy in the dataset. In the following, we ignore the small modes of variation, so that the covariance matrix is then modeled as \(\hat{C} = Q_K \Lambda Q_K^T \), where \(\Lambda \) is a \(K \times K \) diagonal matrix and \(Q_K \) is an \(M \times K \) matrix of significant shape modes. Any shape represented by a parameter vector \(Y \) can then be approximated in the PDM by a weighted sum of the modes, \(\hat{Y} = X_m + Q_K b \), where \(b \) is a \((K \times 1) \) vector of weights, one for each mode. The modes are orthogonal, so \(Q_K^TQ_K = I(K \times K) \) and \(b = Q_K^T(Y - X_m) \) is the least squares solution to the problem of finding the closest model in the distribution to the given model \(Y \). We can generate new shapes by varying the weights \(b \) within suitable limits, which can be derived by examining the distributions of the values required to generate the database. If normal distributions are assumed, the logarithmic probability of obtaining a shape \(Y \) from the distribution is proportional to the Mahalanobis distance

\[
D_m^2 = (\hat{Y} - X_m)^T \hat{C}^{-1} (\hat{Y} - X_m) = (Q_K b)^T \Lambda^{-1} Q_K^T (Q_K b) = b^T \Lambda^{-1} b = \sum_{i=1}^{K} \lambda_i b_i^2
\]

where \(\lambda_i \) is the ith eigenvalue of \(C \).

The main modes of shape and motion variation can be plotted by looking at the range \(-2\sqrt{\lambda_i} \leq b_i \leq 2\sqrt{\lambda_i} \), i.e. two standard deviations about the mean, which should encompass 95% of the shape variation of that mode. The effect of these methods to detect regional wall motion abnormalities will be enhanced with the growth of such databases of normal and abnormal cases.

One of the largest-scale statistical cardiac atlases built so far has been based on multidetector computed tomography (MDCT) in a population of over 100 subjects and 15 phases of the cardiac cycle (Ordas et al. 2007; Fig. 5).

Clinical functional modes

Although the principal component analysis provides orthogonal (i.e. mathematically uncoupled) modes of deformation, the modes may not correspond to any intuitive or simple deformation. Figure 6A shows the mean values \(\pm 2 \) s.d. in the three modes showing the greatest shape variation in a small database of normal volunteers (Augenstein & Young, 2001). In this plot, both end-diastolic and end-systolic modes are included in each \(X_i \) parameter vector. The resulting models thus determine both the shape and the motion between end-diastole and end-systole. Clinically, these modes can be difficult to interpret, because they combine longitudinal with radial and torsional components. In an attempt to provide more clinically understandable modes of deformation, Remme et al. (2004) described a set of ‘clinical’ modes of variation.
and used these to characterize the differences between healthy volunteers and patients with type II diabetes. The deformation modes were chosen to decompose the deformation into clinically meaningful components, including apex–base shortening, wall thickening and ventricular torsion (Park et al. 1994; Remme et al. 2004). Figure 6B shows the definition of the modes of ventricular deformation, and Fig. 6C shows the distribution of the amount of each mode in a group of 15 healthy volunteers relative to a group of 30 patients with type II diabetes who had clinical evidence of diastolic dysfunction but normal systolic chamber function (Remme et al. 2004).

Related work is that of Suinesiaputra et al. (2009) where, instead of an a priori selection of modes based on clinical relevance to a specific disease, Independent Component Analysis (ICA) was used as a statistical method for selecting a shape base. Independent Component Analysis was shown to provide local support shape functions which, in addition, are independent from each other. This independence allows efficient estimation of the probability density function (PDF) of each parameter based on a training population of normal subjects. By propagating the PDFs of the ICA components to the spatial domain, one is able to make a local estimate of the probabilities of abnormal myocardial contraction (Fig. 7). The authors showed that areas of high probability of abnormal myocardial contraction corresponded to hyperenhancement in gadolinium-enhanced MR (Suinesiaputra et al. 2004).

Adapting population atlases to patient images

One of the beauties of statistical shape models is that they coherently unify the concepts of population atlases and model-based image analysis. In addition to providing a framework for parameterizing the mean anatomy and its variability, they also provide iterative schemes for progressively adapting the average atlas to a subject’s image by an alternating process of model feature finding in the images and model parameter regression from image evidence. A recent algorithmic overview of this methodology is provided in the book of Davies et al. (2008), while their applications in medical and cardiac imaging are overviewed by Lelieveldt et al. (2005) and Frangi et al. (2005).

A number of techniques are available to perform model-to-image adaptation within the statistical shape modelling context applied to cardiac image analysis. Here we focus primarily on fully 3-D and 3-D+t techniques. Lotjonen et al. (2004) proposed a 3-D statistical shape model of the ventricles and atria and used it for segmentation purposes. van Assen et al. (2008) presented a method which uses fuzzy-logic techniques to recognize boundary images in MRI and CT images. van Assen et al. (2006) proposed a technique, which allows for fitting the models to arbitrarily oriented image acquisition planes. This is particularly important in MRI and 3-D ultrasound imaging, where non-planar image acquisition planes are customary in certain protocols. Lekadir et al. (2007) propose a technique for handling outliers during the feature-finding step in

Figure 5. Whole-heart statistical atlas based on a population of about 100 subjects scanned with multidetector computed tomography, each over 15 time points in the cardiac cycle.

The right panel shows the overlay of the average model on the CT-based atlas. The left panel shows a 3D surface rendered version of the average whole-heart model (Ordas et al. 2007). Each model node is labelled based on the anatomical substructure it belongs to. The statistical model has a representation of the average cardiac anatomy as well as a parameterization of the principal components of anatomical variations in the population.
order to make the fitting robust to missing boundary evidence. Other variations on statistical shape models proposed in the literature are the work developed by Lorenz & von Berg (2006), von Berg & Lorenz (2007) and Ecabert et al. (2008).

One approach, outlined by Remme et al. (2005), shows how statistical parameter distribution models derived from tagged MRI data can be used to guide the reconstruction of motion from other imaging protocols, such as cine imaging. Myocardial strains estimated from tracking features in untagged images matched well with a mean difference of 0.1 ± 3.2 and 0.3 ± 3.0% in circumferential and longitudinal strains, respectively. The calculated apex–base twist angle at end-systole had a mean difference of 1.0 ± 2.3 deg. This shows that sparse feature tracking in conjunction with a PDM provides accurate reconstruction of LV deformation in normal subjects.

Tobon-Gomez et al. (2008) have recently proposed a strategy to train intensity features for statistical models based on modelling and simulating the physics of image acquisition. This significantly reduces the burden associated with manual contouring of training images and enables reuse of point distribution models built based on other imaging modalities. In this particular paper, point distribution models were obtained from MDCT but applied to the segmentation of gated SPECT images. Ordas et al. (2007) developed an anatomical population model which, owing to the labelling of each of its nodes into

Figure 6. Statistical analysis of heart morphology and kinematics

A, principal components of shape and motion showing mean (top) and first three modes ± 2 s.d. (Augenstein & Young, 2001). B, definition of nine clinical modes of heart deformation. C, distribution of amount of motion in each clinical mode in patients with type II diabetes (numbers) compared with normal volunteers (means ± s.d. shown as cross-hairs). Panel B reproduced from Remme et al. (2004; ©, 2004 IEEE).
anatomical subparts, lends itself to be restricted to the cardiac structures which fall within the region of interest of the target modality. Figure 8 shows how such a model can be applied to various imaging modalities. A number of tools are being developed to make these technologies accessible to the scientific community. One such tool is the Graphical Interface for Medical Image Analysis and Simulation (GIMIAS), available at www.gimias.org.

Automated atlas construction from large databases

Computational cardiac atlases comprising statistical shape models are an exciting avenue for the coherent performance of anatomical phenotyping of cardiac diseases through model-based image analysis and advanced spatio-temporal morphometrics (Cootes & Taylor, 2007). However, an inherent weakness is that potentially, their performance in all these applications depends heavily on the careful selection of the training population and the laborious atlas-building procedure. This usually involves concomitant manual annotation of the images by experts, which is subjective and labour intensive.

Over the last decade, a number of authors have worked on developing techniques for automatic atlas building. A number of methods have been devised and applied to the cardiac (Frangi et al. 2002; Lorenz & von Berg, 2006) and other domains (Brett & Taylor, 1999; Davies et al. 2002; Rueckert et al. 2003; Cootes et al. 2004) that enable automatic landmarking of databases of either surface or image description of objects. Furthermore, some recent work has combined such methods with grid computing techniques in databases of over a thousand volume samples, therefore demonstrating the feasibility of large-scale atlas construction (Ordas et al. 2007). Among the most important recent developments in statistical shape models are those that aim at building the statistical models directly on the volumetric image representation using non-rigid registration techniques. One of the challenges ahead is to develop both the methods and the infrastructure to build statistical models directly from clinical image repositories and for a selective subpopulation of subjects (e.g. normal subjects or those affected with a specific disease).

Figure 7. Three automated detection results (right panels) compared with the associated myocardial motion taken from MR image sequences (four frames from end-diastole to end-systole)
Grey shading in the rightmost column shows high probability of having an abnormal motion. White arrows in the end-systole images show corresponding regional areas of wall motion abnormality with the automated detection. Adapted from Suinesiaputra et al. (2009; ©, 2009 IEEE).
Multimodal fusion

Mathematical modelling of the heart enables registration and fusion of data from different imaging modalities and protocols. In one study, model-based methods for mapping regional strain and wall motion in relation to tissue characterization maps were developed and applied to a mouse model of reperfused myocardial infarction (Young et al. 2006). Magnetic resonance imaging tissue tagging was analysed in each short- and long-axis image using a semi-automated active contour process, and the 3-D motion reconstructed with the aid of the finite element model (Young et al. 1995), resulting in a dynamic model of LV deformation. The Lagrangian Green strain components between end-diastole and each subsequent time were calculated at specific finite element material points using standard methods of continuum mechanics (Fung, 1965). Previous validation experiments using a deformable silicone gel phantom have shown that this procedure produces accurate, unbiased estimates of displacement and shortening (Young et al. 1995).

Figure 8. Examples of mode-to-image fitting to various cardiac imaging modalities involving different fields of view

A shows model adaptation to MDCT; B shows adaptation to three-dimensional US; C demonstrates model fitting to left ventricular endocardial borders in MRI; and D shows model fitting to gated SPECT. One could conceive using the reconstructed models to define a common reference system for mapping the various imaging modalities so that interrelationships between structure and function can be established. Note that although the underlying model stays equivalent, the image appearance can be quite different. Note also how gaps and holes in image information (e.g. those coming from perfusion defects in SPECT) can be effectively handled by using statistical information on cardiac anatomy.
Infarcted regions, as defined by regions of late gadolinium enhancement, were outlined on each image in the short-axis stack (Fig. 9e and f). The image co-ordinates of the contours were then transformed into 3-D magnet co-ordinates using the 3-D location of the image planes. The magnet co-ordinates were then transformed into a bullseye plot of the left ventricle (Fig. 9g). A convex perimeter was manually drawn on the bullseye map so as to enclose the hyperenhancement contours (Fig. 9g). The bullseye co-ordinates of the perimeter were then converted to 3-D cardiac co-ordinates and projected in the transmural direction onto the mid-wall surface of the LV finite element model. This allowed the calculation of the 3-D infarct geometry in finite element material co-ordinates. The 3-D infarct geometry was fixed onto the dynamic finite element model at end-diastole, and allowed to deform with the beating model during systole and diastole (Fig. 9h).

Material points within the finite element model were assigned to regions relative to the 3-D infarct geometry as follows. Points within the 3-D infarct geometry were denoted ‘infarct’, points within 1.0 mm of the 3-D infarct geometry (but outside it) were denoted ‘adjacent’, and all other points were denoted ‘remote’. This procedure also allowed calculation of the percentage of myocardium in the infarct, adjacent and remote zones, respectively. Since the models were defined in a co-ordinate system aligned with each heart, a material point could be mapped onto the corresponding material point at each time point during remodelling.

Fusion of in vivo MRI tagging and ex vivo diffusion tensor magnetic resonance imaging (DTMRI) relates functional stain information with structural fibre orientation. DTMRI images the diffusion tensor and the direction of maximal water diffusion (the primary eigenvector) in each voxel of the DTMRI image directly relates to the myocardial fibre orientation. Free-form deformation methods (Fig. 10) have been developed which enable feature-based registration between image modalities (Lam et al. 2007).

Biomechanical analysis

Biophysiically based computational models of cardiac structure and function can be customized to individual patient images by optimizing the biophysical parameters underlying normal and pathological function. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions, and this process can be understood in terms of adaptation of underlying biophysical parameters. Computational models have been developed of heart geometry (Nielsen et al. 1991a; LeGrice et al. 2001), microstructure (LeGrice et al. 1995, 1997; Hooks et al. 2008).

Figure 9. Flow chart of the modelling and data fusion process
Reproduced with permission from Young et al. (2006).
2002), material properties (Hunter & Smaill, 1988; Nielsen et al. 1991b; Dokos et al. 2002; Schmid et al. 2008), stress (Hunter et al. 1996, 1998; Costa et al. 1996a,b; Nash & Hunter, 2001), perfusion (Smith et al. 2000, 2002), cellular electromechanics (Nickerson et al. 2001) and activation (Hunter et al. 1996; Bradley et al. 2000; Mulquiney et al. 2001; Hooks et al. 2002). Cellular mechanisms, including membrane channel characteristics, excitation–contraction coupling and cross-bridge cycling dynamics, can be incorporated into a continuum description of the whole organ. Image data can be used to optimize the parameters of such models, for example determining the material stiffness of the tissue from knowledge of tissue deformation and boundary conditions.

Augenstein et al. (2006) developed a method for in vitro identification of material parameters from MRI tissue tagging and DTMRI. These methods were extended to the in vivo situation by Wang et al. (2008). Given information on the geometry and deformation (from MRI tissue tagging), and muscle microstructure (DTMRI) pressure boundary conditions from time-matched recordings, parameters of an integrated finite element model simulation of LV mechanics can be optimized to the data. The observed LV deformation obtained from tagged MRI data provides the necessary kinematic data required to validate the model and estimate the constitutive properties of the passive myocardium (Fig. 11). These integrated physiological models will allow more insight into the mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions.

Electrophysiological analysis

As for the individualization of biomechanical models, subject-specific models of cardiac electrophysiology and cardiac electromechanics can be constructed by combining anatomical models derived from structural imaging, and tissue distributions and their properties as obtained from functional imaging. In some cases, the results from these simulations can be compared or informed with measurements obtained through dynamic imaging or body surface or intracavitary potential mapping. Ultimately, the goal of such combination of imaging and electrophysiological/electromechanical models is to extend the diagnostic capabilities of the present imaging systems with predictive capacity for variables which usually require invasive electrophysiological mapping procedures. In addition, this predictive capacity will contribute to the interventional planning and to the customization and optimization of interventional procedures (Rhode et al. 2005) such as radio frequency ablation (Sermesant et al. 2003, 2005; Reumann et al. 2008; Plank et al. 2008) or cardiac resynchronization therapy (CRT; Reumann et al. 2007; Sermesant et al. 2008; Romero et al. 2008).

The present available electrophysiological models, ranging from single cell (Noble & Rudy, 2001; ten Tusscher et al. 2004; Fenton et al. 2005; ten Tusscher & Panfilov 2006) to tissue level (Henriquez & Papazoglou 1996; Pollard & Barr, 1991; Pollard et al. 1993) and organ level (Noble, 2004, 2007; Trayanova, 2006; Vigmond et al. 2008a), have proved sufficiently accurate to model complex processes, including ion kinetics in healthy and pathological conditions. In many cases, cardiac modelling can be used to investigate phenomena such as drug effects on the electromechanical response and arrhythmogenesis (Henriquez & Papazoglou, 1996; Packer, 2004; Rodriguez et al. 2005), which are difficult to study in vivo.

When the main goal of such modelling approaches is their application in diagnostic or treatment planning settings, it is essential to be able to personalize them with patient-specific data, for instance, by data assimilation techniques (Sermesant et al. 2006). This has been shown, for instance, in the influence of a number of parameters in the activation sequence of the paced heart, such as the geometry of the heart (e.g. induced by specific pathologies such as dilated cardiomyopathies or cardiac hypertrophy) or specific assumptions in the Purkinje System model (Vigmond et al. 2008a,b). Recently, these effects have been investigated by analysing and comparing the activation pattern in biventricularly paced hearts, both in normal hearts and in hypertrophic and dilated hearts.

Figure 10. Free form deformation registration between DTMRI and tagged MRI

Left panels shows that host mesh fitting involved minimizing the distance between landmark points (DTI segmented contours, shaded pale grey) and target points (the projections of DTMRI contours onto the LV model, shaded dark grey) using a simple 8-element tri-Cubic Hermite host mesh. Right panel shows the deformed host mesh with transformed DTMRI surface data.
The main conclusion of this work is that pathology-induced anatomical distortions can provoke important changes in the activation sequences and thus they need to be accounted for when planning the positioning of pacing leads (Fig. 12). Therefore, therapy optimization requires the use of advanced image analysis and simulation tools either on a per subject basis or, at least, performing population studies in silico. Such studies can lead to the identification of interventional guidelines or treatment criteria that minimize the effect of subject-specific variations, thus optimizing treatment outcome at a population level.

Conclusions

The creation and application of statistical atlases is a mature technology with some very promising results in the cardiac domain. Cardiac atlases provide a consistent framework for phenotyping disease in populations and individuals by parameterizing morphodynamic features, both in terms of average patterns and their population variability. A number of methods exist for automated atlas building and for their instantiation in multimodal imaging. The trend is towards unified model-to-image instantiation mechanisms that work across imaging modalities while sharing a common shape model to...
act as a common co-ordinate system. Among the applications of such models are a number of advanced image analysis tasks, as well as their integration into a computational physiology framework, yielding biomechanical or electrophysiological information.

Future work will include further automation and scalability of model-building procedures so that they can be used in large-scale image databases of the order of tens of thousands of images. Creation and curation of large-scale annotated reference databases will require emerging standards, such as FieldML (http://www.physiome.org.nz/xml_languages/fieldml). Incorporation into the statistical framework of physical and physiological constraints will facilitate or regularize subsequent exploitation in simulation applications. Incorporation of critical cardiac structures, such as the Purkinje system, fibre orientation and the coronary artery tree, will facilitate further biophysical modelling. Computational physiology models provide an exciting avenue for the integration and fusion of multimodal imaging and signals through physics- and physiology-based domain knowledge, which usually is preceded by more conventional image and signal registration steps to bring all this information into a coherent spatio-temporal co-ordinate system. We anticipate that an increased cross-fertilization between the imaging, modelling and simulation communities, in close dialogue with concrete diagnostic and interventional problems, will lead to focused and translational use of all these technologies and thus to a more effective exploitation of the currently available clinical data. Finally, the possibility of defining population subgroups, both in the atlas building and in the statistical modelling stages, may enable automatic identification of clusters of cardiac morphological patterns (e.g. resulting from changes in the topological structure of the parts) so that they can be modelled with non-linear statistical methods.

References

Figure 12. Activation of the hypertrophic and dilated models from a biventricular pacemaker with simultaneous activation of the pacemaker leads
A and B correspond to the hypertrophic and C and D to the dilated model. The activations are displayed 40 (A and C) and 60 ms (B and D) after the CRT lead stimulus. Colours represent the transmembrane potential at each point of the mesh. The inset for each panel depicts the progress of the Purkinje system activation at the same time points. All the views are basal. Image courtesy of D. Romero and R. Sebastian, based on the CARP Software Package (Vigmond et al. 2008).

Le Grice IJ, Smalll BH, Chai LZ, Edgar SG, Gavin JB & Hunter PJ (1995). Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol 269, H571–H582.

Rodriguez B, Li L, Eason JC, Efimov IR & Trayanova NA (2005). Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. *Circ Res 97*, 168–175.

Acknowledgements

A.A.Y. would like to acknowledge B. R. Cowan of the University of Auckland Center for Advanced MRI, C. G. Fonseca of the University of California Los Angeles, and funding from the Health Research Council of New Zealand and the National Institutes of Health (RO1HL087773) USA. A.F.F. would like to acknowledge B. H. Bijnens, C. Butakoff, C. Hoogendoorn, S. Ordas, D. Romero, R. Sebastián, F. M. Sukno and C. Tobón-Gómez from his laboratory for some of the figures in this manuscript and for fruitful discussions. Funding from the European Commission (euHeart Project, www.euheart.eu) and the Centro para el Desarrollo Tecnológico Industrial from Spanish Ministry of Innovation and Science (CDTEAM Project, www.cdteam.org) are greatly acknowledged.