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Abstract / Resumen

Abstract. This thesis addresses the growing problem of osteoporosis-related
fractures. Osteoporosis is a bone disease characterized by a degradation
of the bone structure which can eventually lead to fractures. The disease
progresses with age and with our rapidly aging society will become an in-
creasingly important a public health problem. Currently, areal Bone Min-
eral Density (BMD) measurements from Dual-energy X-ray Absorptiometry
(DXA) remains the standard modality for the diagnosis of osteoporosis and
assessing the risk of fracture. These measurements, however, are limited
descriptors considering the 3D shape and spatial distribution of bone largely
determines its strength.

In this thesis a method was developed to reconstruct both the 3D shape
and the BMD distribution from standard clinical DXA images. The pro-
posed method incorporates a statistical model built from a large dataset of
Quantitative Computed Tomography (QCT) scans which encodes the varia-
tions in shape and spatial distribution of the bone. Using a 3D-2D intensity
based registration technique an instance of the model is found such that the
projection of the model corresponds with the DXA image.

The method was evaluated for its ability to reconstruct the proximal
femur from a single DXA image. The resulting parameters of the recon-
structions were subsequently evaluated for their hip fracture discrimination
ability. The reconstruction method was finally extended to the reconstruc-
tion of the lumbar vertebrae from anteroposterior and lateral DXA, thereby
incorporating a multi-object and multi-view approach.

The techniques presented in this thesis can potentially improve the frac-
ture risk estimation accuracy over current clinical practice while maintaining
DXA as the standard modality.

Resumen. Esta tesis aborda el problema creciente de fracturas asociadas a
osteoporosis. La osteoporosis es una enfermedad de los huesos caracterizada
por una degradación de la estructura ósea que puede conducir eventualmente
a fracturas. La enfermedad progresa con la edad y en nuestra sociedad, que
envejece rápidamente, se convierte en un problema de salud pública cada
vez más importante. En la actualidad, la medición de la Densidad Mineral
Ósea (DMO) por unidad de área hecha con DXA sigue siendo la modalidad
estándar para el diagnóstico de la osteoporosis y la evaluación del riesgo de
fractura. Estas mediciones, sin embargo, son descriptores limitados teniendo
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en cuenta que la forma tridimensional y la distribución espacial de los huesos
determinan en gran medida su fuerza.

En esta tesis se desarrolló un método para reconstruir tanto la forma 3D
como la distribución de la DMO a partir de imágenes cĺınicas estándar de
DXA. El método propuesto incorpora un modelo estad́ıstico construido a
partir de una gran base de datos de imágenes de QCT, el cual codifica plas
variaciones en la forma y en la distribución espacial del hueso. Mediante el
uso de una técnica de registro 3D-2D basada en intensidades, una instancia
del modelo es hallada de manera que la proyección del modelo se corresponde
con la imagen de DXA.

El método fue evaluado por su capacidad para reconstruir la parte prox-
imal del fémur a partir de una sola imagen de DXA. Los parámetros resul-
tantes de las reconstrucciones fueron evaluados posteriormente por su capaci-
dad para discriminar una fractura de cadera. El método de reconstrucción
se extendió finalmente a la reconstrucción de las vértebras lumbares a partir
de DXA anteroposterior y lateral, de ese modo incorporando al método un
enfoque multi-objeto y multi-vista.

Las técnicas presentadas en esta tesis pueden potencialmente mejorar la
precisión en la estimación del riesgo de fractura respecto a la estimación que
ofrece la práctica cĺınica actual, a la vez que permiten mantener la DXA
como la modalidad estándar.
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This chapter describes the context within which this thesis is presented.
The following chapters are based on three distinct publications. The final
section presents the conclusions related to this thesis and the possible future
directions in extension of this work.

1.1 Osteoporotic Fractures

Osteoporosis is a systemic skeletal disease characterized by low bone mass
and micro-architectural deterioration of bone tissue, leading to enhanced
bone fragility and a consequent increase in the risk of fracture [111]. Os-
teoporotic fractures predominantly occur at the proximal femur and the
vertebrae. For the year 2000, there were an estimated 9 million new osteo-
porotic fractures, of which 1.6 million were at the proximal femur and 1.4
million were clinical vertebral fractures [61]. The combined lifetime risk for
osteoporotic fractures is around 40%. Although the majority of vertebral
fractures remain undiagnosed, they can potentially result in great discom-
fort and a diminished quality of life. Moreover, Osteoporosis and associated
fractures are an important cause of morbidity and mortality. Up to 20%
of patients die in the first year following a hip fracture [19][93], while only
about one-third of survivors regain their original level of function [23][111].

Osteoporosis and the subsequent fractures are most common among post-
menopausal woman. Approximately 1 in 3 women over 50 will suffer a frac-
ture due to osteoporosis whereas for men this is 1 in 5 [84][83]. The incidence
of osteoporotic fractures increases with age and with the rapid aging of our
society, osteoporosis is becoming one of the most prevalent health problems.
Moreover, osteoporotic fractures are associated with a high economic bur-
den. The International Osteoporosis Foundation (IOF) estimates the costs
associated with treating osteoporotic fractures in the USA, Canada and Eu-
rope at approximately 48 billion USD [34] which is forecast to increase to
131.5 billion USD by 2050 [77]. Osteoporosis also results in huge indirect
costs that are rarely calculated and which are probably at least 20% of the
direct costs [77].

1.2 Current clinical practice

Osteoporosis is currently diagnosed from Dual-energy X-ray Absorptiometry
(DXA). DXA measures the attenuation of X-ray beams with a high and
low energy through the body. The attenuation depends on the energy of
the X-rays as well as the density of the tissue. By assuming the body is
composed out of two types of tissue (bone mineral and soft tissue), the
Bone Mineral Content (BMC) can be discriminated from the soft tissue by
analyzing the attenuation of the high and low energy X-ray beams. In this
way a projection image of the BMC is acquired. The so called areal Bone
Mineral Density (aBMD) is subsequently measured at several locations of
the proximal femur or spine. To provide a diagnosis, a T-score is computed
relating to the number of standard deviations above or below the mean for
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Figure 1.1: CT slices of the proximal femur (top) and lumbar vertebrae (bottom) of a
healthy (left) and an osteoporotic patient (right).

a population of healthy young adults (at the age of 35) of the same sex and
ethnicity as the patient. The World Health Organization (WHO) classifies
patients as healthy when the T-score of the femoral neck is greater than -1,
osteopenic when the T-score is between -1 and -2.5, osteoporotic when it is
less than -2.5 and severe (established) osteoporosis when the T-score is less
than -2.5 and the patient has previously suffered an osteoporotic fractures.

The Bone Mineral Density (BMD) has been shown to be strongly related
to fracture incidence. A 10% loss of bone mass in the vertebrae can double
the risk of vertebral fractures, and similarly, a 10% loss of bone mass in the
hip can result in a 2.5 times greater risk of hip fracture [66]. However, There
is growing evidence that structural parameters are critical in determining
the bone strength and thus its resistance to fracture [81].

Towards this end Hip Structural Analysis (HSA) has been developed to
extract geometric measurements from DXA projections [6] [116]. In addition,
Vertebral Fractures Assessment (VFA) examines the lateral DXA images
of the spine to screen for previous vertebral fractures which also suggests
the presence of osteoporosis. However, these measurements from planar
radiographs are still limited descriptors of the complex bone shapes.

A 3D representation of the bone can be acquired by Quantitative Com-
puted Tomography (QCT). Here, a reference density phantom is included
within a regular Computed Tomography (CT) acquisition to convert the
Hounsfield units to corresponding BMD values. Several parameters derived
from QCT, such as trabecular and cortical BMD, the volumetric Bone Min-
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Figure 1.2: A picture of GE Healthcare’s Lunar iDXA scanner (GE Healthcare, Madi-
son, WI, USA) (top) with a screenshot of the software platform, enCORE and GE Health-
care’s Optima CT660 CT System (bottom) with the Mindways calibration phantom and
software to perform a QCT analysis (Mindways Software Inc., Austin, TX, United States).

eral Density (vBMD) at specific regions, the neck axis length and the cor-
tical thickness, have been shown to be strongly correlated with the femoral
strength and may improve the fracture risk estimation over DXA derived
areal BMD alone [12]. This medical imaging technique, however, is asso-
ciated with high financial costs, a high radiation dose for the patient and
consequently is not used in clinical routine for osteoporosis diagnosis or frac-
ture risk assessment.

Recently Quantitative Ultrasound (QU) [45] has received a great deal of
interest as a bone density measurement tool. It has the advantage of being
relatively cheap and does not administer the patient to radiation. However,
as of yet the precision of this device does not reach what is possible using
DXA or QCT.

For the above mentioned reasons DXA remains the current clinical stan-
dard in osteoporosis diagnosis and fracture risk assessment.
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1.3 Aim and objectives of this thesis

The aim of this thesis is to work towards the development of a fracture risk
estimation method for the proximal femur and vertebrae from low radiation
dose DXA images currently used in clinical routine, while taking into account
the 3D shape and spatial distribution of the bone. Towards this goal three
distinct problems have been addressed and investigated:

• Reconstruction of both the 3D bone shape and 3D BMD distribution
of the proximal femur from a single DXA image: This includes the
development of a statistical model of the 3D shape and BMD distri-
bution and a method for its construction from a large dataset of QCT
scans. In addition, an intensity based 3D-2D registration method is
developed to register the statistical model onto DXA resulting in the
3D reconstruction. The accuracy of the reconstruction method is eval-
uated on real in vivo DXA images where both the reconstructed shape
and the reconstructed BMD distribution is evaluated with respect to
the same subject QCT scan.

• Hip Fracture Discrimination from Dual-energy X-ray Absorptiometry
by Statistical Model Registration: The parameters of the statistical
model resulting from the registration onto DXA are evaluated for their
ability to discriminate between fracture patients and a control group.

• 3D Reconstruction of the Lumbar Vertebrae from Anteroposterior and
Lateral Dual-energy X-ray Absorptiometry: This requires the exten-
sion of the reconstruction method to multi-view and a multi-object
approach to deal with the superimposition of the vertebrae on the ra-
diographs.
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This chapter presents a method to reconstruct both the 3D bone shape and
BMD distribution of the proximal femur from a single DXA image used in
clinical routine. A statistical model of the combined shape and BMD distri-
bution is presented, together with a method for its construction from a set
of QCT scans. A reconstruction is acquired in an intensity based 3D-2D reg-
istration process whereby an instance of the model is found that maximizes
the similarity between its projection and the DXA image. Reconstruction
experiments were performed on the DXA images of 30 subjects, with a model
constructed from a database of QCT scans of 85 subjects. The accuracy was
evaluated by comparing the reconstructions with the same subject QCT
scans.

The content of this chapter is adapted from the following publication:

T. Whitmarsh, L. Humbert, M. De Craene, L.M. Del Rio Barquero, A.F.
Frangi, Reconstructing the 3D Shape and Bone Mineral Density Distribu-
tion of the Proximal Femur from Dual-energy X-ray Absorptiometry. IEEE
Transactions on Medical Imaging, vol. 30(12), pp. 2101-14, 2011.
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2.1 Introduction

Femur fractures due to osteoporosis account for significant morbidity, dis-
ability, decreased quality of life, mortality and high economic cost for society.
Up to 20% of patients die in the first year following hip fracture and in the
USA approximately 20% of hip fracture patients require long-term care in
a nursing home [111]. The lifetime risk of hip fracture lies between 14%
and 20% for caucasian women in Europe and the USA [111]. Osteoporosis
predominantly affects post menopause women and thus in most countries
the fracture rates among men are substantially lower. Due to the increasing
life expectancy, the WHO estimated that the number of osteoporotic femur
fractures in the world will have increased from 1.3-1.7 million in 1999 to
almost 3 million by 2025 [111]. This indicates the importance of an accurate
diagnosis of osteoporosis and fracture risk assessment.

Osteoporosis is currently diagnosed from DXA, which results in an image
of the projected BMD (g/cm2). To provide a diagnose, a T-score is computed
relating to the number of standard deviations above or below the mean for
a population of healthy adults of the same sex and ethnicity as the patient.

Currently the FRAX R©tool [1] is in development by the WHO to evaluate
the fracture risk of patients by combining clinical risk factors with the BMD
at the femur neck. However, in current clinical practice, DXA derived BMD
remains the common measure for diagnosis.

Although DXA gives an accurate planar representation of the BMD, it
is limited by its two-dimensionality, and therefore does not represent the 3D
shape or spatial distribution of the BMD. To overcome this limitation, a 3D
representation of the femur bone with BMD distribution can be acquired by
Quantitative Computed Tomography (QCT). For QCT, a calibration phan-
tom is used to relate the Hounsfield unit of the CT scan to a BMD (mg/cm3).
Several parameters derived from QCT, such as trabecular and cortical BMD,
the volumetric BMD (vBMD) at specific regions, the neck axis length and
the cortical thickness, have been shown to be strongly correlated with the
femur strength [21][70] and may better explain failure load variance [11] and
improve the fracture risk estimation over DXA derived areal BMD alone
[12]. This medical imaging technique, however, is associated with high fi-
nancial costs, a high radiation dose for the patient and consequently is not
used in clinical routine for osteoporosis diagnosis or fracture risk assessment.
Therefore, recent work has focused on acquiring a 3D reconstruction from
planar images by incorporating a priori information in the form of a sta-
tistical model. This could potentially improve upon current standards in
osteoporosis diagnosis and fracture risk assessment while keeping DXA as
the standard modality.

Already a lot of research has been done in reconstructing the shape of
bones from planar x-ray images [72][5]. Few, however, take on the challenge
of performing a reconstruction from the rather noisy DXA images. In Kolta
et al. [67], a generic model is deformed to match the contours of two DXA
images. Langton et al. [71] proposed a similar method, reconstructing the
shape from a single DXA image by deforming an average template model.
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Other approaches incorporate a statistical model describing the 3D shape
variations of a population in order to get a probabilistic reconstruction. A
contour matching method can then be incorporated to reconstruct the femur
shape from a sparse set of projections [69][119][33][3][118]. These methods,
however, are limited to the reconstruction of the shape, without addressing
the reconstruction of the BMD distribution.

Various authors proposed models containing information about the BMD
distribution. Yao and Taylor [114] proposed a statistical model described
by a tetrahedral mesh with Bernstein polynomial density functions in the
tetrahedrals. Both Belenguer-Querol et al. [95] and Fritscher et al. [37]
developed a combined shape and density model where a statistical analy-
sis was performed onto the intensities in the volumes and the displacement
fields resulting from non-rigid registrations. The work of Fritscher et al. [37]
was later adapted by Schuler et al. [101] by performing non-rigid registra-
tions on Euclidean distance maps, thereby maintaining the spatial density
distribution inside the bone.

In Steininger et al. [103], this model was used in a registration process
to extract the contour from a single X-ray image. A similar model was
used by Hurvitz et al. [57] to reconstruct the full shape of the proximal
femur. Here, the advantage of using the density distribution is in establishing
correspondences on other places than only the contours. But, still no attempt
was made to reconstruct the BMD distribution from a DXA image.

Using a statistical model containing information about the spacial distri-
bution of the bone densities, a reconstruction from DXA can be acquired by
an intensity based registration process, given the fact that DXA represents a
projection of the bone mineral densities. For an overview of intensity based
3D-2D registration techniques we would like to refer the reader to Markelj
et al. [79].

In Ahmad et al. [2], a volumetric image of the bone densities is re-
constructed from four DXA images. An average tetrahedral femur model
containing shape and density information was constructed from a set of man-
ually segmented QCT scans. Deformation fields were then calculated from
this average femur model to each subjects tetrahedral model and principal
component analysis was performed on the deformation fields to calculate the
principal modes of variation. Following the work of Yao and Taylor [113]
and Sadowsky et al. [98], in an iterative registration process, the resulting
statistical model is registered onto four DXA images. At each iteration, the
pose (location and orientation in space), scale, and modes of variation of the
statistical model are varied to minimize the difference between the simulated
DXA images from projections of the model and the real DXA images. Mu-
tual information was used as the similarity measure and thus the resulting
volume is adjusted in a post processing according to the densities of one of
the DXA images. The issues concerning the use of in-vivo data, in particular
with regards to the overlap of the pelvis with the femur head in the DXA
images, remain unaddressed in this paper. More importantly, this work re-
lies on multiple views generated by a C-arm DXA device. These devices are
still not widely used in clinical routine as opposed to single view devices.
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This work therefore presents and evaluates a method to automatically
reconstruct both the 3D shape and BMD distribution of the proximal fe-
mur from a single 2D DXA image. In earlier work [109], this method was
evaluated on simulated DXA images using an in-vitro QCT dataset. This
work extends the method to an in-vivo context using true DXA images. A
statistical model of the combined 3D shape and BMD distribution is first
constructed from an in-vivo database of QCT scans of the proximal femur.
In an intensity based 3D-2D registration process, an instance of the model
is found whereby the similarity between its projection and the DXA image
is maximized. Finally, the accuracy of the method is evaluated in-vivo by
performing reconstruction experiments on a set of DXA images of patients,
and comparing the reconstructed shape and BMD distribution with the same
subject QCT scans.

2.2 Methods

The reconstruction method proposed here uses a statistical model of the com-
bined shape and density distribution. This model is first constructed from
a large dataset of QCT scans (Section 2.2.1). The reconstruction method
then incorporates an automatic intensity based 3D-2D registration process
whereby an instance of the model is found that maximizes the similarity
between the DXA image and the projection of the model instance (Section
2.2.2). The reconstruction accuracy is evaluated by comparing the recon-
structions from 30 DXA images with the same subject QCT scans (Section
2.2.3).

2.2.1 Statistical model

The statistical model is based on Active Appearance Models developed by
Cootes et al. [27] and combines statistical information about the shape and
BMD distribution. First, a shape model is built following the work of Frangi
et al. [35] using non-rigid registrations of the QCT volumes onto a segmented
reference subject (Section 2.2.1). The individual QCT volumes are then
deformed to the mean shape and a density model is built from the resulting
volumes (Section 2.2.1). Finally, to capture the relation between the shape
and density distribution, both are combined into a single statistical model
(Section 2.2.1). This combined model encodes the variations of shape and
BMD distribution of the input population to be used in the reconstruction
process.

Data

A database of CT scans of 115 patients (42 male and 73 female with an
average age of 55±12 years was collected at CETIR Grup Mèdic (CDP Unit
Esplugues, Esplugues de Llobregat, Barcelona, Spain). The patients con-
sisted of volunteers which required densitometry scans for body composition
analysis. Subjects were only rejected in case the scans were unusable, for
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Figure 2.1: Preprocessing of the QCT volumes. A slice of the QCT volume with the
manually defined sphere and cone shape defining the region of the pelvis to be removed
from the volume (left), and the same slice with the pelvis area removed and a thresholding
applied to remove the soft tissue structures (right).

instance due to the presence of an implant, to ensure the largest possible
dataset to construct the statistical model.

The CT scans were obtained using the Philips Gemini GXL 16 system
(Philips Healthcare, Best, The Netherlands) with a pixel spacing ranging
from 0.68 × 0.68mm to 0.96 × 0.96mm and a slice thickness between 0.5
and 1.0mm. A calibration phantom (Mindways Software Inc., Austin, TX,
United States) was placed underneath the patient to relate the Hounsfield
units of the CT scan to a BMD. The linear regression between the known
phantom densities and the intensities of the phantom in the CT scan gives an
average correlation coefficient of 0.9998 indicating an accurate calibration.

Together with the CT scan, a DXA image was acquired of every subject
using the GE Healthcare’s Lunar iDXA scanner (GE Healthcare, Madison,
WI, USA), which generates an image with a pixel spacing of 0.3×0.25mm. In
addition, the femur neck areal BMD was extracted from the DXA image to
assess the bone quality. Each subject was subsequently classified as normal,
osteopenic or osteoporotic using the T-score of the femur neck areal BMD
conform the WHO criteria. This classifies patients as healthy when the T-
score is greater than -1, osteopenic when the T-score is between -1 and -2.5
and osteoporotic when it is less than -2.5. Thus, our dataset contains 65
healthy, 43 osteopenic and 7 osteoporotic subjects with and average femur
neck areal BMD of 0.9± 0.1g/cm2 ranging between 0.7 and 1.4g/cm2.

Data preprocessing

The model proposed in this work is constructed by an intensity based reg-
istration process using QCT scans of the proximal femur. Performing reg-
istrations of the proximal femur is a particularly difficult task because of
the close proximity of the femur head with the pelvis [91]. This can result
in faulty registrations whereby the femur head registers onto the acetabu-
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Figure 2.2: Shape model construction pipeline.

lum. To overcome this problem, a preprocessing step is introduced which
removes the pelvis from the volume by taking advantage of the spherical
characteristic of the femur head (Fig. 2.1).

The point in the center of the femur head and another point on the surface
of the femur head lying in the extension of the femur neck are manually
determined. These two points define the center and radius of a sphere. In
addition, the same points, together with a predefined angle, define the apex
and axis of a cone. Using these two regions, the pelvis area can be removed.

To prevent the soft tissue structures from interfering with the registration
process, a thresholding set to 60mg/cm3 is applied to all volumes resulting
in an image containing only the bone.

Shape model construction

The intensity based registration process to construct the shape model is
depicted in Fig. 2.2. All registration algorithms used in this work were
implemented using the Insight Segmentation and Registration Toolkit (ITK)
[115]. The registrations are performed on the preprocessed volumes where
the pelvis area and soft tissue structures are removed (Section 2.2.1).

A reference volume is chosen manually based on the smoothness of its
bone surface, i.e., not having any unusual bumps or dents. The femur bone
in this reference volume is subsequently segmented using ITK-SNAP [117],
which provides a semi-automatic segmentation using active contour methods.

To reduce the computation load of the registrations, a mask is generated
of the bone boundary (boundary mask) by dilating the segmentation and
subtracting an image mask of the erosion. In addition, a mesh is extracted
from the segmentation onto which some additional processing is done to
generate a smooth regular surface mesh consisting of 7147 vertices.

Every volume in the dataset is first registered onto the reference volume
by a similarity registration (translation, rotation and uniform scaling). This
uses an intensity based registration process where the Mutual Information
(MI) similarity measure is optimized using Powell’s multi-dimensional opti-
mization method [94].
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This is followed by a multi-scale intensity based Thin Plate Spline (TPS)
registration where the landmarks on the reference volume are defined by the
corresponding surface mesh. In an intensity based registration process, the
positions of the landmarks on the target volume are found which defines a
TPS transformation that, when applied to the target volume, maximized the
similarity with the reference. This part of the registration process is similar
to Meyer et al. [85] where a probabilistic atlas of a brain is constructed by
mapping a Magnetic Resonance Imaging scan of each subject to an atlas
using TPS registrations.

The TPS registration is incorporated in a multi-scale registration scheme
whereby the result of each registration initializes the registration of the
higher resolution. The different resolutions are generated by decimating the
reference mesh. Here the number of triangles are reduced using the quadric
error metric outlined in Hoppe [53]. Three levels of detail of approximately
50, 100 and 200 control points were used. The final registration using the
decimation of 200 control points was applied to the original detailed surface
mesh. This results in a detailed surface mesh for all similarity-aligned vol-
umes with a point correspondence between them (individual shapes), which
are used to generate the shape model.

In this work an implementation of the TPS transformation is used, which
allows for the computation of the derivative [14] and can thus be used in
conjunction with the L-BFGS-B optimizer [122]. For the similarity measure
MI is used, which is extended by a regularization term as explained in the
following paragraph.

Similarity measure for TPS registration. Without constraining the move-
ment of the TPS control points, they can drift (e.g. along the shaft) and
altogether reduce the correspondence accuracy between subjects. To avoid
this, Mattes Mutual Information metric [80] was extended by a regulariza-
tion term. The mesh is modeled as a spring system whereby each edge of the
mesh is defined as a spring [78]. The landmark displacements p will result
in a stretching or compression for each edge e of the mesh M , which defines
a spring energy E:

E(p) =
λ

n

∑

e∈M

(

‖e(p)‖ − ‖e‖

‖e‖

)2

. (2.1)

Here, n is the number of edges, ‖e‖ denotes the length (mm) of the edge in
the reference mesh and ‖e(p)‖ the length (mm) of the corresponding edge
resulting from the displacements p. In addition, a weight factor λ determines
the stiffness of the springs, which is given a value of 5. This energy E is added
to the Mutual Information measure MI as a penalty value.

The optimization problem to find the landmark displacements p, which
defines the TPS transformation T that maximizes the similarity between the
reference image Iref and the target image Itarget, can now be formulated as:

argmin
p

(−MI(Iref , Itarget ◦ T (p)) + E(p)). (2.2)
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Figure 2.3: Boxplot of the displacements of the reference shape vertices resulting from
the iterative updating process in the model construction pipeline for 5 iterations. Each
iteration, the average shape was calculated and for each vertex the displacement with
respect to the previous reference shape was calculated.

Iterative update. In order to remove some of the bias introduced through
the manual reference selection, this registration process is iterated whereby
in each iteration the reference volume (together with the mask) is deformed
to the mean shape by means of a TPS transformation (Fig. 2.2).

Some previous work on statistical model construction propose an itera-
tive update of the reference by averaging the displacement fields resulting
from the individual registrations [35][92]. Non-rigid registrations, however,
are subject to foldings, making it necessary to employ strategies incorpo-
rating diffeomorphic registrations and averaging displacement fields using
logarithms [50].

By only averaging the surface meshes to generate a mean shape, these
complex operations are avoided. On the other hand, this averaging can
potentially result in self intersections. Even though they have not occurred
in our experiments, these can be detected and resolved easily [112].

In Fig. 2.3, the convergence of the reference shape change in the iterative
model construction process is shown. The displacement of the reference
shape vertices resulting from the iterative updating process is shown for 5
iterations. Each iteration the average shape was calculated and for each
vertex the displacement with respect to the previous reference shape was
calculated. The boxplot of the displacements for all vertices is given for
each respective iteration.

The boxplot shows that this process has converged at the third iteration.
This is consistent with the results presented in similar work [22][35]. The
model used in the experiments is thus built after 3 iterations. Do note that
this refers to the currently used dataset only and does not indicate that the
model construction process using a different dataset or different reference
converges in the same way.
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Figure 2.4: The mean and the first three modes of variation of the shape model, varying
between -3 and +3 standard deviations (σ).

Statistical analysis. Using the groupwise point correspondence of the indi-
vidual shapes, the statistical model of the shape is built. The i-th shape
can be represented by a shape vector si = (x1, y1, z1, . . . , xn, yn, zn)

T ∈ R
3n

defined by the n vertices. Principal Component Analysis (PCA) is then ap-
plied to the data matrix Dshape = [(s1− s)(s2− s) · · · (sk− s)] where k is the
number of shapes and s the average shape. PCA computes an orthonormal
basis, aligning the axes with the maximum variation in the data. The axes
are given by the eigenvectors (ordered by their importance) of the covariance
matrix of Dshape, which are also referred to as the modes of variation. Now,
a new shape s can be represented as follows:

s = s+ Ps · bs (2.3)

where Ps denotes the matrix of ordered eigenvectors and bs the shape model
parameters.

The mean and first three modes of variation of the shape model are
shown in Fig. 2.4. From this we can see that the first mode of variation
describes the neck-shaft angle, while the second mode of variation extends
or compresses the femur neck.

Density model construction

To capture the density variations irrespective of the shape, all unprocessed
QCT volumes (without thresholding applied) are deformed to the same av-
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Figure 2.5: Density model construction pipeline.

erage shape. This process is depicted in Fig. 2.5.
The registration process has resulted in the patient-specific shape for each

similarity-aligned volume. From these individual shapes, the mean shape is
computed. To deform all the QCT volumes to this mean shape, first the
similarity transform resulting from the registration process (Section 2.2.1)
is applied to the QCT volume of the respective subject. The QCT volumes
are now aligned but still need to be deformed to the mean shape. For
each similarity-aligned subject we have the individual shape of the bone,
which has a vertex correspondence with the average shape. Using this vertex
correspondence a Thin Plate Spline transform is computed, which deforms
the similarity aligned QCT volume to the mean shape.

All volumes were deformed to the same reference volume with a cubic
voxel size of 1mm, which showed to be a good compromise between describ-
ing anatomical variations and computational complexity. By using only the
points on the bone surfaces for the TPS transformations, the spatial distri-
butions of the BMD inside of the bones is preserved. The deformed QCT
volumes now have a voxel correspondence between them and a statistical
analysis can be performed over the density values of the voxels to capture
the statistical variations of the BMD distribution.

Statistical analysis. The voxel densities in the i-th volume can be repre-
sented as a vector vi = (d1, d2, . . . , dm)T ∈ R

m where m is the number of
voxels inside the shape and dm the density of the m-th voxel. PCA is then
applied to the data matrix Ddensities = [(v1 − v)(v2 − v) · · · (vl − v)] where
l is the number of volumes and v the average volume. A new volume v can
now be represented as follows:

v = v + Pv · bv (2.4)

where Pv denotes the matrix of ordered eigenvectors and bv the density
model parameters.

The mean and first three modes of variation of the density model are
shown in Fig. 2.6. Since no normalization was applied to the volume den-
sities, the first mode of variation of the density model describes the global
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Figure 2.6: Projections of the mean and the first three modes of variation of the density
model, varying between -3 and +3 standard deviations (σ).

density change while the rest of the modes describe the distribution of the
bone in various ways.

Combined model construction

The relation between the shape and density model is captured, in the same
way as Cootes et al. [27], by combining them into a single statistical model.
Assuming a correlation between the shape and density distribution, this will
result in a more compact model. It is reasonable to assume a relationship
between the shape and BMD distribution of the proximal femur since a dif-
ferent shape requires a different internal BMD distribution to maintain a
certain resistance. Moreover, some combinations of the shape and BMD dis-
tribution can be said to be invalid based on the input dataset. By combining
the shape and appearance into a single model, the combined model can con-
strain the shape and BMD distribution to statistically valid combinations.

In our particular application (reconstructing from a single view), we
have no information about the thickness of the bone in the direction of
the projection. This might cause the density model instance to overestimate
the density where after the shape model instance would underestimate the
thickness. By combining the shape and density model, more statistical in-
formation about the relation between the shape and density distribution is
captured, which reduces these faulty combinations. For this same reason,
no normalization was applied to the densities in the QCT volumes so as to
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Figure 2.7: The mean and first three modes of variation of the combined model, varying
between -3 and +3 standard deviations. The model instances are clipped at the coronal
cross-section, showing the BMD distribution variation inside of the shapes.

capture the relation between the shape and the true densities.

Statistical analysis. For each subject in the model, the shape model pa-
rameters bs and density model parameters bv are concatenated into a single
vector:

b =

(

Wbs

bv

)

(2.5)

where W is a diagonal matrix of weights to match the shape parameter
variance to the variance of the density model parameters. PCA is then
applied over these vectors, which results in a parameter set c describing the
combined shape and density distribution:

b = Q · c (2.6)

whereby Q is the matrix of ordered eigenvectors.
In Fig. 2.7, the mean and first three modes of variation of the combined

model used for the reconstruction experiments is illustrated by clipping the
surface mesh of the shape model to show the BMD distribution inside of the
surface mesh. Here we can see that the extension of the femur neck (Mode
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Figure 2.8: The scree plot of eigenvalues associated with the principal components of
the combined model. The “elbow” is identified at the 12th principal component.

1) and increase of the neck-shaft angle (Mode 2) both results in a BMD
increase.

A scree plot is generated where the relative variance is set against their
corresponding principal components (Fig. 2.8). At the 12th principal com-
ponent, the decrease of eigenvalues appears to have leveled off to the right of
the plot. Following Cattell’s scree test [18], the principal components beyond
this “elbow” are discarded. Thus, only the first 12 principal components are
used in the reconstruction experiments.

By truncating the model parameters beyond the 12th principal com-
ponent, the original subjects in the model are not fully represented. For
each subject in the model, the vertex displacements and density distribu-
tion change of the remaining modes of variation determine the residual error
resulting from discarding these modes of variation. These vertex displace-
ments are averaged over all subjects and presented as a color map on the
mean shape in Fig. 2.9, where also the average residual densities are given
for the coronal cross-section, the femur neck and the intertrochanter (Fig.
2.10). The full range of vertex displacements has a mean of 1.1mm and
2 Root Mean Square (2RMS) of 2.4mm and the residual densities over all
subjects gives a mean of 44.4 and 2RMS of 122.5mg/cm3.

Model instance

A new instance of the model is described by the combined model parameters
c, which gives the parameters of the shape model bs and density model bv

as such:

bs = W−1 ·Qs · c (2.7)

bv = Qv · c (2.8)
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Figure 2.9: The residual vertex displacement (top) and density differences (bottom)
resulting from using 12 modes of variation, averaged over all subjects in the model.

Figure 2.10: The location of the femur neck and intertrochanteric cross-sections.
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where

Q =

(

Qs

Qv

)

. (2.9)

Subsequently substituting these shape and density model parameters into
(2.3) and (2.4) respectively gives the new shape s and new density values v.

Similar to Cootes et al. [27] the instance of the density model is deformed
to the new shape. Here, the deformation is defined by a TPS transformation
where the shape model determines the control points. The vertices of the
average shape s define the target points and the vertices of the new shape
model instance s define the source points. Since the shape model is built
from a dense surface mesh, a subset of the vertices is used. This subset is
found by applying the previously mentioned decimation algorithm (Section
2.2.1) on the average shape model resulting in 200 control points and finding
the closest points to the vertices of this decimation.

We implicitly reordered the vector of densities v corresponding to the
density model instance to form a volume V according to the dimensions of
the reference space all volumes were deformed to:

v 7→ V. (2.10)

The TPS transformation T to deform this volume is defined by the dis-
placements p resulting from the shape model parameters (2.3):

p = Ps · bs. (2.11)

Besides the deformation, a pose and a uniform scale factor is applied to
the density model instance, which is represented as a similarity transform.

Thus, the new instance of the combined model X is the composition of
the density model instance V with the TPS transformation T defined by the
shape displacement p and a similarity transform S as such:

X = V ◦ T (p) ◦ S. (2.12)

2.2.2 Reconstruction

Our 3D reconstruction method is based on the registration of the combined
model onto a DXA image. This is achieved by an intensity based 3D-2D
registration process whereby an instance of the model, together with a pose
and a uniform scale factor is found that maximizes the similarity between
the DXA image and the projection of the model. Since only one projection
is used, the pose is defined by three rotation values and only two translation
values perpendicular to the projection direction.

In Fig. 2.11, the flow chart of the model registration process is depicted.
At each iteration, a projection of the model is generated commonly referred
to as a Digitally Reconstructed Radiograph (DRR). How this DRR is gener-
ated is explained in detail in Section 2.2.2. The similarity is evaluated with
respect to the DXA image using the Mean Squared Error (MSE) similarity
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Figure 2.11: Flow chart of the iterative registration process.

measure. If the registration process has not yet converged according to this
similarity measure, a new set of model and pose parameters and a new scale
factor is estimated using Powell’s multi-dimensional optimization method.
A new model instance is generated using the new parameter set and the
registration process is continued.

Although Mutual Information (MI) is a commonly used similarity mea-
sure in medical image registration, it makes no assumptions about the re-
lation between the values. This makes it especially useful for registering
different modalities. However, in our application, the values of both the
projection and DXA image are of the same unit (g/cm2). The registration
process should therefore result in the same values in the DRR as in the DXA
image. Although the final DRR might have a high MI similarity with the
DXA image after a MI based registration process, the individual densities
might not correspond at all and a reconstruction of the BMD distribution
is not guaranteed. Therefore, the MSE is used in the registration process,
resulting in more accurate BMD values in the resulting volume.

A mask is defined to take into account only the region of interest in the
registration process (Fig. 2.12). A thresholding is applied to the DXA image
to generate an initial mask, which is grown to include area around the bone
boundary. In the DXA images, the femur head is partially overlapped by
the pelvis. In an intensity based registration process, this region will intro-
duce an error to the similarity measure and thus to the final reconstruction
accuracy. To overcome this, the part where the pelvis is overlapping with
the femur head is manually removed from the mask. In addition, the bottom
part of the femur shaft is removed from the mask where the model can not
reach.

Since the femur is always in the same general orientation (patient lying
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Figure 2.12: The mask (right) generated from the DXA image (left) to be used in the
registration process, whereby the area overlapping with the pelvis and the bottom part
of the shaft is manually removed.

on a table with straight legs and the foot positioned in a 60 degrees angle),
no manual initialization of the rotation is required. Furthermore, the model
is initialized by the average instance i.e., all model parameters set to 0.
The model is automatically centered onto the mask and a first registration
process is performed on the rotation, translation and scale parameters only.
This results in an initial alignment of the model onto the DXA image. This
is followed by the full registration process, optimizing all model parameters.

Throughout the registration process, the model instance is constrained to
three times the standard deviation from the mean to maintain a valid femur
throughout the registration process. This means that at each iteration, the
model parameters are checked and corrected accordingly.

The resulting final model instance, with the corresponding surface mesh
and volume containing the BMD distribution, is then considered the patient-
specific reconstruction.

Digitally Reconstructed Radiograph

DXA works by passing two X-ray beams, one of a high energy and the other
of a low energy, through a tissue region. The amount of absorption by the
bone can be calculated and can be converted to a measure of the BMC.
Thus, by performing such scan over a region of interest, an image of the
projected BMD is computed.

The narrow-angle fan beam used by GE Healthcare’s Lunar iDXA device
results in a DXA image that is essentially without magnification. This is
accomplished by overlapping the narrow-angle fan-beam sweep line images
by which the distance of the object to the plane can be measured (Fig. 2.13).
Thus, the DRR can be approximated by an isometric projection, removing
the necessity for camera calibration.

The DRR is generated using a ray casting technique [15] resulting in a
2D image representing the areal BMD (g/cm2). For each position in the
DRR, a ray is cast through the volume in the direction of the projection
perpendicular to the plane of the DXA image. The projected density value
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Figure 2.13: DXA image acquisition and processing. From left to right: An illustration
of the narrow-angle fan-beam, the overlapping image strips resulting from the sweeps of
the fan beam device for one of the two energies and the DXA image after combining the
strips and calculating the BMD from the two energies.

is then defined as the integral of the new model instance X (2.12) for every
point γ lying on the ray Γq. The areal BMD at position q of the DRR can
thus be formulated as:

DRR(q) =

∫

Γq

X(γ)dγ ≈
∑

r∈Rq

X(r) · d. (2.13)

Here, an approximation is made by taking a set of sample points Rq at
regular intervals of length d along the ray Γq.

In [65], the QCT derived areal BMD (BMDQCT) was shown to be sys-
tematically lower than the areal BMD from DXA (BMDDXA) because of the
difference in the techniques and standards. It also showed that it is possible
to correct for these absolute differences by a linear conversion equation.

We performed a rigid 3D-2D intensity based registration of a subset of 30
segmented QCT volumes onto the same subject DXA images and the pro-
jected values were regressed against the DXA values. The linear regression
gave us the following conversion equation:

BMDDXA = (BMDQCT + 0.100)/0.967 g/cm2. (2.14)

This equation was subsequently used to correct the simulated DXA image
values.

2.2.3 Evaluation

For the method evaluation experiments, the left proximal femur was chosen.
30 QCT-DXA pairs were selected for the validation of the reconstruction
method (mean age of 55 ± 13 years, 15 male and 15 female). They consist
of 4 osteoporotic, 13 osteopenic and 13 healthy subjects with an average
femur neck BMD of 0.9± 0.2g/cm2 ranging between 0.7 and 1.2g/cm2. Of
the remaining 85 QCT volumes, consisting of 27 men and 58 women with a
mean age of 55 ± 12 years, the model was constructed. This set includes 3
osteoporotic, 30 osteopenic and 52 healthy subjects with average femur neck
BMD of 0.9± 0.2g/cm2 ranging between 0.7 and 1.4g/cm2.

Prior to analyzing the reconstruction accuracy, each QCT volume of the
validation dataset was rigidly aligned with the corresponding DXA image
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Figure 2.14: The regions on the DXA image as defined by the software of GE Healthcare
(left) and the same regions shown on the manually segmented surface mesh of the same
subject QCT scan (right), which, in a 3D-2D intensity based registration process, was
aligned with the DXA image.

by means of an intensity based 3D-2D registration process using the MSE
similarity metric and Powell’s multi-dimensional optimization method. This
results in the correct patient-specific pose of the ground truth QCT volume
to be used in further analysis and allowed us to extract the regions as defined
in the GE Lunars software platform, enCORE.

Three regions were defined: the femur neck, trochanter and shaft. The
region of the femur head was deduced from these regions. In Fig. 2.14,
the DXA image with the regions as defined in the enCore software is shown
together with the regions on the segmented surface mesh of the aligned QCT
volume. In addition, a global region was defined, which consists of the femur
neck, trochanter and shaft together.

The model was constructed of the entire proximal femur, including the
whole femur head. Thus, although the part of the femur head overlapping
with the pelvis was removed from the mask, the entire femur head was
reconstructed and evaluated together with the other regions.

To evaluate the shape reconstruction accuracy, every bone in the QCT
volumes (which were previously aligned with the same subject DXA im-
ages) of the validation dataset was segmented (again using ITK-SNAP) and
for each segmentation the surface mesh was constructed. These were then
considered the ground truth for the individual shapes.

Each mesh resulting from the reconstruction process was then registered
with the corresponding ground truth surface mesh by an Iterative Closest
Point (ICP) algorithm, taking into consideration only the global region. The
reconstruction error in terms of shape for each of the regions was then defined
by the point-to-surface distances of the vertices in the reconstructed shape
mesh to the ground truth surface mesh.

Since only a single view is used in the reconstruction process, there is little
information about the actual orientation of the bone. Not estimating the ori-
entation properly might considerably affect the reconstruction accuracy. To
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examine the accuracy of the orientations resulting from the reconstructions,
also the rotations (coronal, axial and sagittal) following from the previously
described ICP registrations are evaluated.

To evaluate the reconstruction accuracy of the BMD distribution, the
point correspondences computed to evaluate the shape accuracy were used
to deform the reconstructed volume to the ground truth volume by means of
a TPS transformation (using a subset of 200 control points). This way, the
BMD distribution accuracy can be evaluated without taking into account
the error introduced by the reconstructed shape.

Each voxel within the bone of the TPS deformed reconstruction was sub-
sequently compared with the corresponding voxel in the ground truth volume
and the voxel-by-voxel differences then determined the BMD distribution re-
construction error. In addition, the error was compared to the entire range
of densities in the corresponding region, giving a percentage error of the
BMD distribution reconstruction.

Apart from the reconstructed shape and BMD distribution, also the more
clinically relevant volumetric BMD (vBMD, the average voxel density in a
given region) was evaluated. For each region, the vBMD was compared with
the vBMD extracted from the registered ground truth QCT volume. In addi-
tion, a regression was computed to analyze the linear statistical relationship.

2.3 Results

The results of the reconstructions of three subjects with varying shape and
BMD quality are shown in Fig. 2.15. In Fig. 2.16, for three subjects, the
cross-sections of the ground truth QCT volume at the intertrochanter and
the femur neck (Fig. 2.10) as well as the coronal section are shown together
with the same cross-sections from the reconstructed volumes. These figures
illustrate the capacity of the model to successfully reconstruct these large
variations in shape and BMD distribution from a single DXA image.

In Table 2.1, the results of the shape reconstruction accuracy for the
selected regions is given. The best accuracy can be seen at both the femur
neck and the trochanter area with both having an average point to surface
distance of 1.0mm and 2RMS error of 2.6mm. The femur head gives the
least accurate point to surface distances with a mean error of 2.0mm and
2RMS error of 4.9mm.

In Fig. 2.17, an error map illustrates the point-to-surface distances for
every vertex of the shape model averaged over all 30 subjects. From this, we
can see that the lesser trochanter imposes a lot of error in the shaft region,
which explains the relative large error compared to the other regions.

The ICP registrations aligning the reconstructed shapes with the ground
truth surface meshes resulted in a mean rotation error of 3.0◦ (2RMS of 7.8◦)
coronal, 2.4◦ (2RMS of 6.3◦) axial and 0.4◦ (2RMS of 1.1◦) sagittal.

Analyzing the reconstruction accuracy of the BMD distribution, we found
the average voxel-by-voxel error to be below 85mg/cm3 for all regions. The
error relative to the whole range of BMD values was around the 5% for all
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Figure 2.15: Results of three of the reconstructions with the contours of the masks used
in the registration process. From top to bottom: the reconstructed shape, the ground
truth surface mesh, the DRR generated by projecting the resulting model instance and
the DXA image.

Table 2.1: Accuracy of the reconstructions of the shapes, given as the point to surface
distances (mm).

Region Mean 2RMS* Max
Neck 1.0 2.6 5.6
Trochanter 1.0 2.6 5.9
Shaft 1.2 3.4 9.2
Global 1.1 2.9 9.2
Head 2.0 4.9 8.2

* 95% confidence interval.
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Figure 2.16: The cross-sections at three regions for three subjects (each column rep-
resents a single subject) of the segmented ground truth QCT volumes (top) and the
corresponding reconstructed volume (bottom). All image have the same window level.
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Figure 2.17: The color-coded point to surface distances (mm) between the reconstructed
shapes and the QCT-derived surfaces (top) and the BMD reconstruction errors presented
with respect to the mean shape (bottom), averaged over the 30 subjects.

regions, with a slight increase at the shaft of 5.7%. In Table 2.2, the error
of the BMD distribution is given for each of the regions.

To visualize the distribution of the BMD errors, the volumes representing
the BMD errors were aligned to the mean shape and averaged over all 30
subjects. Subsequently, the femur neck, intertrochanter and coronal cross-
sections are shown in Fig. 2.17.

In Fig. 2.18 the scatter plots of the vBMD acquired from QCT, set
against the vBMD from the reconstructions are shown. In Table 2.3 the cor-
relation coefficient (r), the offset and slope is given. All regions, apart from
the femur head, show a strong correlation (r > 0.9) and are all statistically
significant (p < 0.001).

The one-dimensional scatter plots of the mean shape errors, the mean
BMD distribution errors and the volumetric BMD errors for all 30 subjects
are shown in Fig. 2.19. This gives an indication of the distribution of the
errors over the validation set.

Regarding the computation time, one iteration of the model construc-
tion process using 85 volumes took approximately 21 hours and one recon-
struction takes approximately one hour on an Intel R©Core

TM

i7 CPU 920
@ 2.67GHz processor. At this point, no effort was put into improving the
computation time using multi-processor or GPU acceleration.
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Table 2.2: BMD distribution reconstruction error (mg/cm3) for the different regions.
The percentages indicate the error with respect to the full range of bone densities in the
corresponding region.

Region Mean 2RMS* Max
Neck 71.0(5.1%) 205.5(14.8%) 981.0(70.7%)
Trochanter 60.8(4.6%) 182.1(13.7%) 952.5(71.8%)
Shaft 84.1(5.7%) 252.2(17.2%) 1267.0(86.4%)
Global 72.0(4.9%) 217.2(14.8%) 1267.0(86.4%)
Head 53.9(4.6%) 149.0(12.8%) 783.5(67.5%)

* 95% confidence interval.
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Figure 2.18: Scatter plots and regression lines for all the regions visualizing the cor-
relation between the QCT derived vBMD (vBMD QCT) and the vBMD resulting from
the reconstructions (Reconstructed vBMD). The correlation coefficient, offset and slope
values are given in Table 2.3.
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Table 2.3: The error (mg/cm3) and correlation values between the QCT derived vBMD
and the vBMD resulting from the reconstructions for all regions.

Region MAE† 2RMS* Max r Offset Slope
Neck 17.2 44.3 55.8 0.92 32.4 0.90
Trochanter 15.3 42.5 64.8 0.94 −7.5 1.11
Shaft 21.8 56.2 63.2 0.93 −33.6 1.14
Global 15.9 40.8 50.8 0.95 −13.4 1.10
Head 20.5 52.0 62.8 0.83 30.3 0.91

† Mean Absolute Error.
* 95% confidence interval.

2.4 Discussion

For the global shape accuracy, which excludes the femur head, we obtained
a average error of 1.1mm and a 2RMS error of 2.6mm, whereas in Zheng et
al. [119] an average mean reconstruction error of 1.2mm was reported using
2 views for each femur. These reconstructions, however, were performed
on X-ray images while a reconstruction from DXA is a considerably more
challenging task due to the high level of noise present in DXA images. On
the other hand, by using a model of the BMD distribution, our method can
take advantage of the density information in the DXA images.

In Kolta et al. [67], where the proximal femur shape was reconstructed
from two DXA images (frontal and sagittal), a mean point to surface distance
of 0.8mm and a 2RMS error of 2.1mm was reported. This method and the
method of Zheng et al., however, rely on two projections and are limited to
the shape reconstruction only, whereas the reconstruction method presented
in this work requires only one DXA image and results in a reconstruction of
the shape as well as the BMD distribution.

The comparably large error in the femur head can be explained due to the
fact that a large part of this region was not considered in the reconstruction
process, and thus was merely estimated. The reconstruction of the BMD
distribution on the other hand shows a larger accuracy at the femur head
compared to the other regions. This in turn can be explained by the thin
layer of cortical bone in this region, which gives a rather small error in
comparison to the other regions.

The mean rotation error in the coronal 3.0◦ (2RMS of 7.8◦) and axial
2.4◦ (2RMS of 6.3◦) direction suggests an improvement in the reconstruction
accuracy is possible if this part is properly addressed.

Analyzing the BMD distribution reconstruction accuracy in the global
region, a mean error of 72.0mg/cm3 corresponding to 4.9% of the range of
bone densities in this region was measured with a 95% confidence interval of
217.2mg/cm3 corresponding to 14.8% of the total range of bone densities.
A volume reconstruction accuracy of the whole proximal femur is given in
Fritscher et al. [38] whereby the error corresponds to 3.6% of the whole
intensity range. This however was the result of the registration of a statistical
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Figure 2.19: One-dimensional scatter plots of the mean shape errors (top), mean BMD
distribution errors (center) and volumetric BMD errors (bottom) of the 30 subjects.

model onto a volume, as opposed to our reconstruction method from a single
projection.

A comparison of the BMD distribution error can be made with the resid-
ual error, which represents the expected error assuming a perfect reconstruc-
tion. The closeness of the range of density errors (considering the densities
range between −150 and 1300mg/cm3 approximately) is thus an indication
of the accuracy in which the BMD distribution is reconstructed.

In Ahmad et al. [2], similar results are presented regarding the recon-
struction of the vBMD. Here a correlation coefficient of 0.81 is reported for
the narrow neck and 0.89 for the intertrochanter. In comparison, our method
resulted in a correlation coefficient of 0.92 and 0.94 for the femur neck and
the trochanter region, respectively.

Volumetric BMD has been shown to be strongly related to the bone
strength [70][11] and has been shown to highly correlate with fracture inci-
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dence [9][58]. The accurate vBMD reconstruction therefore shows the clin-
ical relevance of this work and the potential to improve the fracture risk
estimation from DXA over current methods.

The statistical model presented in this work is distinct from most pro-
posed models in the way that the variations in the BMD distribution is
captured by the density model only, whereas other methods use the shape
[114] or deformation field [37] to also describe the internal structure. This
will allow us to examine the BMD distribution independent from the shape
which can potentially be useful for diagnosing patients, considering osteo-
porosis affects only the BMD distribution and not the shape of the bone.
Furthermore, to determine which type of model performs best with respect
to the reconstruction accuracy, the evaluations need to be performed on the
same patient population. The fact that no standard dataset was used in our
and previous work should be taken into consideration when examining the
results in comparison with other research.

Although the model construction method is still not fully automatic due
to the manual removal of the pelvis area, this can potentially be automated
by incorporating a Hough filter for detecting spherical objects in the volume
[123].

Regarding the reconstruction process, the method is automatic and non-
supervised, except for the manual removal of the pelvis region from the DXA
mask. This too, however, can be automated as is done by the software of
GE Healthcare to define the regions of interest.

One limitation in this study is the relative young population and, sub-
sequently, the limited number of osteoporotic patients used for the model
construction. Although emphasis is put on the reconstruction accuracy and
not pathology detection, bone loss due to osteoporosis might result in a
more varied BMD distribution and bone restructuring, which might have an
effect on the reconstruction accuracy. The evaluations, however, were per-
formed on healthy subjects as well as osteoporotic and osteopenic patients,
and the results therefore represent the possibility to reconstruct also these
pathological cases.

Although in this work we have presented a method that can reconstruct
the 3D shape and BMD distribution from a single DXA image, the method
can as well be applied to a multi-view reconstruction. Although a multi-
view reconstruction is expected to increase the reconstruction accuracy, the
devices capable of multi-view DXA acquisitions are still expensive and not as
widely used in clinics as single-view devices. Some preliminary experiments
have been performed on simulated DXA images of specimen to evaluate to
what extent using multi-view DXA improves the reconstruction accuracy
over a single-view [56]. However, by using specimen data, these experiments
do not take into account the pelvis overlap which limits the view angles that
can be used when reconstructing the femur from real DXA images.
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2.5 Conclusion

This work presents a method to reconstruct both the 3D shape and BMD
distribution from a single DXA image by the registration of a statistical
model. A statistical model of the combined shape and BMD distribution
is introduced, together with a method for its construction. An iterative
updating of the reference shape and volume is incorporated to remove any
bias in the reference selection and to increase the accuracy of the individual
registrations. In an intensity based 3D-2D registration process, an instance
of the model is found, which maximizes the similarity between the DXA
image and the projection of the model. By using statistics on the combined
3D shape and BMD distribution of a large population, the limitations of a
single 2D DXA image can be overcome. Comparisons between the recon-
structed femur and ground truth show that this method results in accurate
and realistic reconstructions.

This method is fully compliant with clinical routine since clinically de-
ployed DXA scanners are mostly limited to the acquisition of a single view.
This opens the way for a better diagnosis of osteoporosis by providing a
detailed 3D analysis of the femur from routine, low cost, and low radiation
dose 2D DXA imaging devices.

Although this work has put the focus on the proximal femur, vertebral
fractures are in fact the most common type of osteoporotic fractures, and
although many vertebral fractures remain undiagnosed, they can have a se-
vere impact on the quality of life and are accompanied by increased mortality
[51]. The method presented in this work will therefore be extended to allow
the reconstruction of the lumbar vertebrae from DXA images.

Our future work aims at improving fracture risk assessment from DXA by
using accurate information of the 3D shape and BMD distribution obtained
by the presented reconstruction method. Statistical models of the proximal
femur have already been used successfully to predict biomechanical param-
eters [38] and to analyze the trabecular bone of the proximal femur [36].
Although we have shown to be able to successfully and accurately recon-
struct the 3D shape and BMD distribution from DXA, additional effort to
improve the accuracy is expected to be necessary for this complex analysis.

Including older subjects in the statistical model might improve the re-
construction accuracy of the targeted population. However, older people
have a greater incidence of arthritis and other conditions that can affect the
shape of the bone. This might negatively affect the statistical model unless
a large population is used. Towards this end, a more extensive database will
be collected. In addition this will allow the construction of a separate model
for male and female subjects and containing more pathological cases. This
is expected to improve the reconstruction accuracy for a specific pathology
and gender.

Efforts are also being put forth to allow finite element analysis on the
reconstructed femurs with the aim of providing a measure of the femur
strength.

We aim to eventually demonstrate that the advantages of a 3D analysis
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on fracture risk assessment accuracy can be implemented in clinical practice,
maintaining DXA as the current standard modality.
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Hip Fracture Discrimination from
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In this chapter the parameter values resulting from the registration of the
statistical model onto DXA images are evaluated for their hip fracture dis-
crimination ability with respect to regular DXA derived areal BMD measure-
ments. Compared to the previous chapter the model construction method
was improved with a simplified pipeline. However, the shape and density
model remain decoupled which allows for the separated evaluation of the
parameters with respect to the fracture discrimination. The registration
method has remained the same which the exception of optimizing both shape
and density model parameters. The statistical model was constructed from
a large database of QCT scans of females with an average age of 67.8± 17.0
years. This model was subsequently registered onto the DXA images of a
fracture and control group. The fracture group consisted of 175 female pa-
tients with an average age of 66.4 ± 9.9 years who suffered a fracture on
the contra lateral femur. The control group consisted of 175 female subjects
with an average age of 65.3 ± 10.0 years and no fracture history. The dis-
crimination ability of the resulting model parameter values, as well as the
areal BMD measurements extracted from the DXA images were evaluated
using a logistic regression analysis.

The content of this chapter is adapted from the following publications:

T. Whitmarsh, K.D. Fritscher, L. Humbert, L.M. del Ro Barquero, T. Roth,
C. Kammerlander, M. Blauth, R. Schubert, A.F. Frangi, Hip Fracture Dis-
crimination from Dual-energy X-ray Absorptiometry by Statistical Model
Registration, submitted 2012.

and

T. Whitmarsh, K.D. Fritscher, L. Humbert, L.M. del Ro Barquero, T. Roth,
C. Kammerlander, M. Blauth, R. Schubert, A.F. Frangi, A Statistical Model
of Shape and Bone Mineral Density Distribution of the Proximal Femur
for Fracture Risk Assessment, Medical Image Computing and Computer-
Assisted Intervention, vol. 6892, pp. 393-400, 2011.
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3.1 Introduction

Hip fractures of elderly people can primarily be explained by the presence
of osteoporosis. Osteoporosis is a skeletal disease characterized by the de-
velopment of a low BMD and increased bone fragility, which subsequently
increases the risk of fracture. Up to 20% of patients die in the first year
following a hip fracture, and only about one-third of survivors regain their
original level of function [111]. The loss of bone density progresses with ad-
vancing age and the increase in life expectancy will subsequently result in an
increased fracture incidence. An estimated 1.3-1.7 million hip fractures oc-
curred worldwide in 1990 and this number is expected to increase to almost
3 million by 2025 [111]. An accurate means to diagnose osteoporosis and to
reliably estimate the risk of fracture therefore becomes ever more important.

Fracture risk assessment currently relies on areal BMD measurements
from DXA. Although a low areal BMD has been shown to be strongly corre-
lated with fracture incidence, this measure is limited by its two-dimensionality
while the spatial distribution and geometry of the bone to a large extent de-
termines the bone strength [81]. A volumetric image of the bone densities
can be acquired using QCT. Here, an external bone mineral reference phan-
tom is included with a regular CT scan to convert the CT values to density
values. From this density volume, various parameters can be extracted such
as the volumetric density of the cortical and trabecular bone as well as geo-
metric and structural parameters such as the cortical thickness, the femoral
neck length, the neck shaft angle and the section modulus. These have been
shown to be important measurements for determining the femoral strength
[11][21][70] and deriving a fracture risk [58][12]. This modality, however,
administers the patient with a relatively high dose of radiation compared to
DXA. In addition, the high cost and limited access to CT scanners prevents
this modality from being used in clinical routine and thus DXA remains the
current clinical standard for bone quality measurements and fracture risk
assessment.

To overcome the limitations of DXA, several methods have been proposed
to acquire a 3D reconstruction from a regular DXA image by incorporating
a statistical model in an intensity-based registration process [110][2]. From
these reconstructions the same parameters can be extracted as from QCT.
However, these parameters are still limited descriptors of the shape and
spatial distribution of the bone. Several authors propose the use of Finite
Element Analysis (FEA) of bones to determine their mechanical behavior
[63][90][89]. Although FEA has been shown to accurately estimate the re-
sistance to specific loading conditions, their direct relation to the risk of
fracture has not yet been fully established. In [76] a method was developed
for a more detailed analysis of the spatial distribution of the bone using de-
formable registrations and image similarities. This method was shown to be
able to accurately discriminate between fracture patients and controls and
was used to identify the regions within the femur which are most strongly
associated with hip fracture [74].

Recently, statistical models as pioneered by Cootes et al. [25] have re-
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ceived a great deal of interest as a means to analyze the complex mor-
phometry of organs for the diagnosis of diseases and detection of symptoms.
Statistical models of the shape and motion of the heart are being developed
for detecting pathologies such as hypertrophic cardiomyopathy and the dis-
tribution of brain gray matter has been analyzed in statistical brain atlases
with respect to Alzheimer’s disease, schizophrenia and the risk of healthy
subjects for developing these disorders.

Both in [4] and [46] the femoral shape was analyzed from planar radio-
graphs using statistical shape modelling, and the association of the modes of
variation with the fracture incidence was examined. In [47] this method was
extended by including an analysis of the trabecular bone structure, which sig-
nificantly improved the hip fracture discrimination ability. These methods,
however, are still limited by a two-dimensional analysis from radiographic
projections. In recent work, Li et al. [75] constructed a statistical model of
the volumetric density distribution of the proximal femur and analyzed the
model parameters for their hip fracture discrimination power. Here, only
the density distribution was analyzed while also the shape determines the
femoral strength and shape parameters have been shown to be independent
hip fracture discriminators [11]. In [36] a statistical model of shape and
appearance was presented and the parameters of this model were, in other
work, analyzed for their ability to predict the fracture load of the proximal
femur [100]. Although the fracture load gives a measure of the bone strength,
it does not directly relate to the risk of fracture.

Previously, we developed a statistical model of both the 3D shape and
BMD distribution of the proximal femur for fracture risk assessment [108].
This model is constructed from a large dataset of QCT volumes using an
intensity based registration process. The parameters of this model describe
the global shape and spatial distribution of the bone and were shown to cor-
rectly represent the shape and density variations that determine the fracture
risk. In other work this model was shown to be able to accurately reconstruct
the 3D shape and BMD distribution of the proximal femur by registering it
onto a single DXA image, whereby the proximal femur was reconstructed
with a mean shape accuracy of 1.1mm and a global BMD distribution error
of 4.9% [110]. In this study we aim to evaluate the parameters of the sta-
tistical model resulting from the registration onto DXA for their ability to
improve the hip fracture discrimination from DXA with respect to regular
areal BMD measurements.

3.2 Materials and Methods

3.2.1 CT dataset for statistical model construction

For the construction of the statistical model a dataset of CT scans of the
pelvis area of 80 fracture patients was collected at the Department for
Trauma Surgery, Medical University Innsbruck (Innsbruck, Austria), using
the GE LightSpeed VCTMulti Slice CT device (GE Healthcare, Chalfont St.
Giles, UK). The patients were all female with an average age of 80.8± 10.1
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years and all had suffered a proximal femur fracture. From this set the con-
tralateral un-fractured femurs were taken, which can be justified by research
on proximal femur symmetry[32], and this set defined the high fracture risk
group. The European forearm phantom [97] was included into every scan
acquisition to convert the CT scans to QCT volumes.

This dataset was supplemented by a control group of 80 (all female) pa-
tients which was collected at the CETIR Medical Center (Barcelona, Spain)
using the Philips Gemini GXL 16 system (Philips Healthcare, Best, The
Netherlands). These patients had a lower average age of 55.9 ± 11.6 years,
to represent a control group with a low fracture risk and a normal BMD
distribution. The CT scans were calibrated using the Mindways calibration
phantom (Mindways Software Inc., Austin, TX, United States).

Different studies have shown that the scan device has little influence on
the density calibration [39]. However, the European forearm phantom cali-
brates the volumes to a hydroxyapatite (HA) density, whereas the Mindways
phantom is constructed of K2HPO4. Previous research shows that one cali-
bration material is highly correlated to another and can be converted using
a linear transformation [105]. To get the conversion formula for the phan-
toms in this work, both phantoms were scanned together using the Siemens
scanner and the correlation between the density values was measured 3.1. In
this way, the scans with the Mindways calibration phantom were converted
to HA density values.

The combined dataset with an average subject age of 67.8 ± 17.0 years
was subsequently used for the construction of the statistical model used in
this work.
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Figure 3.1: From left to right: The CT scan of the combined Mindways and European
forearm calibration phantom; the linear regression to calibrate the CT scan to K2HPO4
density values using the Mindways phantom whereby the water density is subtracted from
the average pixel value for each of the five rods; the linear regression between the CaHA
values of the European forearm phantom and the corresponding K2HPO4 values. For the
calibration to K2HPO4 density values an additional correction of the slope and intercept
is required to take into consideration the physical properties of the water contained in the
calibration rods and the amount of water excluded when adding K2HPO4.

3.2.2 DXA dataset for method evaluation

To evaluate the discrimination method, a database of 175 proximal femur
DXA scans was collected at CETIR Grup Medic (CDP Unit Esplugues,
Esplugues de Llobregat, Barcelona, Spain), whereby the contra lateral femur
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Table 3.1: Baseline characteristics of subjects (mean ± standard deviation).

Fracture Controls p value

Age (years) 66.4 ± 9.9 65.3 ± 10.0 0.281
Weight (kg) 65.0± 12.4 65.4 ± 11.0 0.735
Height (cm) 154.2 ± 6.8 154.0 ± 5.8 0.852
BMI (kg/m2) 27.3 ± 4.8 27.5± 4.1 0.690
Femoral neck aBMD (g/cm2) 0.77± 0.13 0.83 ± 0.13 < 0.0001
Trochanteric aBMD (g/cm2) 0.60± 0.13 0.66 ± 0.14 < 0.0001
Shaft aBMD (g/cm2) 0.91± 0.14 1.01 ± 0.16 < 0.0001
Total aBMD (g/cm2) 0.80± 0.15 0.90 ± 0.15 < 0.0001

BMI = body mass index = weight/height2; p values by Student’s t test.

was fractured. The scans were performed by the GE Lunar Prodigy Bone
Densitometer (GE Healthcare, Chalfont St. Giles, UK). All subjects were
female with an average age of 66.4± 9.9 years. In addition, an age matched
control group (average age of 65.3± 10.0 years) of 175 DXA scans of female
subjects with no fracture history was collected. Exclusion criteria were hip
fractures as a result from high-energy trauma and bone disease. The DXA
image pixel values were subsequently converted to standardize BMD [41]
which corresponds to the same hydroxyapatite (HA) density values as the
QCT scans. For all DXA scans the femoral neck, trochanter, shaft and
total areal BMD measurements were acquired using the GE Lunar’s software
platform, enCORE. The full set of baseline characteristics of the fracture and
control subjects are presented in Table 3.1.

Ethical approval was granted for all data acquisitions by the Institutional
Review Board and written informed consent was provided by all the subjects
included in this study.

3.2.3 Shape and density model construction

The statistical shape and density model is constructed from a large dataset
of QCT volumes by an intensity based registration process as depicted in
Fig. 3.2. In order to prevent the pelvis area from resulting in misalignments
in the registration process, in a preprocessing step the pelvis area is semi
automatically removed from the QCT volumes. In addition, a thresholding
is applied to remove the soft tissue structures that can negatively affect the
registration process.

A reference volume is chosen based on its regular shape and BMD qual-
ity. In this volume, the bone is manually segmented and a regular mesh
is constructed from this segmentation. All volumes are subsequently regis-
tered to this reference volume by an intensity based similarity registration.
This is followed by a multi-scale intensity based Thin Plate Spline (TPS)
registration using the mesh vertices as the control points on the reference
image.

The TPS registrations result in the corresponding landmark locations
on the target volumes and thus provides the surface mesh for all similarity
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Figure 3.2: Model construction pipeline.

aligned volumes. All similarity aligned meshes are subsequently scaled to
their original size using the uniform scale value resulting from the similarity
transform.

To remove any bias of the reference selection, the reference volume (and
the mask) are deformed to the average shape using a TPS transformation
defined by the shape vertices. In a second iteration, the volumes are then
registered onto this updated reference while using the average shape for the
TPS registrations.

The registrations results in the set of aligned patient specific surface
meshes with a vertex correspondence between them. PCA is then applied to
the vertices and a new shape s can be expressed as the average shape s and
a linear combination of the first m eigenvectors corresponding to the main
modes of variation:

s = s+
m
∑

i=1

piαi. (3.1)

Here pi is the i-th eigenvector resulting from the singular value decompo-
sition of the covariance matrix and αi the corresponding scalar coefficient
referred to here as the shape model parameter. In Fig. 3.3, the mean and
first three modes of variation of the resulting shape model are presented. The
first mode of variation describes the global size while the second describes
the neck shaft angle, and the third describes the femoral neck length.

To model the BMD distribution, a final iteration of the registration pro-
cess is performed to deform all volumes to the same average bone shape,
whereafter the resulting similarity and TPS transformation is applied to the
unprocessed QCT volume for each subject. This results in shape normal-
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Figure 3.3: The mean shape and the first three modes of variation of the shape model,
varying between +3 and -3 standard deviations.

ized volumes with a voxel correspondence between them. Since the TPS
transformation is defined by landmarks on the bone surface only, the TPS
interpolation preserves the internal BMD distribution. PCA is then applied
to the voxel densities inside the bone so that a new volume v can be ex-
pressed as the average volume v and the first n eigenvectors:

v = v +

n
∑

i=1

qiβi. (3.2)

Here qi is the i-th eigenvector and βi the corresponding density model pa-
rameter. Fig. 3.4 shows projections of the mean and first three modes of
variation of the density model, whereby the main mode of variation describes
the global density.

The model parameters thus describe the number of standards deviations
from the mean for each mode of variation of both the shape and density
model. For the shape model 14 modes of variation are used and 11 for
the density model. These numbers were determined by Cattells scree test
[14] whereby the remaining modes of variation are considered noise and are
discarded (Fig. 3.5).

3.2.4 Model registration

The statistical model is registered onto a DXA image by an intensity based
3D-2D registration process (Fig. 3.6). A new instance of the model is gener-
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Figure 3.4: Projections of the mean and the first three modes of variation of the density
model, varying between +3 and -3 standard deviations.

ated by deforming the density model instance to the shape model instance.
In the registration process the model parameters, together with a pose (rota-
tion and translation), that maximize the similarity between the DXA image
and the projection of the deformed density model are found. This results in
a patient specific reconstruction of the 3D shape and spatial distribution of
the bone as described by the model parameters. For a detailed description of
the reconstruction process we refer the reader to [110]. The statistical model
was subsequently registered onto the DXA images of the fracture patients
and control group.

3.2.5 Statistical analysis

The model parameters resulting from the registration onto the DXA im-
age describe the subject specific 3D shape and internal distribution of the
bone and are in this work analyzed for their ability to discriminate hip frac-
ture. The statistical analysis was done using the SPSS Statistics package v19
(IBM, Armonk, NY). The shape and density model parameters as well as the
areal BMD measurements were first analyzed individually by computing the
Odds Ratio (OR) with 95% Confidence Interval (CI), which determines the
association of the variable with fracture incidence. To evaluate the discrim-
ination ability of the various measurements, the Receiver Operating Curve
(ROC) was analyzed whereby the Area Under the Curve (AUC) with corre-
sponding 95% CI was reported. To analyze the contribution of the shape and
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Figure 3.5: Scree plots of the shape (left) and density model (right), whereby the graph
appears to have leveled off at respectively the 14th and 11th principal component.

Table 3.2: Results of the logistic regression (adjusted for age, weight, height and BMI)
and the ROC analysis using the shape model parameters.

OR [95% CI] p value AUC [95% CI]

Mode 1 0.639 [0.477 - 0.857] 0.003 0.586 [0.526 - 0.645]
Mode 2 1.229 [1.042 - 1.451] 0.014 0.575 [0.515 - 0.635]
Mode 3 1.009 [0.861 - 1.182] 0.913 0.502 [0.441 - 0.562]
Mode 4 0.913 [0.777 - 1.072] 0.267 0.535 [0.474 - 0.595]
Mode 5 1.061 [0.923 - 1.221] 0.404 0.527 [0.466 - 0.588]
Mode 6 1.092 [0.914 - 1.305] 0.331 0.529 [0.468 - 0.589]
Mode 7 1.055 [0.918 - 1.213] 0.451 0.525 [0.465 - 0.586]
Mode 8 0.880 [0.771 - 1.005] 0.059 0.561 [0.501 - 0.621]
Mode 9 0.934 [0.804 - 1.086] 0.374 0.517 [0.457 - 0.578]
Mode 10 0.715 [0.587 - 0.870] 0.001 0.599 [0.540 - 0.659]
Mode 11 0.746 [0.620 - 0.899] 0.002 0.593 [0.533 - 0.652]
Mode 12 0.965 [0.839 - 1.110] 0.615 0.511 [0.451 - 0.572]
Mode 13 0.997 [0.845 - 1.177] 0.970 0.503 [0.442 - 0.563]
Mode 14 0.947 [0.836 - 1.071] 0.385 0.524 [0.464 - 0.585]

density distribution separately, the 14 shape model parameters as well as the
11 density model parameter values were used as independent variables in lo-
gistic regression models. Both the shape and density model parameters were
subsequently combined in a logistic regression evaluation. As a comparison,
the areal BMD values of the same subjects were evaluated and combined in a
second logistic regression model to determine to what extent the areal BMD
measurements can discriminate between the fracture and non-fracture group.
Finally, the 14 shape model parameters, the 11 density model parameters
and the areal BMD values were evaluated for their combined discrimination
ability.
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Figure 3.6: The registration of the statistical model onto a DXA image.

Table 3.3: Results of the logistic regression (adjusted for age, weight, height and BMI)
and the ROC analysis using the density model parameters.

OR [95% CI] p value AUC [95% CI]

Mode 1 0.361 [0.256 - 0.509] < 0.001 0.672 [0.616 - 0.728]
Mode 2 1.109 [0.884 - 1.392] 0.370 0.518 [0.457 - 0.578]
Mode 3 0.803 [0.657 - 0.981] 0.032 0.567 [0.507 - 0.627]
Mode 4 1.063 [0.906 - 1.247] 0.453 0.534 [0.473 - 0.595]
Mode 5 1.149 [0.991 - 1.333] 0.066 0.555 [0.495 - 0.616]
Mode 6 0.789 [0.665 - 0.935] 0.006 0.579 [0.520 - 0.639]
Mode 7 0.975 [0.821 - 1.157] 0.768 0.516 [0.455 - 0.576]
Mode 8 0.841 [0.716 - 0.988] 0.035 0.564 [0.504 - 0.624]
Mode 9 0.954 [0.810 - 1.122] 0.568 0.526 [0.466 - 0.587]
Mode 10 1.261 [1.093 - 1.455] 0.001 0.591 [0.532 - 0.650]
Mode 11 1.060 [0.899 - 1.249] 0.490 0.529 [0.469 - 0.590]
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Table 3.4: Results of the logistic regression (adjusted for age, weight, height and BMI)
and the ROC analysis using the areal BMD measurements.

OR [95% CI] p value AUC [95% CI]

Femoral neck aBMD 2.010 [1.503 - 2.688] < 0.001 0.638 [0.581 - 0.696]
Trochanteric aBMD 1.866 [1.417 - 2.457] < 0.001 0.641 [0.583 - 0.699]
Shaft aBMD 2.622 [1.927 - 3.568] < 0.001 0.680 [0.625 - 0.736]
Total aBMD 2.909 [2.095 - 4.039] < 0.001 0.686 [0.631 - 0.742]

OR and 95% CI per 1SD decrease of BMD.

Table 3.5: AUC values resulting from logistic regression analysis on the various model
parameter and areal BMD measurement combinations.

AUC [95% CI] R2
*

Shape model parameters 0.683 [0.628 - 0.739] 0.133
Density model parameters 0.719 [0.666 - 0.772] 0.193
All model parameters 0.752 [0.701 - 0.803] 0.242
BMD 0.802 [0.757 - 0.848] 0.293
BMD + All model parameters 0.840 [0.799 - 0.881] 0.395

BMD= areal BMDmeasurements of the femoral neck, trochanteric,

shaft and the total areal BMD.
* Nagelkerke R2.

3.3 Results

First, the relationships of the individual model parameters with the hip
fracture incidence are examined. In Table 3.2 and 3.3 the ORs and AUC
values are given for the shape and density model parameters individually.
The 1st mode of variation of the shape model corresponding to the scale (Fig.
3.3) has a strong association with the fracture incidence with an OR of 0.639
(95% CI 0.477 - 0.857, p = 0.003). Also for the 2nd shape model parameter,
which describes the neck shaft angle, there is a significant association (OR =
1.229, 95% CI 1.042 - 1.451, p = 0.014). The 10th and 11th mode of variation
also have a strong and significant association but due to their relative small
variance are difficult to interpret. The main mode of variation of the density
model, which is related to the global density (Fig. 3), is strongly associated
with the fracture incidence with an OR of 0.361 (95% CI 0.256 - 0.509)
and is highly significant (p < 0.001). The AUC of this mode of variation
(0.672, 95% CI 0.616 - 0.728) is comparable to the AUC of the various areal
BMD measurements (Table 3.4). Again, the other modes of variation with a
significant association (mode 6 and 10) are difficult to interpret due to their
relative small variance.

In Fig. 3.7 the ROC curve is given for the parameters acquired by the
model registration, the areal BMD values and the full set of model param-
eters and areal BMD measurements after a logistic regression analysis. The
AUC for all evaluated combinations as well as the 95% CI and p values are
presented in Table 3.5. The model parameters results in an AUC value of
0.752 (95% CI 0.701 - 0.803) whereas the areal BMD measurements results
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Figure 3.7: The ROC curves resulting from logistic regression analysis on the aBMD
measurements (BMD), the shape and density model parameters (Model) and the combined
areal BMD measurements and model parameters (BMD + Model).

in an AUC value of 0.802 (95% CI 0.757 - 0.848). By combining all model
parameters and BMD measurements an AUC value of 0.840 (95% CI 0.799
- 0.881) is achieved.

Finally, Fig. 3.8 shows the reconstruction results corresponding to the
subjects in the fracture and control group with respectively the highest and
lowest fracture risk according to the logistic regression on the combined
model parameters and areal BMD measurements. The reconstruction results
are presented as a projection and the coronal and femoral neck cross-sectional
slice of the deformed density model and the resulting mesh of the shape
model instance.

3.4 Discussion

In this work a method to construct and register a statistical model of shape
and density distribution onto a DXA image was presented and evaluated
for its ability to discriminate between a fracture and control group. The
model parameters resulting from the reconstructions have been shown to be
able to improve the discrimination ability with respect to only DXA derived
areal BMD measurements. Fig. 3.8 illustrates the differences in shape and
density distribution that determine the fracture risk according to a logistic
regression using the model parameters together with the areal BMD mea-
surements. On the coronal slice it can be clearly seen that the high fracture
risk has a decreased global volumetric BMD and an overall decreased cortical
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Figure 3.8: Reconstruction results of the subjects in the fracture and control group
corresponding respectively to the highest and lowest fracture risk as determined by the
logistic regression on the combined model parameters and areal BMD measurements.
From top to bottom: the DXA images, the shape model instances, the coronal slices and
the cross-sections of the femoral neck of the resulting density volumes.
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thickness. This is in accordance with recent analysis on QCT measurements
[12][58]. Also a greater cross-sectional area can be seen on the femoral neck
cross-section, which again is supported by recent studies [9][58]. Regarding
the shape, a greater neck-shaft angle can be seen on the high fracture risk
subject, which corresponds to recent studies on hip structural analysis from
DXA [62]. In this study the model parameters alone do not result in a better
discrimination than areal BMD measurements. In several studies, also QCT
measurements have not shown to significantly improve the discrimination
ability over areal BMD measurements [20][9]. In [12], three combinations of
QCT measurements were compared with areal BMD measurements using lo-
gistic regression analyses. Using trabecular BMD and the cortical thickness
in the trochanteric region for the hip fracture discrimination resulted in an
AUC of 0.843 (95% CI 0.764-0.922) as opposed to an AUC of 0.829 (95% CI
0.743-0.914) for the areal BMD values. However, combining the QCT mea-
surements with the areal BMD measurements resulted in an AUC of 0.864
(95% CI 0.791-0.937). Our method results in a similar improvement with an
AUC of 0.840 (95% CI 0.799-0.881) using the model parameters combined
with the areal BMD measurements as opposed to an AUC of 0.802 (95% CI
0.757-0.848) using only the areal BMD measurements. Our method, how-
ever, only relies on the DXA imaging modality. Consequently, the patient
does not have to be exposed to additional radiation. Moreover, the method
is fully compatible with current clinical routine where DXA is the standard
modality for fracture risk assessment.

The DXA scans used in this study were performed using the GE Lunar
Prodigy bone densitometer which provides images with a resolution of 0.6×
1.05mm2 whereas the more recent line of DXA scanner result in significantly
higher resolution images with a resolution of 0.3 × 0.25mm2 for the newer
GE Lunar iDXA device. Higher resolution images allow for more accurate
reconstructions and thus a more accurate description of the 3D shape and
the internal bone structure. Consequently, it is anticipated that the results
obtained with the current dataset can be improved upon with the use of
the more modern DXA devices. Furthermore, DXA devices equipped with a
C-arm are appearing and the increased accuracy resulting from a multi-view
reconstruction as presented in [2] is also expected to increase the hip fracture
discrimination ability.

One limitation of this study is the retrospective analysis using the femur
contralateral from the fractured femur. This can be justified by research
on proximal femoral symmetry [32], but ideally an evaluation of the method
should be performed on data resulting from a prospective study. In addition,
no information about the fracture location was available for the DXA scans
used in this work. The different types of fractures have been shown to
relate to different parameters [44]. Thus, it is expected that performing site
specific fracture risk estimations, e.g. making a distinction between femoral
neck and intertrochanteric fractures, improves the fracture risk accuracy for
the individual locations. In future work we hope to acquire a dataset that
allows for the evaluation of a location specific fracture risk assessment and
be able to evaluate the proposed method within a prospective study.
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The method proposed in this work can, in a straightforward manner, be
applied to other bones such as the vertebrae, which is the most common
location for osteoporotic fractures. We therefore also aim to evaluate the
proposed method for its ability to improve vertebral fracture risk estimations.

In conclusion, we have presented a method for improving the hip fracture
discrimination ability from DXA by including the statistical model param-
eter values resulting from a 3D reconstruction with the regular areal BMD
measurements. A 3D reconstruction method from DXA is combined with a
statistical analysis of the 3D shape and BMD distribution to incorporate the
advantages of a detailed 3D analysis as can be obtained from QCT, without
exposing the patient to the associated high radiation dose. The results in-
dicate that the proposed method can potentially improve the fracture risk
estimation accuracy over current clinical practice while maintaining DXA as
the standard modality.
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Continuing the work presented in chapter 2, here both the 3D shape and
volumetric density image of the lumbar vertebrae are reconstructed from
DXA. This requires the extension of the reconstruction method to a multi-
object approach to deal with the superimposition of the vertebrae on the
radiographs. Besides the regular anterior-posterior (AP) view, the lumbar
vertebrae allow for a lateral DXA image acquisition. Thus, the method
is extended to a multi-view reconstruction. The reconstruction method is
evaluated for the L2, L3 and L4 lumbar vertebrae. A statistical model
of the shape and bone mineral density distribution is first constructed for
each of the three vertebrae from a dataset of 66 QCT scans. All three
models are then simultaneously registered onto both AP and lateral DXA
image using an intensity based registration process. By using this multi-
object approach, overlapping regions between consecutive vertebrae can be
accurately reconstructed. Moreover, the addition of a lateral projection,
which is not possible for the proximal femur, allows for an improved overall
reconstruction accuracy. The reconstructions of 30 subjects are subsequently
evaluated with respect to the ground truth QCT scans. For the shape, the
point to surface distances are computed as well as the correlations of the mid
vertebral body cross-sectional area (CSA) measurements. For the density
distribution, the vBMD of the total vertebra, the vertebral body and the
trabecular region inside of the vertebral body is compared with the same
subject QCT scans.

The content of this chapter is adapted from the following publication:

T. Whitmarsh, L. Humbert, L. M. Del Rio Barquero, S. Di Gregorio, A. F.
Frangi, 3D Reconstruction of the Lumbar Vertebrae from Anteroposterior
and Lateral Dual-energy X-ray Absorptiometry, submitted, 2012.

59



4.1 Introduction

Approximately 25 percent of all postmenopausal women in the United States
experience a vertebral compression fracture [82], which is the most common
type of osteoporotic fracture. The fracture incidence increases with age due
to the progression of osteoporosis, which is characterized by the deteriora-
tion of the bone tissue resulting in a more fragile bone. Although vertebral
fractures can remain undiagnosed, they can potentially result in great dis-
comfort and a diminished quality of life, and women with a vertebral fracture
have a 15 percent higher mortality rate compared to those without [24].

Clinical measures for fracture prevention quantify the areal BMD of the
vertebrae from DXA to determine the level of bone degradation. DXA pro-
vides an estimate of the projected density (g/cm2) which does not take into
account the thickness of the bone. This causes the BMD to be underes-
timated in individuals with smaller bones. Furthermore, in the AP DXA
images, the vertebrae are superimposed by the spinous processes.

The vBMD extracted from QCT has been shown to be able to reliably
evaluate levels of osteoporosis [40]. However, because of the high cost and
high radiation dose, QCT is not used for such analysis in clinical routine.

Several methods to estimate the volumetric BMD from AP or lateral
DXA have been proposed by assuming a cylindrical shape [17, 13, 60, 99].
This so called Bone Mineral Apparent Density (BMAD) has been shown to
correlate well with the true volumetric density but does not describe the bone
spatial distribution and is not able to discriminate between the trabecular
and cortical components.

During aging and in particular when affected by osteoporosis, the tra-
becular bone structure within the vertebral body undergoes a process of
degradation. It is the vBMD within this trabecular region that has been
shown to be a strong determinant of the vertebral strength [52, 88, 87] and
is a reliable fracture risk predictor [16, 49].

While QCT can measure the trabecular and cortical BMD separately,
BMAD can not. Furthermore, also the shape largely determines the ver-
tebral strength and should be taken into account when evaluating the risk
of fracture. In particular the size of a vertebra has been shown to be sig-
nificantly smaller for fracture patients than controls [30] and the vertebral
body CSA, has been found to be smaller in woman with fractures than for
controls [42]. Again, these measurements can be taken from CT but are not
used in standard clinical practice.

There is already some previous work in reconstructing the 3D shape from
planar radiographs. Some reconstruct the 3D shape by deforming a generic
or parametric model [86, 29, 73, 68, 55] which requires the annotation of
several landmarks on the radiographs. Several other approaches use a 3D
statistical model to reconstruct the shape from planar X-ray images [7, 120].
These methods use the bone contours on the planar images to register and
reconstruct the 3D shape whereby the silhouette of the model is matched
with the edges extracted from the radiographs. These methods, however,
only reconstruct the 3D shape and do not consider the bone mineral densities
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and the bone spatial distribution.
Thus, in this work we propose a method to reconstruct the 3D shape

as well as the density volume of the vertebra from DXA images used in
clinical routine. A statistical model of the shape and a model of the spatial
distribution of the vertebral bones are first constructed from a large database
of QCT scans. These models are registered onto an AP and lateral DXA
image in an intensity based registration process which, after convergence,
results in the 3D reconstructions. The reconstructions are evaluated by a
comparison with the same subject QCT volumes, which are considered the
ground truth. The reconstruction accuracy of the shape is determined by the
point to surface distances as well as comparing the CSA of the reconstruction
with the CSA acquired from the ground truth QCT scans. In addition, the
total vBMD, the vBMD of the vertebral body and the trabecular vBMD is
evaluated with respect to the ground truth QCT.

4.2 Materials and methods

4.2.1 Data

A dataset of 96 spinal CT scans was collected at the CETIR Medical Cen-
ter (Barcelona, Spain) using the Philips Gemini GXL 16 system (Philips
Healthcare, Best, The Netherlands). All subjects were female and scans
were rejected in case of the presence of arthritis, abnormal bone growth or
the detection of vertebral fractures. The CT scans had a pixel spacing rang-
ing between 0.47 and 1.04mm and a slice thickness of 0.5mm. The volumes
were calibrated using the Mindways calibration phantom (Mindways Soft-
ware Inc., Austin, TX, United States) and were subsequently converted to
calcium hydroxyapatite (HA) density values corresponding to the European
forearm phantom [97].

In addition to the CT scan, for 30 patients also an AP and lateral DXA
image of the lumbar spine was acquired using the GE Healthcare’s Lunar
iDXA scanner (GE Healthcare, Madison, WI, USA). For the AP direction
the patient was in a standard supine position while for the lateral DXA image
acquisition the patient was repositioned to a lateral recumbent position. The
AP DXA image has a resolution of 0.3 × 0.25mm2 and the Lateral DXA
image a resolution of 0.6× 0.25mm2. These DXA images were subsequently
converted to correspond to standardized BMD [41] which is also related to
the HA density values of the European forearm phantom.

For these 30 subject, with an average age of 55 ± 11 years, the DXA
images were used for the validation of the reconstruction method whereby the
reconstructions were compared with the vertebral shapes and the volumetric
densities acquired from the same subject CT scans. The remaining 66 CT
scans of which the subjects had an average age of 54±11 years were used for
the construction of the statistical models used in the reconstruction method.
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Figure 4.1: Model construction pipeline.

Ethical approval was granted for all data acquisitions by the Institutional
Review Board and written informed consent was provided by all the subjects
included in this study.

4.2.2 Statistical modelling

Shape model

In previous work a statistical model of shape and BMD distribution was pre-
sented for the proximal femur together with the method for its construction
[108]. The statistical model of the vertebrae is of the same form. However,
the more complicated shape requires a change to be made to the construc-
tion method in the form of an initialization using manually defined landmark
locations.

The pipeline for the vertebral model construction is depicted in Fig. 4.1.
First a reference is selected based on its regular bone shape. This reference is
subsequently segmented using ITK-SNAP [117] to acquire a detailed trian-
gular surface mesh. The mesh used in this work consisted of 28,586 vertices.
All QCT scans are first registered onto this reference by a rigid transforma-
tion defined by 24 landmark locations (Fig. 4.2) which were identified in the
volumes by a graphical user interface. The rigid transformation is computed
according to [54], which gives the optimal mapping of the landmarks in a
least squares sense. This is followed by an intensity based TPS registration
using a subset of 300 vertices from the reference mesh as the control points,
which were acquired using a mesh decimation method [53]. Here, the 24
manually defined landmarks define a TPS transformation which is used to
initialize the TPS registration process. The transformations resulting from
the registration process are used to deform the detailed reference mesh to
the patient specific vertebral shapes of all QCT volumes.

For the intensity based TPS registrations the L-BFGS-B optimizer [122]
was used in conjunction with Mattes Mutual Information similarity metric
[80]. The similarity measure was extended by a regularization term based
on a spring system as described in [110] to prevent the control points from
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Figure 4.2: The 24 vertebral landmarks used to initialize the intensity based registra-
tions in the model construction process.

drifting and to maintain a smooth regular mesh.
To remove the reference selection bias and to improve the individual reg-

istrations, the reference is deformed to the mean shape and the registration
process is performed once more. This results in the aligned patient specific
surface meshes with a vertex correspondence between them.

To generate the statistical model of the shape, PCA is applied to the
vertices of the resulting surface meshes. Each i-th shape can be expressed
by the set of vertex coordinates si = (xi

1, ...,x
i
a)

T ∈ R
3a, where a is the

number of vertices. The mean s = (x1, ...,xa)
T is subsequently computed

and the covariance matrix Cs can thus be expressed as:

Cs =
1

k − 1

k
∑

i=1

(si − s)(si − s)T (4.1)

Here k is the number of subjects included in the analysis. Singular Value
Decomposition (SVD) applied to this matrix retrieves the eigenvectors sorted
by their associated eigenvalues. A new shape instance s can now be expressed
as the mean shape and a linear combination of the first m eigenvectors
corresponding to the main modes of variation:

s = (x1, ...,xa)
T = s+

m
∑

j=1

pjαj . (4.2)

Here pj is the j-th eigenvector and αj the corresponding scalar coefficient,
referred to here as the shape model parameter.

Density model

For generating the density model, the registration process is performed one
more time which deforms each QCT volume to the mean shape, whereby the
reference space is defined by 0.5mm cubic voxels. This results in the shape
normalized volumes with a voxel correspondence between them, and PCA is
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subsequently applied to the density values of the voxels inside of the bone
shape. For each i-th volume the density values of the voxels are captured by
vector vi = (di1, d

i
2, ..., d

i
b)

T ∈ R
b, where b is the number of voxels, and the

average v is computed as well as the covariance matrix Cv:

Cv =
1

k − 1

k
∑

i=1

(vi − v)(vi − v)T (4.3)

Again SVD decomposes the covariance matrix into the eigenvectors and
corresponding eigenvalues. A new volume v can now be expressed as the
average volume v and the first n eigenvectors which describes the changes
in the density distribution:

v = v +

n
∑

j=1

qjβj (4.4)

Here qj is the j-th eigenvector with the corresponding density model pa-
rameter βj . A new instance of the density model thus describes the spatial
distribution of the bone within the mean shape.

In this way a statistical model of shape and density distribution is gener-
ated for the L2, L3 and L4 vertebrae using the dataset of 66 QCT volumes
previously described. Cattell’s scree test [18] was used to determined the
number of modes of variation that should be used in the statistical mod-
els, resulting in m = 10 shape model parameters and n = 5 density model
parameters Figure 4.3.
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Figure 4.3: Scree plots of the shape models (left) and the density models (right) of the
L2, L3 and L4 vertebrae. The “elbow” is determined to be at respectively the 10th and
5th principal component whereby, according to Cattell’s scree test, all further components
are dropped.

In Figure 4.4 the first three modes of variation of the shape and density
model of the L3 vertebra are depicted. The statistical models of the L2 and
L4 vertebrae show similar variations.
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Figure 4.4: The mean and the first three modes of variation (described by +3 and -3
standard deviations (σ) from the mean) of the shape model (right) and projections of the
density model (left) in the longitudinal (top), lateral (middle) and AP (bottom) direction.

65



Model instance

A new instance of the statistical model is defined by the shape and density
model parameters. The density model parameters βj define a new density
model instance v and the shape model parameters αj define the new shape
onto which the volume is deformed. The densities of the density model
instance are first implicitly rearranged to form a volume V :

v 7→ V (4.5)

The density volume is defined in the space of the mean shape s and is
deformed to the new shape model instance s using a subset S of the vertex
correspondences:

S ⊂ {(x1,x1), ..., (xa,xa)} (4.6)

In this work a subset of 300 vertex pairs are used. From set S a TPS
transformation T is defined which maps the vertices of the new shape (source
vertices) to the corresponding vertices of the mean shape (target vertices):

xtarget = T (xsource) ∀ (xtarget,xsource) ∈ S (4.7)

The TPS transformation is subsequently applied to the volume of the
density model instance V to acquire the shape deformed density model in-
stance V ′:

V ′ = V ◦ T (4.8)

4.2.3 Reconstruction

Similar as presented in [110] the vertebrae are reconstructed from DXA in
an intensity based 3D-2D registration process. A multi-object approach was
used by incorporating the L2, L3 and L4 vertebra simultaneously to deal
with the overlap between the consecutive vertebra. In the 3D-2D registration
process the model parameters are searched to find the instance of the shape
and density models so that the projections of the shape deformed density
model instance, referred to here as the Digitally Reconstructed Radiographs
(DRRs), matches the anteroposterior and lateral DXA image (Figure 4.5).
In addition to the model parameters, also the rigid transformation for both
views has to be found, which is defined by a rotation about all three axes
and a translation parallel to the image plane. Separate rigid transformations
are required for both views since the patient is repositioned for the lateral
DXA acquisition, which changes the spinal position and intervertebral ori-
entations.

The registration is initialized by a manual alignment of the mean ver-
tebral shapes in both views. The parameter set is subsequently optimized
using an evolutionary algorithm based on [104] in conjunction with the Mean
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Figure 4.5: Illustration of the reconstruction process whereby the statistical model of
the L2, L3 and L4 vertebra are registered onto the AP and lateral DXA images. The
instance of the models are found so that their projections match the DXA images.
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Squared Error (MSE) similarity measure. The objective function can be de-
scribed as follows:

min(MSE(IAP
DXA, I

AP
DRR) +MSE(I lateralDXA , I lateralDRR )) (4.9)

Here the MSE over the AP DXA image IAP
DXA and the DRR of the model

instance in the AP direction IAP
DRR is summed with the MSE computed over

the lateral DXA image ILateralDXA and the DRR in the lateral direction ILateralDRR .
The DRR is generated by applying an isometric projection P over the three
vertebral model instances (V ′

L2, V
′
L3 and V ′

L4) whereby for each vertebra first
a rigid transformation is applied for both the AP DRR (RAP) and the lateral
DRR (RLateral):

IAP
DRR = P (V ′

L2 ◦R
AP
L2 )

+P (V ′
L3 ◦R

AP
L3 )

+P (V ′
L4 ◦R

AP
L4 )

(4.10)

I lateralDRR = P (V ′
L2 ◦R

lateral
L2 )

+P (V ′
L3 ◦R

lateral
L3 )

+P (V ′
L4 ◦R

lateral
L4 )

(4.11)

A mask is manually defined on both the AP and lateral DXA images to
constrain the registration process to the region of interest. In the lateral
projection of the lumbar spine, the L4 vertebra is often overlapped by the
pelvic bone [59]. To prevent the pelvic area from influencing the reconstruc-
tions, this overlapping region is removed from the mask and thus does not
contribute to the similarity measure in the reconstruction process (Figure
4.6). By using an approach using a statistical model, however, still a statis-
tically probable vertebral shape and density distribution is estimated in the
region outside of the mask.

4.2.4 Evaluation

A statistical model was constructed of the L2, L3 and L4 vertebra using the
dataset of 66 QCT scans. For the evaluation of the reconstruction accuracy,
the dataset of 30 vertebral QCT scans with corresponding DXA images was
used. The L2, L3 and L4 vertebral models were registered onto the AP and
lateral DXA images simultaneously, resulting in the reconstructed vertebral
shape and the density volume for all three vertebrae. The reconstruction
accuracy of the shapes and the volumetric densities were evaluated by a
comparison with the same subject QCT scans. For this evaluation, all QCT
scans were manually segmented and a detailed surface mesh was constructed
from the segmentations.

The reconstruction accuracy of the shape was evaluated by first aligning
the reconstructed shape with the ground truth surface mesh using the iter-
ative closest point algorithm. Subsequently, the point-to-surface distances
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Figure 4.6: The regions of interest on the Lateral and AP DXA image used for con-
straining the reconstruction process.

Figure 4.7: The location of the mid vertebral body cross-section (left) and the region
for computing the CSA indicated in red (left).

from the vertices in the model to the surface mesh were computed. Since the
vertebral body is the region of interest with respect to vertebral fractures,
this region was identified on the vertebral shape, and the point-to-surface
distances of this region were evaluated separately.

In addition to the point to surface distances, the reconstruction accu-
racy of the more clinically relevant CSA was evaluated. The total CSA was
defined in the mid vertebral body as depicted in Fig. 4.7. The manual
segmentation subsequently defines the vertebral bone region and vertebral
body is isolated by a line parallel to the transverse processes. This region was
extracted in both the reconstructed volumes and the ground truth QCT vol-
umes which were subsequently compared to each other by a linear regression
analysis.

The ability of the method to reconstruct the volumetric densities was
evaluated by comparing the total vBMD, the vertebral body vBMD and
the trabecular vBMD extracted from the reconstructions with respect to
the same measurements from the ground truth QCT volumes. The corre-

69



Figure 4.8: From left to right: the total vertebra, the vertebral body and the trabecular
region within the vertebra for the vBMD measurements.

Table 4.1: The shape errors expressed as point-to-surface distances (mm).

Total Vertebral body

Mean 2RMS* Max Mean 2RMS* Max

L2 1.02 2.77 9.68 0.81 2.06 6.45
L3 1.01 2.74 12.57 0.79 2.16 6.67
L4 1.30 3.55 12.13 1.05 2.81 7.15
* 95% confidence interval.

sponding regions are illustrated in Fig. 4.8. The total vBMD is acquired by
computing the average density in the whole vertebra. The vertebral body
vBMD is determined by considering only the densities in the vertebral body
which include the cortical bone. Finally, the region for the trabecular vBMD
is determined by dilating the region of the vertebral body by 6mm to guar-
antee the exclusion of the cortical component.

4.3 Results

All reconstructions converged in approximately 10,000 iterations and the full
set of 30 reconstructions took approximately 130 hours to complete on an
Intel R©Core

TM

i7 CPU 920 @ 2.67GHz processor.
The shape of the L2 vertebra was reconstructed with a mean(2RMS)

point-to-surface distance of 1.02(2.77)mm for the total vertebral shape and
0.81(2.06)mm for the vertebral body. The L3 vertebrae were reconstructed
with a similar accuracy of 1.01(2.74)mm and 0.79(2.16)mm for the total ver-
tebral shape and the vertebral body respectively. The reconstruction accu-
racy of the shape of the L4 vertebrae was slightly lower with a mean(2RMS)
point-to-surface distance of 1.30(3.55)mm for the total vertebral shape and
1.05(2.81)mm for the vertebral body. The full set of measurements are pre-
sented in Table 4.1. In Fig. 4.9 the average point to surface distances are
visualized on the mean shapes which show the distribution of the shape
errors.

In Fig. 4.10 the boxplots of the vBMD and CSA reconstruction errors
are given. The full set of vBMD and CSA reconstruction errors and correla-
tion values are given in Table 4.2. All reported correlations are statistically
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Figure 4.9: The color-coded point to surface distances (mm) between the reconstructed
shapes and the QCT-derived surfaces averaged over the 30 subjects.

significant (p < 0.05).
For the vBMD measurements of the L2 and L3 vertebrae a strong cor-

relation (r > 0.85) was found with the QCT measurements. In particu-
lar the trabecular vBMD was reconstructed with a mean(2RMS) error of
22.3(52.9)mg/cm3 and 19.1(46.3)mg/cm3 and a correlation coefficient of
0.90 and 0.85 for the L2 and L3 vertebrae respectively. Again the L4 vertebra
showed a slightly less accurate reconstruction with a correlation coefficient
of 0.81 and 0.82 for the vertebral body and trabecular region respectively.
In Fig. 4.11 the linear regressions are shown for all vBMD measurements.

Figure 4.12 shows the mid vertebral body slices of the reconstructed L3
vertebra and of the corresponding QCT scans of 3 subjects. The boxplots
of the CSA reconstruction accuracies show several outliers which have a
significant negative effect on the regression analysis, as can be seen in the
offsets and slopes associated with the regressions. Performing the regression
analysis with the outliers removed resulted in a correlation coefficient of
0.83, 0.75 and 0.55 for the L2, L3 and L4 vertebrae respectively. The scatter
plots and regression lines, both using all 30 subjects and with the outliers
removed, are given in Fig. 4.13.

4.4 Discussion

Both the vBMD measurements from QCT and the estimates of volumetric
BMD (BMAD) have been shown to be stronger associated with vertebral
fractures than standard projected BMD measurements [60]. Thus, taking
into account the 3D shape and thereby the volume of the vertebrae can im-
prove the measurement of the bone density and consequently provide a better
fracture risk estimation. In [55] the 3D shape of the vertebrae were recon-
structed from biplanar X-rays images with a mean(2RMS) point-to-surface
distance of 1.0(2.7)mm. In comparison, our method reconstructed the global
region of the L2 and L3 lumbar vertebra with a similar mean(2RMS) point-
to-surface distance of 1.02(2.77)mm and 1.01(2.74)mm respectively.
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Figure 4.10: The boxplots of the vBMD and CSA reconstruction errors with the outliers
indicated by crosses.

Table 4.2: The reconstruction errors and correlation values for the vBMD and CSA
measurements (with outliers removed in Italic).

Mean 2RMS* Max r Offset Slope

L2

vBMD total (mg/cm3) 13.9 38.1 70.3 0.92 -1.5 1.03
vBMD body (mg/cm3) 16.8 41.5 47.3 0.89 -15.0 1.02
vBMD trab. (mg/cm3) 22.3 52.9 48.4 0.90 -12.9 0.94

CSA (mm2)
54.3 135.5 152 0.74 226.2 0.80
44.0 103.8 131 0.83 98.8 0.92

L3

vBMD total (mg/cm3) 21.5 56.1 79.4 0.91 -20.7 1.17
vBMD body (mg/cm3) 16.5 40.9 44.2 0.87 -26.6 1.17
vBMD trab. (mg/cm3) 19.1 46.3 55.4 0.85 -12.2 1.05

CSA (mm2)
62.8 160.9 221 0.71 440.8 0.61
53.1 127.8 150 0.75 199.0 0.83

L4

vBMD total (mg/cm3) 22.9 63.9 112.0 0.86 -10.14 1.12
vBMD body (mg/cm3) 21.1 54.3 67.2 0.81 -8.46 1.08
vBMD trab. (mg/cm3) 21.1 50.2 59.3 0.82 -0.37 0.98

CSA (mm2)
79.3 201.1 265 0.45 457.0 0.58
72.9 179.2 187 0.55 300.4 0.72

The vBMD and CSA error expressed as absolute differences.
* 95% confidence interval.
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Figure 4.11: Linear regressions between the vBMD measurements extracted from the
reconstructions and the ground truth QCT volumes.

In Fig. 4.9 one can see that the point-to-surface distances are dispro-
portionately large at the transverse processes. These segments, of which the
low density bone contours are difficult to distinguish from the soft tissue
structures on the DXA images, contribute a great deal to the global shape
error. This anatomical region, however, is of little importance with respect
to the diagnostic of pathologies on the vertebral column.

While accurately reconstructing the 3D shape can potentially improve
the estimation of the total volumetric density, our method is able to also
reconstruction the volumetric densities inside of the bone, and thus is able
to estimate the trabecular vBMD. The trabecular vBMDmeasurements from
QCT have previously been shown to provide a better measure for the risk of
fracture than aBMD measurements from DXA. In [49] a comparison between
the fracture discrimination ability of QCT derived trabecular vBMD and
regular areal BMD measurements from lateral and AP DXA resulted in an
Area Under the Receiver Operating Curve (AUROC) of 0.9518± 0.0228 for
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Figure 4.12: The L3 mid vertebral body slices from QCT (left) and the reconstructions
from the DXA images of the same subjects (right).
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Figure 4.13: Linear regressions between the CSA measurements from the reconstruc-
tions and the ground truth QCT volumes. The outliers are indicated by the crosses and
the dashed line represents the regression line when the outliers were removed.

QCT, and an AUROC of 0.8741± 0.0332 and 0.7931± 0.0446 for the lateral
and AP DXA respectively.

In this study a strong correlation was found between the reconstructed
trabecular vBMD and the trabecular vBMD extracted from QCT with a
correlation coefficient of 0.90 and 0.85 for the L2 and L3 vertebra respec-
tively. Considering it is the trabecular region that is predominantly affected
by osteoporosis and is recognized as the main cause of compression fractures,
this indicates the potential of the method to improve the fracture risk esti-
mation accuracy from DXA. Furthermore, the method is able to accurately
reconstruct the shape with respect to the vertebral body CSA (r > 0.74 and
r > 0.71 for the L2 and L3 vertebrae respectively), which is a structural
measurement related to the vertebral body compressive strength. The box-
plots and regression values, however, indicate several outliers which remain
undetected in the vBMD measurements (Fig. 4.10). Thus, additional efforts
are required to make the method more robust with respect to the shape
reconstruction.

The L4 vertebra is reconstructed with the least amount of accuracy. For
the shape a mean(2RMS) point-to-surface distance of 1.30(3.55)mm was
measured for the total vertebral shape and 1.05(2.81)mm for the vertebral
body and a correlation coefficient of 0.45 was found for the evaluation of the
CSA. This can be explained by the fact that, for many subjects, on the lateral
DXA image a large part of the L4 vertebra was not taken into account in the
registration process due to the overlap with the pelvic bone. The decrease in
accuracy, however, is relatively low, which shows the ability of the statistical
model to reconstruct anatomical regions from partial information.

Although there might be some overlapping rib structures for the L2 and
L3 vertebrae, these vertebrae can more consistently be reconstructed. More-
over, the reconstruction accuracy of the L2 vertebrae is expected to improve
further by including the L1 vertebra in the reconstruction process, thereby
also taking into account the overlapping regions with the L1 vertebra. The
CT scans used in this work, however, did not include the L1 vertebrae and
this structure could therefore not be modeled.

The computation time is currently not practical for the use in clinical
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routine. However, many optimizations are possible such as GPU acceleration
and distributed parallel computing.

The proposed method does not administer the patient to a high radi-
ation dose as QCT does and, by using standard DXA imaging devices, is
fully compliant with clinical practice in osteoporosis diagnosis and fracture
risk estimation. Furthermore, the accurate reconstruction of the shape can
potentially aid in the detection of vertebral fractures or pathologies such as
lumbar spinal stenosis.

4.5 Conclusions

In this work a method was presented to reconstruct the lumbar vertebra
from an AP and lateral DXA image. A statistical model of the shape and
BMD distribution of the L2, L3 and L4 vertebra was first constructed from a
large dataset of QCT scans. The models were simultaneously registered onto
the two DXA images by an intensity based 3D-2D registration process. The
method is distinct from previous work by incorporating statistical informa-
tion about the density distribution. Thereby, apart from the shape, also the
spatial distribution of the bone is reconstructed. This allows us to extract
the vBMD of the trabecular bone which has a better fracture prediction
ability than regular areal BMD used in clinical routine. Thus, our method
has the potential to improve the fracture risk estimation while maintaining
the low cost and low radiation dose DXA images as the standard modality
used in clinical routine.
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Conclusions
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5.1 Overview

Within this thesis a new approach to osteoporotic fracture risk assessment
from DXA was explored by using a 3D reconstruction method. Working
towards the goal of developing a improved fracture risk estimation method
resulted in the following contributions:

• The development of a statistical model of the 3D shape and BMD
distribution and a method for its construction from a large dataset of QCT
scans for both the proximal femur and the lumbar vertebrae.

• An intensity based 3D-2D registration method was developed to reg-
ister the statistical model onto one or more DXA images resulting in a 3D
reconstruction. This method was evaluated for both the proximal femur and
the lumbar vertebrae.

• The model parameters resulting from the reconstruction of the proximal
femur from DXA were evaluated for their hip fracture discrimination ability
with respect to aBMDmeasurements and thereby for its potential to improve
the estimation of the risk of fracture over current clinical practice.

5.2 Conclusions and discussion

Statistical shape and density model. This thesis introduces a novel statis-
tical model of the 3D shape and density distribution of bone structures
through the use of TPS transformations. Other authors have proposed sim-
ilar statistical models of the bone shape and spatial distribution. In [114],
Yao and Taylor present a statistical model described by a tetrahedral mesh
with Bernstein polynomial density functions in the tetrahedrals. A similar
tetraherdal model was proposed in [89] whereby density values were included
in the tetraherdal mesh nodes. Fritscher et al. [37] developed a combined
shape and density model where a statistical analysis was performed onto the
intensities in the volumes and the displacement fields resulting from non-
rigid registrations. The model presented in this thesis is distinct from these
other statistical bone models in that the analysis of the density distribution is
disconnected from the shape by using only control points on the bone surface
for the deformations. Although both models can be combined into a single
statistical model for the reconstruction process, as described in Chapter 2,
an analysis can be performed on the density distribution separately. This
can be of great importance for the diagnosis of osteoporosis which affects
preliminary the internal bone structure or for assessing the pharmaceutical
based bone regrowth. Likewise, the shape can be analyzed separately for
implant design selection which requires an accurate subject specific shape.

The model construction method presented in this thesis has gone through
several stages of development motivated by various design choices. Originally
based on the work by Cootes et al. [26] and Frangi et al. [35] a statistical
shape model was constructed by an intensity based registration process onto
a segmented reference subject using first an affine registration which is fol-
lowed by a multi-scale B-spline registration [109]. This shape model was
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extended by modeling the density distribution after deforming all volumes
to the mean shape using a TPS transformation, which follows the principals
of the Active Appearance Model (AAM) originally proposed by Cootes et
al. [25]. The registration process was later replaced by a similarity regis-
tration followed by a TPS registration and was iterated to remove the bias
of the reference selection as proposed in [35]. The iterative process using
the similarity transform removes the necessity of a Generalized Procrustes
Analysis (GPA) for an alignment of the shapes, while the density model
construction now only requires an extra iteration of the registration process.
These changes make the model construction pipeline more streamlined while
having less distinct components reduces cumulative errors.

Another design choice concerns the normalization of the shapes and den-
sity values. The true shape representation is often defined as the shape with
the location, scale and rotation effects filtered out. The shape model pre-
sented in Chapter 2 is therefore constructed by iterative similarity based
registrations which results in scale normalized aligned shapes. A subject
specific reconstruction thus requires an extra scale parameter in addition
to the model parameters. However, certain applications of statistical shape
models benefit from adding the scale information into the statistical analy-
sis. In Chapter 3 the subject specific shapes were rescaled to their original
size before applying PCA. The resulting principal components as shown in
Figure 3.3 are much more descriptive then the ones with the scale normal-
ized. The first mode of variation describes the size, while the second and
third clearly describe the neck-shaft angle and hip axis length. These vari-
ations are less apparent with the scale normalized as shown in Figure 2.4.
A similar case can be made for not normalizing the internal bone mineral
density values. Other authors apply PCA to the combined shape and den-
sity values [95][37] which requires them to be normalized. This removes the
statistical relationship between the densities and shapes which is of partic-
ular importance when reconstructing the shape from a single DXA image.
In Chapter 2 the shape and density model is combined into a single model
by applying PCA over the eigenvector coefficients which maintains the true
size and density variations. However, it has not been investigated whether
the combined model outperforms the use of a separate shape and density
model and consequently in Chapter 3 an approach was chosen to decouple
the shape and density model.

3D Reconstruction from DXA. The statistical model was shown to be able
to accurately reconstruct both the 3D shape and density volume from DXA
by incorporating it in an intensity based registration process. Comparisons
between the reconstructed femur and the ground truth QCT scans gave an
average error of 1.1mm and a 2RMS error of 2.6mm for the global shape.
Analyzing the BMD distribution reconstruction accuracy in the global re-
gion, a mean error of 72.0mg/cm3 corresponding to 4.9% of the range of
bone densities in this region was measured with a 95% confidence interval of
217.2mg/cm3 corresponding to 14.8% of the total range of bone densities.

The reconstruction method was, in Chapter 4, also shown to results in
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accurate and realistic reconstructions for the lumbar vertebrae from a AP
and lateral DXA image. The vertebrae were reconstructed with a global
average point to surface distance of 1.02mm, 1.01mm and 1.30mm for the
L2, L3 and L4 vertebrae respectively and strong correlations (r > 0.81) were
found between the vBMD extracted from the reconstructions and the same
subject QCT scans.

Although for the reconstruction of the vertebrae the same techniques
were used as for the proximal femur, some design choices had to be made
regarding the use of multiple models. Some previous work model the relative
spacing of the vertebrae [7][10]. This approach, however, constrains the ori-
entation of the individual vertebrae. Considering this thesis is aimed towards
fracture risk assessment, the accuracy of the vertebral shape is considered to
be more important than their relative orientations. Thus, it was decided to
not model the vertebral articulation. In addition, the consecutive vertebral
shapes and density distributions are expected to be highly correlated, which
can be captured by combining them into a single statistical model. How-
ever, this would again constrain the shape and densities of the individual
vertebrae which we therefore opted against. As a consequence, the parame-
ter space became quite large, which in turn resulted in a large computation
time, making the method currently not viable in clinical routine. Thus, a
balance has to be found between the dimensionality on one side and the
reconstruction accuracy on the other. This will ultimately be decided by
time requirements in clinical practice usage and the reconstruction accuracy
required for the fracture risk estimation.

Fracture risk assessment. Reconstructions of the proximal femur from DXA
were, in Chapter 3, shown to be able to discriminate well between a fracture
and control group. Although measurements can be taken from the recon-
structed volumes, a novel technique was proposed by using the model pa-
rameters directly, which give a more complete representation of the subject
specific shape and internal bone distribution. By using a logistic regression
analysis, the model parameters were shown to improve the discrimination
ability of aBMD measurements currently used in clinical routine. The AUC
of the combined model parameters and areal BMD values was 0.840 (95% CI
0.799 - 0.881), while using only the areal BMD values resulted in an AUC
of 0.802 (95% CI 0.757 - 0.848). Thus, the presented method potentially
allows for improved hip fracture risk estimation while maintaining DXA as
the current standard modality.

Although the evaluation was performed for the proximal femur only, the
method can in a straightforward manner be applied to the vertebrae. The
vertebral fracture discrimination ability, however, remains to be investigated.
Nonetheless, the reconstruction accuracy of the trabecular vBMD (r > 0.82)
as well as the cross-sectional area (r > 0.71 for the L2 and L3 vertebrae),
which have been shown to be accurate fracture predictors, suggest that the
reconstruction method does indeed allow for an accurate fracture risk esti-
mation for the vertebrae as well.
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5.3 Outlook and future work

The work carried out in this thesis constitutes a first step towards an im-
proved fracture risk estimation technique. Although the results are promis-
ing, a lot more research and validation is required to produce a method which
can be used in clinical practice and be deployed in clinics. In addition, this
work can take many different directions and has other applications then only
deriving a risk of fracture. Following are some proposed steps toward the
main goal of this thesis as well as different lines of research based on this
work.

Reconstructing from a C-arm DXA device. The experiments performed
within this thesis used DXA images acquired by a narrow-angle fan-beam
DXA device. This acquisition method has several advantages over other
devices. For instance, there is no magnification effect related to the dis-
tance to the X-ray source and therefore no complicated camera calibration
is required. On the other hand, these devices are capable of acquiring a
single view DXA image only for the proximal femur and in order to acquire
the lateral vertebral DXA scan, the patient has to be repositioned from
the supine position. Some of the newer DXA systems are equipped with
a rotation C-arm. These allow for the acquisition of several projections at
various angles. Using projections at multiple angles potentially allows for
a greatly increased reconstruction accuracy. The advantages have already
been shown by evaluating the reconstruction accuracy from several angles
using DXA images simulated from QCT [56]. Further development of the
technique will be required for the reconstruction method to be applied to
real C-arm DXA devices. Considering these devices are starting to be more
widely deployed and provide clear advantages over single view DXA devices,
effort are being put forth towards this goal.

Finite Element Modeling. In this thesis an approach to fracture risk esti-
mation was chosen which fully relies on statistics. However, advancements
in mechanical simulations on bones have recently received great interest. Fi-
nite element modeling allows for the simulation of a mechanical test and thus
can assess the resistance of bones to specific forces [64][90]. In this way the
effect of the forces associated with a single-limb stance or a fall, commonly
the cause of an osteoporotic fracture, can be simulated. Although these
simulations can be performed on QCT scans, they can as well be performed
on the 3D reconstructions acquired by the method presented in this thesis.
Some work towards this goal has already been published [107], but more
work is required for this technique to be able to derive a personalized risk
assessment. In future work we will attempt to perform the FEM analysis
from the 3D reconstructions automatically, whereby a tetrahedral mesh is
constructed from the reconstructed shape which is given material properties
extracted from the reconstructed density volume. Some evaluations are al-
ready underway by comparing strains acquired from a FEM analysis on the
reconstructions with measured strains under different loading conditions.
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Statistical morphometric analysis. Several shape, density and structural
parameters of the proximal femur and vertebrae can be extracted from DXA
and QCT, which can be said to describe strength properties of the bone.
However, there exist many conflicting reports in the literature in what way
these parameters relate to the femoral strength and fracture incidence. For
instance, a lesser femoral neck cross-sectional area is believed to be an indi-
cator of a weaker bone and has been shown to be related to a higher fracture
incidence [58]. Other work report the opposite [43] and link the enlargement
of the CSA with the adaptation to lower BMD in these osteoporotic subjects
[20].

This suggest that the complex bone structures and their relation to the
bone strength is not yet well understood. The statistical model described
in this thesis is particularly useful in examining the global shape changes as
well as the BMD distribution variations of a population. Statistical analy-
sis can determine the shape and density changes which determine the risk
of fracture. This has, to some extend, already been investigated by us in
[108]. In addition, the morphometry and densitometry parameters relate
differently to the fracture risk depending on the type of fracture [31]. The
proposed analysis is able to assess the morphological changes associated with
the fracture risk for specific fracture types, which can lead to a more targeted
risk assessment.

Thus, the statistical methods presented in this thesis have a wider ap-
plication in basic research on bone morphometry which is important for
deriving an accurate subject specific and location specific fracture risk as-
sessment.

Vertebral fracture classification. The spine is subject to years of repetitive
motion and large compressive forces and the vertebra are therefore at high
risk of degenerative changes. Even though these degenerative changes are
often asymptomatic, they can result in great pain and discomfort from nerve
impingement. The detection of this abnormal bone morphometry, however,
is often difficult. In addition, the shape changes associated with normal ag-
ing are still under debate. In particular, there is no consensus on whether a
mild wedging of the vertebral body is the result of a continuous remodeling
with the advancing age or due to micro fractures. To be able to diagnose os-
teoporotic vertebral fractures and other pathological morphological changes,
these should be distinguishable from normality. The detection of vertebral
fractures is of particular importance considering the detection of a previous
fracture is associated with a four times greater risk of subsequent vertebral
fractures [66] as well as an increased risk for hip fractures [8].

The vertebral shape is commonly analyzed by geometric measurements
from planar radio graphs. Common measures for vertebral fracture detec-
tion are the anterior, middle and posterior heights of the vertebral body and
the ratios between them [48]. More complete measurements and dimensions
of various anatomical parts of the selected vertebrae can be acquired from
CT [121][106] or MRI scans [102] which allow for three dimensional mea-
surements. These measurements, however, are still limited descriptors of
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the complex vertebral shape and the high radiation dose associated with CT
and the limited access to MRI devices make this technique unsuitable for
standard practice diagnostic in clinical routine. Some previous work already
applies statistical shape models to the segmentation of the bone contours
from x-ray images [96] and the analysis of the shapes with respect to verte-
bral fractures [28]. The detailed statistical analysis of the complex 3D shape,
as presented in this thesis, together with the reconstruction method from
DXA or regular X-ray images can potentially lead to an improved vertebral
fracture classification and thereby an improved fracture risk assessment.
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2. L. Humbert, T. Whitmarsh, L.M. del Ŕıo Barquero, K. Fritscher, R. Schubert,
F. Eckstein, T.M. Link, R. Schubert and A.F. Frangi, Femoral Strength Prediction
using a 3D Reconstruction Method from Dual-energy X-ray Absorptiometry, IEEE
International Symposium on Biomedical Imaging 2011.

3. T. Whitmarsh, K.D. Fritscher, L. Humbert, L.M. del Ŕıo Barquero, T. Roth, C.
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