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Abstract

According to the World Health Organisation, cardiovascular diseases are the
most prevalent cause of death worldwide and taking nearly 18 million lives
each year. Identifying individuals at risk of cardiovascular diseases, and
ensuring they receive appropriate treatment in time can prevent premature
deaths. Early quantitative assessment of cardiac function, structure, and
motion support preventive care and early cardiovascular treatment. There-
fore, fully automated analysis and interpretation of large-scale population-
based cardiovascular magnetic resonance imaging studies become of high
importance. This analysis helps to identify patterns and trends across pop-
ulation groups, and accordingly, reveal insights into key risk factors before
diseases fully develop.

To date, few large-scale population-level cardiac imaging studies have
been conducted. UK Biobank (UKB) is currently the world’s most extensive
prospective population study, which in addition to various biological and
physical measurements, contain cardiovascular magnetic resonance (CMR)
images to establish cardiovascular imaging-derived phenotypes. CMR is an
essential element of multi-organ multi-modality imaging visits for patients
in multiple dedicated UK Biobank imaging centres that will acquire and
store imaging data from 100,000 participants by 2023.

This thesis introduces CMR image analysis methods that appropriately
scales up and can provide a fully automatic 3D analysis of the UKB CMR
studies. Without manual user interactions, our pipeline performs end-
to-end image analytics from multi-view cine CMR images all the way to
anatomical and functional quantification. Besides, our pipelines provide
3D anatomical models of cardiac structures which enable the extraction of
detailed information of the morphodynamics of the cardiac structures for
subsequent associations to genetic, omics, lifestyle habits, exposure inform-
ation, and other available information in population imaging studies. We
present the quantification results from 40,000 subjects of the UK Biobank
at 50 time-frames, i.e. two million image volumes.
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Chapter 1

Introduction: Background, Motivation and
Contribution

1.1 Heart Anatomy and Function

Heart as a crucial organ to our survival pumps blood through the circulatory system
to provide oxygen and nutrients to cells and carries away unwanted carbon dioxide and
metabolic waste products [1]. The heart which is located between the lungs, in the
middle compartment of the chest, has four chambers, as shown in Figure 1.1: two atria
and two ventricles, and they function as follows:

• The right atrium (RA) receives deoxygenated blood from the body and pumps it
to the right ventricle.

• The right ventricle (RV) pumps the deoxygenated blood to the lungs.

• The left atrium (LA) receives oxygenated blood from the lungs and pumps it to
the left ventricle.

• The left ventricle (LV) pumps the oxygenated blood to the body.
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Right Atrium (RA)

Left Atrium (LA)

Left Ventricle (LV)
Right Ventricle (RV)

Left ChambersRight Chambers

Figure 1.1: Chambers of the heart. The heart has four chambers: two atria and two
ventricles. (Modified from source: © Healthwise, Incorporated)

The atria are smaller than the ventricles with thinner and less muscular walls and
act as blood receiving chambers while ventricles that are connected to the arteries act
as pumping chambers to send blood out of the heart. The ventricular wall has three
layers: epicardium (the external layer), myocardium (the central layer), which contains
the muscle for contraction, and endocardium (the internal layer). Considering adequate
blood pressure is needed to pump the oxygenated blood to various parts of the body,
the LV wall is thicker than the RV wall [2].

This cardiac function happens continuously through the full cardiac cycle, which
is a sequence of electrical and mechanical movements that happens throughout the
relaxation (diastole) and contraction (systole) phases of the heart. The ventricular
diastolic stage involves the blood transfer from atria to ventricles, and the ventricular
systole involves the blood transfer from ventricles to the pulmonary artery and aorta.
The heart pumps blood with a rhythm managed by a group of pacemaking cells in
the sinoatrial node generating a current to contract the heart and passes through the
atrioventricular node and the conduction system of the heart [1].
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1.2 Cardiovascular Disease

1.2 Cardiovascular Disease

Cardiovascular disease (CVD) also called heart and circulatory disease is a general term
for conditions that affect cardiac morphology and function. According to the World
Health Organisation (WHO) [3], CVD is the most prevalent cause of death worldwide,
accounting for nearly 18 million deaths each year.

CVD affects nearly seven million people in the UK and is a significant cause of
disability and death [4]. The long term plan of the National Health Service (NHS)
classifies CVD as a clinical priority and the most prominent condition where lives can
be saved by the NHS over the next ten years. The plan sets the goal for the NHS to
help prevent thousands CVD cases over the next ten years.

There are several risk factors for CVDs that each has moderate effects and interact
with each other in complex ways, such as smoking, stress, alcohol, high blood pressure,
high blood cholesterol, being physically inactive, being overweight, diabetes, family his-
tory of heart disease, ethnic background, sex, and age. Our current understanding of
these risk factors of CVDs is mainly due to prospective population-based research stud-
ies such as the Framingham Heart Study [5], the Monitoring trends and determinants in
Cardiovascular disease (MONICA) project [6], the INTERHEART study [7], the East
German population-based Study of Health in Pomerania (SHIP) [8], the Jackson Heart
Study [9], the Multi-Ethnic Study of Atherosclerosis (MESA) [10], the Dallas Heart
Study [11], and the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-
Reykjavik) [12], all of which have demonstrated the advantage of population-based
longitudinal studies for predicting and preventing CVDs.

In contrast to retrospective studies where the follow-up information is not available,
prospective cohort studies provide the principal requirements and information for a bet-
ter assessment of the risk factors and their individual and collective contribution in the
progression of diseases including CVDs. However, prospective cohort studies require
large-scale population-level studies because only a relatively small proportion with a
particular background will develop a particular condition. When it is known which in-
dividuals have developed some particular condition, then further detailed investigations
can be conducted [13].

Identifying individuals at risk of CVDs and ensuring they receive appropriate and
timely treatment can help prevent premature deaths. However, diagnosis of CVD is
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often made at late symptomatic stages, which leads to late interventions and decreased
efficacy of medical care. Early quantitative assessment of the cardiac structure, motion,
and function support preventive care and early cardiovascular treatment. Therefore,
mechanisms for fully automated analysis and interpretation of large-scale population-
based imaging studies are of high importance. This analysis helps to identify patterns
and trends across population groups, and accordingly, provides insights into key risk
factors before CVDs fully develop.

1.3 Quantitative Cardiac Image Analysis

Assessment of cardiac function can be achieved through different baseline tests such as
blood test or electrocardiogram (ECG), or different imaging techniques that are avail-
able in clinical practice to generate images of the heart from different views, such as
echocardiogram (echo), chest x-ray, computed tomography (CT), nuclear imaging, and
magnetic resonance imaging (MRI) which enable non-invasive qualitative and quant-
itative assessment of cardiac function and structure to provide support for diagnosis,
disease monitoring, treatment planning, and prognosis.

Among all, Cardiovascular Magnetic Resonance (CMR) imaging provides accurate
morphological information and good quality soft-tissue contrast of a human heart.
These images are an excellent source of visual information to monitor and analyse
cardiac function for early diagnosis of heart abnormalities. CMR has fundamental
advantages over other imaging techniques that encourage the community for its use in
clinical practice and research, where it has established itself as the non-invasive gold
standard for assessing cardiac chambers for a wide range of CVDs. CMR offers accurate
and reproducible tomographic, static, or cine images of high spatial and temporal
resolution in any desired plane without exposure to contrast agents or ionising radiation.
As such, long-axis and short-axis views can be acquired to allow a visual, qualitative
assessment of function [13, 14].

However, due to a large amount of visual information within the CMR images
(different slices from different views at different time points), it is required to detect
and segment the target anatomical regions for the further steps of quantification and
clinical assessment. However, clinicians have been using manual or semi-automatic
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approaches for CMR image analysis for years, which is time-consuming and prone to
subjective errors. It is a major clinical challenge to derive quantitative and clinically
relevant information from CMR images automatically. In this regard, fully automated
cardiac image segmentation is an essential first step to partition the image into sev-
eral anatomically meaningful regions, based on which quantitative measures can be
obtained. Typically, the anatomical regions of interest for CMR image segmentation
are the cardiac four chambers, i.e. LV, RV, LA, and RA.

There is an extensive literature of CMR segmentation methods (see reviews [15–
21]). However, most published methods have been developed and tested using datasets
of a few dozen images which in many cases are private databases that are not open ac-
cess. During the last few years, the dimensionality of datasets used in the CMR image
analysis has significantly increased. This presents an unprecedented challenge in the
community since the existing algorithms do not necessarily perform equally accurate
and efficient when dealing with these extraordinary high dimensions, i.e. a consider-
able number of subjects with spatial and temporal imaging data. New technologies,
frameworks and algorithms are thus needed to efficiently process these large quantities
of data to derive useful information.

To date, few really large-scale population-level cardiac imaging studies have been
conducted. One such study stands out for its sheer size, careful implementation, and
availability of top quality expert annotation; the UK Biobank (UKB). The resulting
massive imaging datasets (targeting ca. 100,000 subjects) has put published approaches
for cardiac image quantification to the test.

1.4 Large-scale Population-level Cardiac Image Analysis

Population imaging studies generate data for developing and implementing personal-
ised health strategies to prevent or more effectively treat diseases. Large prospective
epidemiological studies acquire imaging for pre-symptomatic populations. These stud-
ies enable the early discovery of alterations due to impending disease and enable early
identification of individuals at risk.

Currently, patients with similar CVDs symptoms often receive the same treatments
at late symptomatic stages, which leads to late interventions and decreased efficacy
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of medical care. In this context, healthcare needs new biomarkers from large-scale
databases of clinical and biological data [22, 23]. Biomarkers which correspond to
different stages of disease progression have various functions. Biomarkers can support
patients who seem that have no disease, those who have the risk of having a disease,
those who are suspected of having disease, and those with clear pathology indicators
[24].

Computation of accurate and reproducible predictive biomarkers derived from car-
diac structural and functional measurements enable investigation of the disease pro-
gression and its association with those imaging-derived phenotypes. The combination
of non-invasive CMR imaging with clinical data offers a rich source of big cardiac
data, which opens up new issues of exploration to improve our understanding of the
progression of CVDs across different population groups [13, 25]. This kind of study
contributes toward the global move to predictive, preventive, personalised, and parti-
cipatory medicine through big data analysis [26–28]. To study the possible associations
within genetic, lifestyle factors, imaging-derived phenotypes, and subsequent risk of
a wide range of diseases, it is essential to perform imaging in very large numbers of
individuals as only a relatively small proportion of them will develop any particular
condition during follow-up [29].

Large-scale population-based imaging studies of CVDs are becoming possible due
to the advent of standardised, robust non-invasive imaging methods and infrastructure
for big data analysis [30]. However, images constitute essentially of pixels and voxels,
resulting in extremely high-dimensional feature spaces of low semantic value. Funda-
mentally, the goals are to process, aggregate, and reduce these raw intensity image
signals to transform the images into higher-level representations (e.g., clusters, labels,
shapes, biomarkers, etc.). Thus, such studies pose new challenges requiring automatic
image analysis, an essential pre-requisite to automatically and robustly process the im-
age data and extract information about the cardiovascular morphology and function
using segmentation techniques [27, 31].

The UKB is a population-based prospective study, established to investigate the
determinants of disease in middle and old age [32]. UKB is the largest and most de-
tailed imaging study to date. The UKB imaging enhancement aims to perform brain,
cardiac and abdominal MRI, full body dual-energy X-ray absorptiometry and a carotid
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ultrasound scan on 100,000 of the existing 500,000 UKB participants before the end of
2023 [29]. In addition to the collection of extensive baseline questionnaire data, bio-
logical samples and physical measurements, CMR is utilised to provide cardiovascular
imaging-derived phenotypes [13]. Over 45,000 participants have undergone an assess-
ment, already making the UKB imaging enhancement by far the largest multi-modal
imaging study in the world. At this time, CMR scans of 40,000 subjects have been
released and are available for health-related research.

The amount of imaging data collected on such a large number of participants is truly
unique. Yet it is the combination of these data with the wealth of other phenotypic,
genetic and medical record information available in UKB that provides a powerful
resource to address previously unanswerable research questions. Consequently, it is of
high importance to have fully automated methods to quantify CMR-derived phenotypes
and biomarkers from this large-scale study to identify early markers of pathology and
their genetic and lifestyle determinants for preventive care and early cardiovascular
treatment.

1.5 Technical Background and Evaluation Criteria

This section aims at giving a brief introduction to the fundamental theory behind the
proposed segmentation approaches presented in the following chapters. We first explain
the baseline technique of Principal Component Analysis (PCA). Subsequently, we show
what evaluation metrics we use to assess the quality of our proposed methods presented
in the next chapters.

1.5.1 Background Theory

Statistical Models for image processing were introduced by Cootes et al. [33]. These
models can be used for different applications, including image segmentation in various
domains. These models describe statistical variations as seen in a set of example im-
ages, in which corresponding landmark points are annotated. The shapes, which are
spanned by the landmarks, are aligned using the Procrustes analysis to compensate
for translation, rotation and scaling differences between the shape samples. The mean
shape of this set of aligned shapes is calculated, and modes of shape variation are
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computed using PCA. PCA reduces data by geometrically projecting them onto lower
dimensions called principal components, intending to find the best summary of the data
using a limited number of components.

To illustrate this, assume a training set of M shapes, each described by N points
in R3, i.e., xij = (xij ,yij , zij) with i = 1, ...,M and j = 1, ..., N .

Further, let si = (xi1,yi1, zi1, ...,xiN ,yiN , ziN )T be the i-th vector representing the
shape of the i-th surfaces of cardiac chambers. Here, all nuisance pose parameters
(e.g., translation, rotation and scaling) have been removed from using generalised Pro-
crustes analysis. Considering this set covering a particular class of shapes, we will
always observe some degree of inter-point correlation. Thus there could exist a shape
representation accounting for correlation between points. If some point movements
were to be correlated, this could be exploited to reduce dimensionality.

In our case, we will explore a linear transformation of the data:

s′i = L si (1.1)

The shape class mean and covariance of s and s′ are then as follows:

s̄ = 1
M

M∑
i=1

si (1.2)

C = 1
M − 1

M∑
i=1

(si − s̄)(si − s̄)T (1.3)

s̄′ = 1
M

M∑
i=1

s′i = 1
M

M∑
i=1

L si = Ls̄ (1.4)
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C′ = 1
M − 1

M∑
i=1

(
s′i − s̄′

) (
s′i − s̄′

)T
= 1
M − 1

M∑
i=1

(Lsi − Ls) (Lsi − Ls)T

= 1
M − 1

M∑
i=1

L (si − s) (L (si − s))T

= 1
M − 1

M∑
i=1

L (si − s) (si − s)T LT

= L
(

1
M − 1

M∑
i=1

(si − s) (si − s)T
)

LT

= LCLT

(1.5)

Then, if we limit ourselves to orthogonal transformations (i.e. L−1 = LT) left-
multiplication by LT in Equation 1.5 yields:

LTC′ = CLT (1.6)

Substitution of LT by Φ yields:

CΦ = ΦC′ (1.7)

From Equation 1.7 it is seen that if Φ is chosen as the (column) eigenvectors of the
symmetric matrix C, then the covariance of the transformed shapes, C′, becomes a
diagonal matrix of eigenvalues. In the case of correlated points the smallest eigenvalues
will be (close to) zero and the corresponding eigenvectors could be omitted from Φ,
thus reducing the length of s′.

In conclusion, to establish a linear transform that de-correlate data vectors, the
transformation matrix must be the eigenvectors of the covariance matrix of the ori-
ginal data. In order to back transform from the new set of variables, s′, we invert
Equation 1.1, remembering that L is orthogonal:

s = L−1s′ = LT s′ = Φs′ (1.8)

Typically one would apply PCA on variables with zero mean (notice that the Φ is
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unchanged):

s′ = L(s− s̄) , s = s̄ + Φs (1.9)

In summary, the shape covariance is represented in a low-dimensional space or
PCA of the shape. That produces l eigenvectors Φ = [ϕ1ϕ2...ϕl], and corresponding
eigenvalues Λ = diag(λ1, λ2, ..., λl) of the covariance matrix computed via Singular
Value Decomposition. Hence, assuming the shape class follows a multi-dimensional
Gaussian probability distribution, any shape in the shape class can be approximated
from the following linear generative model:

s ≈ s̄ + Φb (1.10)

where b are shape parameters restricted to |bi| ≤ β
√
λi; we typically set β = 3 to

capture 99.7% of shape variability. The shape parameters of s can then be estimated
as follows:

b = ΦT
l (s− s̄) (1.11)

Here, the entries of b are the projection coefficients of mean-centred shapes (s− s̄)
along the columns of Φ.

1.5.2 Data and Evaluation Metrics

We collected the UKB data under access applications number 2964 and 11350. This
study complies with the Declaration of Helsinki. The study was covered by the ethical
approval for UKB studies from the National Health Service National Research Ethics
Service on 17th June 2011 (Ref 11/NW/0382) and extended on 10th May 2016 (Ref
16/NW/0274) with informed consent obtained from all participants. The full CMR
protocol in the UKB has been described in detail elsewhere [34]. Researchers can apply
to use the UKB resource for health-related research that is in the public interest1.

For quantitative assessment of our proposed methods, we evaluate the performance
of the automated method in two ways, respectively using commonly used metrics for

1https://www.ukbiobank.ac.uk/register-apply
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segmentation accuracy assessment and clinical measures derived from segmentations.

BMA SAX

MA A⋂M

𝑑(𝑝, 𝜕𝑀)𝑝

Figure 1.2: Illustration of the DSC, MCD and HD metrics. A and M are two sets
representing automated segmentation and manual segmentation contours. The DSC
metric is the ratio of the intersection over the average area of the two sets. The MCD
first calculates, for each point on one contour, its distance to the other contour, then
calculates the mean across all the points. The HD calculates the maximum distance
between the two contours.

We compute the segmentation accuracy using three key metrics: Dice Similarity
Coefficient (DSC), Mean Contour Distance (MCD) and Hausdorff Distance (HD). Fig-
ure 1.2 illustrates the definitions of the three aforementioned metrics, each of which is
detailed below. First, the DSC evaluates the overlap between automated segmentation
A and manual segmentation M; we define DSC as follows:

DSC = 2|A ∩M|
|A|+ |M| (1.12)

DSC is between 0 and 1, with a higher DSC indicating a better match between the
two segmentations. The MCD and HD measures evaluate the mean and maximum
distance, respectively, between segmentation contours ∂A and ∂M. These measures
are defined as follows:

MCD = 1
2|∂A|

∑
p∈∂A

d(p, ∂M) + 1
2|∂M|

∑
q∈∂M

d(q, ∂A) (1.13)

HD = max(max
p∈∂A

d(p, ∂M), max
q∈∂M

d(q, ∂A)) (1.14)
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where d(p, ∂) denotes the minimal distance from point p to contour ∂. The lower the
distance metric, the better the agreement.

We also evaluate the accuracy of clinical measures, which are derived from image
segmentations. We report clinical cardiac functional indexes derived from manual and
automated segmentation such as atrial and ventricular end-diastolic and end-systolic
volume. To reproduce the reference ranges for cardiac structure and function, we first
extract contours corresponding to the intersection between our 3D triangular meshes
and CMR image slices. Then, for the ventricular indexes calculated on SAX slices, we
use Simpson’s method of integration, whereby a cardiac 3D volume can be approxim-
ated by summing the areas within 2D segmentation contours and multiplying by the
inter-slice spacing. Similarly, for the atrial indexes, we calculate the volume according
to the area-length method on LAX slices. Having quantified cardiac chamber volumes
across all the time points, we report the following sets of indexes, where applicable: the
LV end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV stroke volume
(LVSV), LV ejection fraction (LVEF), LV myocardial mass (LVM), RV end-diastolic
volume (RVEDV) and end-systolic volume (RVESV), RV stroke volume (RVSV), RV
ejection fraction (RVEF), LA end-diastolic volume (LAEDV) and end-systolic volume
(LAESV), LA stroke volume (LASV), LA ejection fraction (LAEF), RA end-diastolic
volume (RAEDV) and end-systolic volume (RAESV), RA stroke volume (RASV), and
RA ejection fraction (RAEF).

1.6 Thesis Contributions and Overview

The main goal of this thesis is to provide fully automated workflows for large-scale
image analysis of cardiac MRI sequences at all time points across the cardiac cycle
and derive relevant clinical measures. We present and evaluate our proposed pipelines
that properly scale up and can provide a fully automatic analysis of the UKB CMR
study. Without any manual user interactions, our pipelines perform end-to-end image
analytics from multi-view cine CMR images all the way to anatomical and functional
quantification. The accuracy of clinical measures is comparable to human expert per-
formance. These methods would assist clinicians in CMR image analysis and diagnosis
with an automated and objective way for deriving clinical measures, therefore reducing
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cost and improving work efficiency. They would also facilitate large-population ima-
ging studies, such as the UKB, which aims to conduct CMR imaging scans of 100,000
subjects. Fully automated methods are crucial for analysing such a large amount of
images and extracting clinically relevant information for subsequent clinical studies.

This thesis has addressed the quantitative analysis of population CMR imaging
with the two following specific objectives:

• A fully automatic image parsing workflow with embedded quality control to per-
form end-to-end image analytics from multi-view cine CMR images all the way
to anatomical and functional quantification, and evaluate its performance on a
large-scale CMR imaging study.

• An accurate 3D modelling of cardiac chambers to enable the extraction of detailed
information of the morphodynamics of the cardiac chambers for further study of
its association to genetic, omics, lifestyle habits, exposure information, and other
information provided in population imaging studies.

The proposed solutions to the objectives as mentioned above, are presented in the
next chapters, which represent three specific contributions, with one chapter dedicated
to each of them:

• Chapter 2 presents a fully automatic, high throughput image parsing workflow
for the analysis of CMR images, and test its performance on the UKB cardiac
dataset. The proposed pipeline is capable of performing end-to-end image pro-
cessing, including data organisation, image quality assessment, shape model ini-
tialisation, segmentation, segmentation quality assessment, and functional para-
meter computation; all without any user interaction. This study is the first pub-
lished attempt tackling the fully automatic 3D analysis of the UKB population
study, providing reference ranges for all key cardiovascular functional indexes,
from both left and right ventricles of the heart.

• Chapter 3 presents a new method for the accurate 3D modelling of cardiac
four chambers. In this chapter, we propose a novel deep neural network using
both CMR images and patient metadata to predict cardiac shape parameters
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directly. The proposed method uses the promising ability of statistical shape
models to simplify shape complexity and variability together with the advantages
of convolutional neural networks for the extraction of solid visual features.

• Chapter 4 presents a new method for quantification of epicardial fat tissue.
Having developed fully automated methods for cardiac ventricles segmentation,
we develop an extended quantification method for the extraction and volumetric
quantification of fat tissue around the epicardial boundary. This study is the first
attempt looking into the large-scale quantification of the epicardial fat tissue and
its association with other information which reveal exciting findings.

Each of these three chapters is self-contained, and an adaptation of the articles that
are under review, or already published in a peer-reviewed conference/journal papers.
Finally, Chapter 5 concludes the thesis and discusses the outlook and future work.
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Chapter 2

Quantitative Population Analysis of Cardiac
Ventricles

Population imaging studies generate data for developing and implementing personalised
health strategies to prevent, or more effectively treat disease. Large prospective epi-
demiological studies acquire imaging for pre-symptomatic populations. These studies
enable the early discovery of alterations due to impending disease, and enable early iden-
tification of individuals at risk. Such studies pose new challenges requiring automatic
image analysis. To date, few large-scale population-level cardiac imaging studies have
been conducted. One such study stands out for its sheer size, careful implementation,
and availability of top quality expert annotation; the UK Biobank (UKB). The resulting
massive imaging datasets (targeting ca. 100,000 subjects) has put published approaches
for cardiac image quantification to the test. In this chapter, we present and evaluate a
cardiac magnetic resonance (CMR) image analysis pipeline that properly scales up and
can provide a fully automatic analysis of the UKB CMR study. Without manual user
interactions, our pipeline performs end-to-end image analytics from multi-view cine
CMR images all the way to anatomical and functional bi-ventricular quantification.
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All this, while maintaining relevant quality controls of the CMR input images, and
resulting image segmentations. To the best of our knowledge, this is the first published
attempt to fully automate the extraction of global and regional reference ranges of all
key functional cardiovascular indexes, from both left and right cardiac ventricles, for a
population of 40,000 subjects imaged at 50 time frames per subject, for a total of two
million CMR volumes. In addition, our pipeline provides 3D anatomical bi-ventricular
models of the heart. These models enable the extraction of detailed information of
the morphodynamics of the two ventricles for subsequent association to genetic, omics,
lifestyle habits, exposure information, and other information provided in population
imaging studies. We validated our proposed CMR analytics pipeline against manual
expert readings on a reference cohort of 4,620 subjects with contour delineations and
corresponding clinical indexes. Our results show broad significant agreement between
the manually obtained reference indexes, and those automatically computed via our
framework. 80.67% of subjects were processed with mean contour distance of less than
1 pixel, and 17.50% with mean contour distance between 1 and 2 pixels. Finally, we
compare our pipeline with a recently published approach reporting on UKB data, and
based on deep learning. Our comparison shows similar performance in terms of seg-
mentation accuracy with respect to human experts.

2.1 Introduction

Cardiovascular disease (CVD) is the most prevalent cause of death worldwide [35]. Dia-
gnosis of CVDs is often made at late symptomatic stages, leading to late interventions
at high cost and with substantially decreased efficacy of treatment. Early quantitative
assessment of cardiac function that allows for proper preventive care, and early cardi-
ovascular treatment is therefore paramount. To support such an approach, large-scale
population-based imaging studies of CVDs are increasingly possible given the advent
of standardised robust non-invasive imaging methods, and the infrastructure for big
data analysis [30]. These advancements open further opportunities for gaining new
information about the development and progression of CVDs across various population
groups [27, 31].

The analysis and interpretation of cardiac structural and functional indexes in large-
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scale population imaging data can help identify patterns and trends across popula-
tion groups, and accordingly, reveal insights into key risk factors before CVDs fully
develop. Established to investigate the determinants of a disease, the UK Biobank
(UKB) is one of the world’s largest prospective population studies [34]. The UKB data
contain extensive baseline questionnaire data, biological samples, physical measure-
ments, and cardiovascular magnetic resonance (CMR) images to establish cardiovascu-
lar imaging-derived phenotypes [13]. CMR is an important component of multi-organ
multi-modality imaging visits for patients in multiple dedicated UKB imaging centres
that will acquire and store imaging data from 100,000 participants by 2023.

In terms of population sample size, experimental setup, and quality control, the
most reliable reference ranges for cardiovascular structure and function found in the
literature are those reported by Petersen et al. [36], in which CMR scans were manually
delineated and analysed by a team of eight expert observers using the commercially
available cvi42 post-processing software (Version 5.1.1, Circle Cardiovascular Imaging
Inc., Calgary, Canada). The expert team comprised of biomedical engineers, radiolo-
gists, image analysts and cardiologists, evaluated the quality of every image, and per-
formed delineations. In cases where the image quality was doubtful, the team jointly
decided upon exclusion. These reference values (delineations and volumes) comprise
4,620 subjects and are used in our present study to validate our proposed framework
and workflow.

In this chapter, we present a novel fully automatic 3D image parsing workflow with
embedded quality control, and evaluate its performance on the UKB. We validate our
results by comparing with published manual analysis and one state-of-the-art method.
Our proposed workflow is capable of segmenting the cardiac ventricles and generating
global and regional clinical reference ranges comparable to those obtained by human
raters and flagship methods.

In addition to comparing against manual measurements, we also compare our per-
formance against one state-of-the-art method, i.e., the recent work by Bai et al. [37]
in which the authors propose a 2D convolutional neural network (CNN)-based seg-
mentation method for analysis of the UKB CMR images. Though in our study, we
processed a much greater number of subjects (40, 000), we performed experiments with
smaller subsets of data to make direct comparisons with the existing literature. We
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are interested in showing the advantages of true 3D shape analysis, over 2D CNN-
based techniques, which, due to their per-slice disjoint nature, and absence of global
constraints, lack the ability to infer or extrapolate noisy or missing data. We believe
true 3D analysis is valuable, or even essential, for further structural analysis of regional
myocardial function. Our 3D generative-based approach ensures global coherence of the
cardiac anatomy and naturally lends itself to further analysis in which full 3D anatomy
is necessary; for example, in mechanical and flow simulations.

Finally, since the power of population studies lies in the ability to provide norm-
ative reference values for sub-populations, enabling more patient-specific evaluation,
we provide reference ranges for cardiac clinical indexes in sub-populations based on
age-group and gender.

The main contributions of this chapter are, first, reproducing the cardiac functional
index ranges derived from expert delineations reported in [34], and providing additional
3D-based ranges of local variation. Second, showcasing a fully scalable framework, cap-
able of processing arbitrarily large population imaging studies, in a completely auto-
matic manner. In this chapter we demonstrate this by processing 40,000 subjects from
the UKB study, each comprised of 50 time frames for a total of two million image
volumes, starting from raw input data, through data cleaning, quality assessment, 3D
segmentation, volume computation, and statistical analysis.

The remainder of this chapter is organised as follows. In Section 2.2, we present our
strategy for data processing scalability, and detail each of the modules comprising our
image quantification pipeline. In Section 2.3, we present a thorough evaluation of our
pipeline, both from technical, and clinical perspectives, including detailed statistics
on global and local cardiovascular indexes. Finally, in Section 2.4, we present final
remarks.

2.2 Methodology

Illustrated in Figure 2.1, our CMR image parsing pipeline consists of the following four
phases: (1) pre-processing; (2) quality analysis; (3) segmentation; and (4) quantifica-
tion. In the subsections that follow, we describe the methods used within each step
and our design choices. In the next subsection, we highlight the framework used to
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integrate this pipeline and streamline its execution both in terms of scalability and
distributability.

SEGMENTATION

PRE-PROCESSING

QUANTIFICATION

QUALITY ANALYSIS

Image Quality Assessment

Segmentation Quality Assessment

Model Initialisation

Image Model Fitting

DATA-SINK

DATABASE

Figure 2.1: Schematic showing our fully automatic image parsing framework for large-
scale analysis of cardiac ventricles. CMR images first go through the pre-processing
phase, then flow into both the quality analysis and segmentation phases, which in
turn communicate with one another, finally producing output that the last phase of
quantification handles.

2.2.1 Workflow Integration and Execution

To scale both data access and computation, we propose a modular pipeline and de-
veloped an in-house cloud-based image analytics framework called MULTI-X 1 [38].
MULTI-X enables both distributed access to data storage and distributed execution of
image analysis pipelines on the cloud. Further, MULTI-X facilitates secure access and
execution, component integration and interoperability (e.g., across different program-
ming languages, frameworks, operating systems, and hardware), workflow execution,
monitoring, and execution report generation. MULTI-X can also serve as middleware
between storage and computing cloud providers (e.g., Amazon Web Services, Google-
Cloud, and Microsoft Azure), workflow managers (e.g., Taverna and Nipype), data
sources (e.g., UKB servers) and analytics tools providers. In our implementation, we
selected Nipype [39] as the workflow manager. Further, we selected Amazon Web Ser-

1https://multi-x.org
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vices1 to provide high-performance storage and computing in a cloud-based environ-
ment. More specifically, an Amazon Simple Storage Service (S3) provided unstructured
data storage, Amazon Redshift provided data warehousing for petabyte-scale data ana-
lysis, and Amazon’s Elastic Cloud Computing (EC2) enabled on-demand adaptive cloud
computing.

2.2.2 Data Pre-processing

Once data obtained from the UKB, they were transferred to a secure AWS S3 server
accessible from an experimental deployment of MULTI-X, the aforementioned cloud-
based infrastructure for our pipeline-oriented image analytics. When new CMR data
are available, this fully automated pipeline provides detailed image analytics. The UKB
Imaging Study undertakes detailed MRI scans of key vital organs of the human body
using specialised imaging protocols that extend CMR. For each volunteer, relevant
CMR subseries are extracted from the full imaging study, viz. short-axis (SAX) and
long-axis (LAX) two-, three- and four-chamber CMR images and analysed through the
next steps.

2.2.3 Quality Analysis

At least two quality analysis modules are required to ensure the reliability of the extrac-
ted cardiac indexes. The first module assesses the quality of the input images, whereas
the second module assesses the quality of the quantification outputs, i.e., the generated
3D segmentations. Each of these is described in the subsections that follow.

Image Quality Assessment

Despite careful and strict imaging protocols, a significant portion of the data collected
in population imaging studies, inevitably falls outside standard operating procedures.
To ensure the quality and correctness of the collected data, thereby optimising the
accuracy of the generated segmentation results, an image quality assessment (IQA)
module detects suboptimal images whose inclusion in subsequent analysis would impair
aggregated statistics over the entire cohort.

1https://aws.amazon.com
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More specifically, because the absence of basal and/or apical slices in SAX views
forms the most frequently occurring problem affecting the accuracy of volumetric meas-
urements and corresponding clinical indexes [40], our IQA module detects situations in
which these slices are missing. In our design, SAX slices are processed independently
through two CNN classifiers that determine the presence/absence of basal and apical
slices, respectively. Details of the algorithm we used to achieve this effect can be found
in the work published by Zhang et al. [41].

Segmentation Quality Assessment

Regarding segmentation quality assessment (SQA), large anatomical variations found
across subject populations [42] and other forms of poor image quality beyond full
ventricular coverage can cause image segmentation failures. We therefore propose an
automated self-diagnosis mechanism for detecting unsatisfactory segmentation results.
Flagged images can then be either re-processed with revised parameters or discarded
from subsequent statistical analyses. We incorporate a segmentation quality assessment
approach presented by Alba et al. [43]. The SQA module uses a random forest classi-
fier trained to distinguish between successful and unsuccessful segmentations based on
intensity features around the blood pool and myocardial boundaries.

2.2.4 Segmentation

For the segmentation phase of our workflow, we use SAX and LAX CMR images to
estimate the approximate position and orientation of the cardiac ventricles. We then
initialise the segmentation of the cardiac structure following a Sparse Active Shape
Model (SPASM) approach [44]. More specifically, SPASM is used to segment the full
cardiac cycle and retrospectively determine the end-diastolic (ED) and end-systolic
(ES) phases of the cycle based on the frames showing maximum and minimum volumes,
respectively. Before running our segmentation approach across all subjects, we applied
grid search optimisation to a subset of 50 subjects to identify the parameters having
the greatest impact on segmentation performance; we describe this further in Section
2.2.4.
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Model Initialisation

To automatically initialise the model, we use the method proposed by Alba et al. [43]
with a further step to improve bi-ventricular model initialisation. First, the location of
the LV is determined via a rough estimate of the intersection of slices from the SAX and
LAX views. Next, a random forest regressor trained with two complementary feature
descriptors (i.e., the Histogram of Oriented Gradients and Gabor Filters) predicts the
landmark positions for the LV. We extend this to take into account image features
corresponding to the RV, thereby improving the initial estimate for the location of
the bi-ventricular heart. We then use these landmarks to estimate pose parameters
that place a mean shape model near the heart. Finally, we use these pose parameters
to initialise the first image volume in the set of images for the cardiac cycle (i.e., 50
cardiac phases). Subsequent time frames are automatically initialised via the shape
model fitted to the immediately preceding cardiac phase.

Image Model Fitting

In this subsection, we consider how we fit the image model. First, the cardiac LV and RV
segmentations are obtained via the aforementioned SPASM segmentation method that
improves on the Active Shape Models (ASM) approach [33] by addressing the sparsity
found in imaging modalities such as CMR in which image information is sparsely dis-
tributed across the entirety of the image. The main components of the SPASM method
are the Point Distribution Model (PDM), the Intensity Appearance Model (IAM) and
a model matching algorithm.

The PDM encodes the mean and variance of the endocardial and epicardial shapes
of the LV and the endocardial shape of the RV. The PDM is constructed during training
using principal component analysis (PCA) on a set of generalised Procrustes-aligned
shapes that preserve a 98% variance, as explained in details in Section 1.5.1. Next,
we build an IAM based on intensity information across all corresponding landmarks in
all training shapes si. More specifically, IAMs capture the local intensity distribution
along cardiac boundaries. We proceed by sampling one-dimensional intensity profiles
normal to the myocardial boundaries. Each profile has a length of m = 15 pixels.
For the i-th landmark, we estimate mean intensity profile ḡi and corresponding image
intensity covariance Sgi .
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2.2 Methodology

During image segmentation, the intersections of the current shape model instance
with all image planes collectively define a stack of two-dimensional contours in R3. The
algorithm proceeds by searching for the intensity profile location along the normal to the
contours and over the imaging planes for each landmark. To derive the best-matching
position or candidate point yi for each landmark, we minimise the Mahalanobis distance
between a profile sampled at candidate position yi, gi(yi) and corresponding model
{ḡi,Sgi} as follows:

yoi = arg min
yi

((g(yi)− ḡi)T S−1
gi

(g(yi)− ḡi)) (2.1)

Given the sparse nature of CMR images, it is not uncommon during fitting to have
mesh triangles that do not intersect with any image slices in the stack. In this situation,
the points that comprise these triangles would not be updated or displaced by the IAM,
instead, these points would be passively updated by fitting of the PDM. A mechanism
that propagates displacements from points that are image-driven to nearby points that
are not, is therefore necessary. SPASM implements a displacement propagation strategy
modelled as a Gaussian kernel centred at any given image-driven point q by propagating
its effect to a neighbouring point p based on Gaussian kernel

w(p, q) = exp{−‖p− q‖
2

2σ2 } (2.2)

where σ is the width of the kernel. Having a non-zero Gaussian kernel is not an
indispensable feature of the algorithm as non-image driven points would be indirectly
updated by the PDM, nevertheless, this feature adds smoothness to the evolution of
the surface mesh, and speeds up convergence of the algorithm.

Parameter Optimisation

SPASM segmentation is affected by four key parameters. We ran an exhaustive grid
optimisation scheme to determine the best combination of parameters. The individual
parameters and corresponding ranges that we tested were as follows:

1. Freedom of the PDM measured in standard deviations from the mean i.e. β =
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2, 2.5, 3.

2. Length of the image sampling profile gi used during image feature search, meas-
ured in pixels i.e. l = 5, 10, 15 pixels.

3. Standard deviation of the Gaussian kernel for the point displacement propagation
feature i.e. σ = 5, 7, 9 mm.

4. Image orientations to use, i.e. using only SAX images or using both SAX and
LAX during segmentation i.e. v = SAX,ALL.

Table 2.1 shows each of the 54 (i.e. 3×3×3×2 = 54) unique parameter combinations
we used with our algorithm to segment 50 randomly selected subjects that had already
been manually delineated by clinicians. Next, we computed the segmentation accuracy
using three key metrics: Dice Similarity Coefficient (DSC), Mean Contour Distance
(MCD) and Hausdorff Distance (HD). These metrics were defined on Equations 1.12,
1.13 and 1.14, respectively, in Section 1.5.2.

Figure 2.2 shows three boxplots summarising the results based on the three metrics,
for each of the 54 test parameter sets. The x-axis on each of the boxplots (DSC, MCD,
HD) shows the test number, and the tests are sorted from best to worst performance.
On Figure 2.2 it can been seen that the best performing parameter test set is test
number 4, which appears at the left-most end of each of the plots. Specifically, the best
parameter values were: β = 2, l = 5, σ = 7 and v = ALL. We used this parameter set
for segmentation thereon.

2.2.5 Quantification

For the final phase of our workflow, we computed a thorough set of functional paramet-
ers based on blood-pool and myocardial volumes. To reproduce the reference ranges
reported by Petersen et al. [36], our quantification module performs volume compu-
tations using Simpson’s method of integration, whereby a cardiac 3D volume can be
approximated by summing the areas within 2D segmentation contours, and multiplying
by the inter-slice spacing. Because the output of our segmentation are 3D triangular
meshes, before using Simpson’s rule, we had to extract contours corresponding to the
intersection between our segmentation and CMR image slices. The 3D model we use
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Table 2.1: The list of 54 distinct sets of segmentation parameters used in our segment-
ation algorithm parameter optimisation. As noted in the text, test 4 was the best
choice.

Test β l σ v Test β l σ v

01 2 5 5 SAX 28 2.5 10 7 ALL
02 2 5 5 ALL 29 2.5 10 9 SAX
03 2 5 7 SAX 30 2.5 10 9 ALL
04 2 5 7 ALL 31 2.5 15 5 SAX
05 2 5 9 SAX 32 2.5 15 5 ALL
06 2 5 9 ALL 33 2.5 15 7 SAX
07 2 10 5 SAX 34 2.5 15 7 ALL
08 2 10 5 ALL 35 2.5 15 9 SAX
09 2 10 7 SAX 36 2.5 15 9 ALL
10 2 10 7 ALL 37 3 5 5 SAX
11 2 10 9 SAX 38 3 5 5 ALL
12 2 10 9 ALL 39 3 5 7 SAX
13 2 15 5 SAX 40 3 5 7 ALL
14 2 15 5 ALL 41 3 5 9 SAX
15 2 15 7 SAX 42 3 5 9 ALL
16 2 15 7 ALL 43 3 10 5 SAX
17 2 15 9 SAX 44 3 10 5 ALL
18 2 15 9 ALL 45 3 10 7 SAX
19 2.5 5 5 SAX 46 3 10 7 ALL
20 2.5 5 5 ALL 47 3 10 9 SAX
21 2.5 5 7 SAX 48 3 10 9 ALL
22 2.5 5 7 ALL 49 3 15 5 SAX
23 2.5 5 9 SAX 50 3 15 5 ALL
24 2.5 5 9 ALL 51 3 15 7 SAX
25 2.5 10 5 SAX 52 3 15 7 ALL
26 2.5 10 5 ALL 53 3 15 9 SAX
27 2.5 10 7 SAX 54 3 15 9 ALL

for segmentation is comprised of two structures; the LV and the RV. The LV is a closed
water-tight mesh comprising both endocardial and epicardial walls. The RV is an open
mesh representing only the RV endocardium. The RV has two openings, the atrio-
ventricular valve opening, and pulmonary valve opening. The LV and RV sit adjacent
to each other but are not connected.

We computed both global and regional morphological and functional indexes. Global
indices include chamber volumes, stroke volume, ejection fraction and myocardial mass.
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Regional or local indices include myocardial wall thickness, wall motion and thickening
computed for every segment in the AHA-17 cardiac subdivision scheme [45].

The global assessment of cardiac function is based on the following volumetric
measurements [46]:

• End-Diastolic Volume (EDV) (ml): the volume of blood in the LV or RV before
contraction. This is the highest ventricular volume of blood in the cardiac cycle.

• End-Systolic Volume (ESV) (ml): the volume of blood in the LV or RV at the
end of contraction. This is the lowest ventricular volume of blood in the cardiac
cycle.

• Stroke Volume (SV) (ml): the volume of blood pumped from the ventricle per
beat obtained by subtracting the ESV from the EDV for a given ventricle. This
term can be applied to either of the two ventricles.

• Ejection Fraction (EF) (%): the fraction of blood ejected from a ventricle of
the heart with each heartbeat. This measure shows the pumping efficiency of
the heart and is calculated by dividing the SV by the EDV. Note that the left
ventricular EF (LVEF) is a measure of the efficiency of pumping blood into the
body’s systemic circulation, whereas the right ventricular EF (RVEF) is a measure
of the efficiency of pumping blood into pulmonary circulation (i.e. the lungs).

• Left Ventricular Mass (LVM) (g): to compute LVM, we assume that the volume
of the myocardium is equal to the total volume contained within the epicardial
borders of the ventricle minus the chamber volume. Given these standard as-
sumptions, LVM is calculated by multiplying the volume by the density of the
muscle tissue (1.05 g/cm3).

The regional assessment of cardiac function is based on the following indexes ob-
tained from the LV myocardial shapes and computed locally based on the AHA 17-
segment model. In contrast to the global indexes, where comparison with manual
analysis was desired, and therefore 2D techniques were required (Simpson’s rule), this
segmental analysis was performed directly on 3D shapes, and using 3D techniques.
Every measurement was computed on a per-point basis, and then averaged across all
subjects, for every AHA-17 segment.
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• LV Wall Thickness (mm): the distance between the endocardial and epicardial
walls of the myocardium at ED and ES. Wall thickness may be used to quantify
regional dysfunction, e.g. in myocardial ischaemia or after myocardial infarction.
Myocardial thickness was measured as the average point-to-surface distance for
every AHA-17 segment across the population.

• LV Wall Thickening (mm): the difference in the wall thickness measurement
between ED and ES. Our models do not include papillary muscle or trabecular
tissue, nor do the manual contours we compare our measurements with.

• LV Wall Motion (mm): the root-mean-squared distance between the location of
mesh points at ED and ES averaged per AHA-17 region of the myocardium.

In the next section, we present and compare all the aforementioned global and
regional clinical indexes obtained through manual and automatic segmentation.

2.3 Experiments and Results

We evaluated the performance of our proposed automated workflow by using common
metrics for segmentation accuracy assessment (i.e. the aforementioned DSC, MCD and
HD measures), comparing these measures against the ground-truth values obtained
through manual delineation by clinicians and using clinical cardiac bi-ventricular func-
tional indexes derived from manual and automated segmentations such as EDV, ESV
and LVM.

We also compared our results with those reported by Bai et al. [37]. In Table 2.2,
we present the data we used for training, testing and evaluating our workflow. Of the
4,870 available subjects in the UKB with manual segmentations, 250 random subjects
were selected for PDM training, with 170 image volumes from a previous study by
Tobon-Gomez et al. [47] used for IAM training. The remaining 4,620 subjects in the
UKB with manual delineations were used as test datasets to evaluate the performance
of our proposed automatic approach, labelled AS in the table. To compare our res-
ults with those of Bai et al. [37], denoted B in the table, we used the same training
and testing datasets, reporting the results as AL in the table. As an additional as-
sessment, we conducted a quantitative evaluation of human performance by measuring
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the inter-observer variability among the segmentations performed manually by three
different clinical experts. Here, we randomly selected 50 subjects; each subject was
independently analysed by three expert observers labelled O1, O2 and O3. We com-
pare segmentation results on the same set of subjects to show automated versus human
performance, as well as the performance of our workflow on a larger dataset.

Input images and output segmentation contours were automatically quality con-
trolled to ensure that input image volumes had full coverage of the heart i.e. included
both basal and apical slices and to verify the quality of the output segmentations.
Because our aim here is to properly evaluate segmentation accuracy, all segmentation
results (including outliers) were included in the statistics in Section 2.3.1. In con-
trast, results presented in Section 2.3.2 are based only on good quality images and
segmentations, i.e., excluding those deemed suboptimal by SQA and/or not providing
full coverage by IQA.

2.3.1 Segmentation Accuracy

To quantify segmentation accuracy, we applied the three aforementioned metrics, each
of which is detailed in Section 1.5.2.

Table 2.3 presents DSC, MCD and HD measures that compare automated and
manual segmentation results; evaluations were performed on test sets consisting of 50,
600 and 4,620 subjects which have not been used to train the PDM or IAM. Here, the
group of 50 subjects is the same set used to evaluate inter-observer variability, whereas
the set of 600 subjects is the same set used as a test set by Bai et al. [37] in which a
deep learning approach was used for segmentation. The large set of 4,620 subjects is all
UKB cases with manual delineations that have not been used for shape and appearance
model training.

In Table 2.3, the mean and standard deviations of DSC for the LVendo, LVmyo and
RVendo with n = 4, 620 were 0.93 ± 0.05, 0.87 ± 0.05, and 0.87 ± 0.07, respectively,
indicating excellent agreement between manual delineations and automated segment-
ations. We also observe that DSC measures for the LVmyo and RVendo cases were less
than that of the LVendo case. One possible reason DSC values for the LVmyo are lower
is that its annular shape has a larger perimeter (i.e. endo and epicardial edge) causing
equal overlap shifts to produce greater error compared to the LVendo and RVendo.
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Further, the RV is a more challenging structure to segment compared to the LV.
This is due to the sub-pixel thickness of the RV myocardium, the larger presence of
trabeculations in the cavity with signal intensities similar to that of the myocardium,
the more complex crescent shape of the RV, which, varies from base to apex, and
considerable variability in shape and intensity of the chamber across subjects, notably
in pathological cases.

Next, we observe that the MCD is 1.18 ± 0.41 mm for the LVendo, 1.23 ± 0.50 mm
for the LVmyo, and 1.80 ± 0.69 mm for the RVendo, all of which are smaller than the
in-plane pixel spacing range of 1.8 to 2.3 mm. The HD measures were 3.44 ± 1.08 mm,
3.98 ± 1.49 mm and 7.84 ± 3.19 mm for the LVendo, LVmyo and RVendo, respectively.
Although HD measures are larger than the in-plane pixel spacing, they are still within
acceptable range compared to inter-observer variability. For instance, the first three
columns of Table 2.3 show inter-observer variability, where the variability between
observers O1 and O2 for the HD metric is 7.56 ± 5.51 mm.

When comparing our method (i.e. AS and AL) with B, there was a notable differ-
ence in performance between the relatively small training set (i.e. AS) and the same
training set as that of B (i.e. AL). In Table 2.3, we note a slight improvement of
the mean and standard deviation values, particularly for MCD measures. Neverthe-
less, improvements become more apparent in Figure 2.3, where the number of outlying
subjects was drastically reduced for AL as compared to both B and AS. Although the
overall mean and standard deviation values remained slightly better for B, we observe
in Figure 2.3 that AL was generally more robust as it reduced the number and deviation
of outlying results.

Also from Figure 2.3, we note that the performance of AS largely agrees with the
ground-truth and is comparable to the results of B. We also investigated the segmenta-
tion accuracy of the LV myocardium in detail based on the AHA 17-segment model of
Heller et al. [45] to report on local segmentation accuracy in terms of DSC, MCD and
HD measures between manual segmentation and automatic approaches, i.e. B and AS

on the test set of size 600. We report local segmentation accuracy in Table 2.4, which
shows that B and AS consistently performed better with mid-ventricular and apical
slices, respectively; however, for base slices, the performance of B and AS varies per
region.
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2.3 Experiments and Results

Note that when comparing the performance of AS versus B (n = 600) in Table 2.3,
B yielded slightly better global results than AS, but in breaking down the results into
specific cardiac regions (basal, mid and apical), as presented in Table 2.4 we observe
that our method, AS, consistently outperformed B for all metrics in the apical region
(AHA segments 13-17). A possible reason for this is an inability of the CNN method to
capture small features in the image, and the inherent ability of PDMs to infer missing
or noisy image data.

To provide a visual sense of the quality of our segmentations, we defined three
categories based on the mean contour distance from the gold standard, i.e., excellent
(MCD < 1 pixel), good (1 pixel < MCD < 2 pixels) and bad (MCD > 2 pixels). We
present examples of these categories in Figure 2.4, thereby showing that automated
segmentation agrees well with manual segmentation both at ED and ES; further, such
agreement occurs at different slice locations (i.e. apical, mid and basal regions). Finally,
Table 2.5 shows the prevalence of the different categories of segmentation quality for
the different approaches presented in this chapter.

2.3.2 Estimation of Cardiac Function Indexes

In this subsection, we present our work in evaluating the accuracy of cardiac function
indexes derived from automated segmentation using gold standard reference ranges
derived from manual segmentations. Further, we report on analysis of all available
CMR images from the UKB, which to date is 40K subjects. More specifically, we
calculate the following two sets of indexes: (1) global indexes including LVEDV, LVESV,
LVSV, LVEF, LVM, RVEDV and RVESV, RVSV and RVEF; and (2) regional indexes
including the myocardium wall thickness, thickening and motion.

Note that we report the clinical indexes obtained from automated segmentation of
subjects that have successfully passed the IQA and SQA modules. Table 2.6 shows the
number of subjects that were included in our analysis. For example, of the given 4,620
subjects, 4,430 were deemed of good quality after IQA and SQA analyses were applied.
More specifically, IQA detected 145 subjects to exclude, whereas SQA detected 105
subjects to omit; note that 60 subjects were common to both lists. Therefore, a total
of 190 subjects were automatically removed before continuing with the analysis.
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2.3 Experiments and Results

Table 2.5: Categories of segmentation quality for the different approaches presented in
this chapter.

B (n=600) AS (n=600) AL (n=600) AS (n=4620)
Excellent

MCD <1 pixel 84.19 % 82.14 % 84.21 % 80.67 %

Good
1 pixel <MCD <2 pixels 15.25 % 16.80 % 15.50 % 17.50 %

Bad
MCD >2 pixels 0.55 % 1.05 % 0.30 % 1.82 %

Table 2.7 shows the main cardiac clinical indexes, with the two first columns rep-
resenting the ventricular parameters of the healthy population obtained through auto-
mated and manual segmentations. We observe here that there was strong agreement
between the two methods for computing the presented cardiac function indexes, also
reported in our previous work [48].

Similarly, the computed clinical indexes for the large cohort of 4,620 subjects cor-
related well with the corresponding ground-truth values, as shown in columns three
and four of the table; however, we note that although the mean and standard deviation
values of the RV indexes for the healthy population of 800 subjects were in good agree-
ment, for the population of 4,620 subjects, the mean and standard deviation values of
the RV indexes differed slightly compared with the ground-truth values. This correlates
with the larger inter-observer variability shown in Table 2.3, which is at least in part
due to thinness of the RV myocardium vis-a-vis the LV [49].

Table 2.8 presents the mean absolute and relative differences between the automated
and manual measurements, as well as between the automated and manual measure-
ments computed by different expert human observers and by the built-in automated
segmentation software of the scanner device (i.e. inlineVF D13A). We observe here that
the absolute and relative differences for two subsets of 50 and 600 subjects matched
well and were within the error range of the three expert human observers. Similarly,
although the range of differences over the cohort of 4,620 subjects were not directly
comparable with a small test set of only 50 subjects, the difference range still was
either within that range or very close to the difference range obtained by the different
expert observers. Overall, B, AS and AL performed substantially better than the auto-
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2.3 Experiments and Results

Table 2.7: Summarising the differences in clinical measures derived from our pro-
posed method and manual segmentation. Here, GT represents the ground-truth values
provided by manual segmentation. Values indicate mean ± standard deviation.

GT Automated GT Automated Automated
(n=800) (n=800) (n=4,620) (n=4,620) (n=40,000)

LVEDV (ml) 144 ± 34 146 ± 31 144 ± 34 144 ± 33 142 ± 26
LVESV (ml) 59 ± 18 60 ± 18 59 ± 20 60 ± 23 53 ± 14
LVSV (ml) 85 ± 20 86 ± 18 84 ± 18 84 ± 19 89 ± 18
LVEF (%) 60 ± 6 60 ± 7 60 ± 6 59 ± 7 63 ± 6
LVM (g) 86 ± 24 87 ± 23 88 ± 23 91 ± 23 92 ± 18
RVEDV (ml) 154 ± 40 154 ± 40 152 ± 37 160 ± 49 165 ± 41
RVESV (ml) 69 ± 24 71 ± 26 67 ± 22 77 ± 26 61 ± 24
RVSV (ml) 85 ± 20 83 ± 21 84 ± 18 82 ± 24 90 ± 27
RVEF (%) 56 ± 6 54 ± 7 57 ± 6 54 ± 11 60 ± 9

mated segmentation obtained from the inlineVF D13A software; note that these data
were retrieved for every subject from the main UKB database.

Next, in Figure 2.5, we present Bland-Altman plots (i.e. the top row of the figure)
and correlation plots (i.e. the bottom row of the figure) of the ventricular parameters
computed based on our proposed automated method and a manual reference covering
4,620 test subjects. The Bland-Altman plot is commonly used for analysing agreement
and bias between two measurements. In Figure 2.5, the Bland-Altman plots show strong
agreement and a mean difference line at nearly zero, suggesting that the clinical indexes
obtained through the automated approach have little bias. Conversely, the bias between
different pairs of human observers as reported by Bai et al. [37] is considerable – i.e.
nearly 8 (ml) for LVEDV and LVESV, approximately 8 (g) for LVM, and approximately
15 (ml) for RVEDV and RVESV.

More specifically, Figure 2.5 presents correlation plots between the manual and
automated methods for the different cardiac function indexes. The correlation coeffi-
cient (corr) measures the strength of the relationship between two sets of observations.
The strength and direction of the relationship indicates the predictive power of our
framework. Coefficients for all indexes ranged between 0.85 and 0.91, indicating a
strong relationship between the manual and automated approaches.

To illustrate whether the values of clinical indexes computed automatically share
the same distribution as those obtained via the manual approach, we visualised their
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

distributions. In Figure 2.6, we present probability distribution plots (i.e. the top row
of the figure) and Q-Q plots (i.e. the bottom row of the figure) for various cardiac func-
tional indexes computed both manually and automatically over the full cohort for which
manual segmentations were available. From the plots, we observe that the distribution
of the various indexes closely match those obtained from the manual segmentations–
More specifically, we observe a common distribution, common location and scale, sim-
ilar distributional shapes, and similar tail behaviour.

Because ground-truth manual regional (AHA-17) quantification for the subjects in
this study was not available, all AHA-17 regional indexes reported in this chapter are
computed using 3D techniques, in contrast to the global quantification indexes, where
direct comparison with manual assessment was desirable. Nevertheless, in order to
approximate a comparison with what would be a regional analysis derived from manual
delineations, we generated 3D shapes by non-rigid registration of a model to all manual
delineations. We used the resulting 3D shapes to perform regional quantification, and
compared with our automatic results.

We computed the regional LV myocardial wall parameters in terms of thickness,
thickening, and motion. Visual results can be seen on Figure 2.7, and corresponding
numerical results on Table 2.9. Figure 2.7 shows the mean and standard deviation
values of the regional analysis of 4,620 subjects for both the automated and manual
approaches in a bulls-eye display based on the AHA 17-segment model. We observe
here that the (top and bottom) panels are similar in most regions in terms of the mean
and standard deviation values, thereby confirming the quality of our fully automated
pipeline. Indeed, results already published in many clinical journals [50–57], primarily
based on the manual delineation of a few dozen images confirm the values and ranges
we have obtained and present in our bulls-eye plots.

Figures 2.8 and 2.9 show the distribution of wall thickness, thickening and motion
for all AHA-17 segments in the LV myocardium. These histograms show measurements
obtained from the automated segmentation applied to two cohorts (i.e. n=4,620 and
n=40,000), as well as from manual delineations. The figures show excellent agreement
between measurements obtained from automated segmentations from both cohorts and
those derived from manual delineations.

We also performed two-sample Kolmogorov-Smirnov (K-S) tests to verify that ventricu-
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Figure 2.7: Segmental LV parameters of 4,620 subjects presented as bulls-eye displays.

lar parameters obtained through manual and automated approaches are drawn from
the same distribution, under the null hypothesis that the manual and automatic meth-
ods are from the same continuous distribution in terms of clinical indexes. From our
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2.3 Experiments and Results

Table 2.9: Segmental LV parameters of 4,620 subjects obtained from manual and auto-
matic approaches. Upper rows correspond to shapes generated from the manual seg-
mentation and lower rows to those obtained with the automatic approach.

ID Wall Thickness
at ED (mm)

Wall Thickness
at ES (mm)

Wall Motion
(mm)

Wall Thickening
(mm)

12.05 ± 1.84 15.69 ± 1.83 -4.05 ± 4.39 2.95 ± 1.611 11.72 ± 1.92 15.59 ± 1.88 -3.46 ± 4.94 2.67 ± 1.66
13.81 ± 1.73 17.49 ± 2.07 -5.70 ± 3.51 2.89 ± 1.742 13.59 ± 1.85 17.49 ± 2.14 -4.91 ± 3.97 2.69 ± 1.81
11.63 ± 1.09 13.57 ± 1.26 -8.01 ± 4.28 1.08 ± 1.103 11.38 ± 1.20 13.47 ± 1.33 -7.06 ± 4.63 0.87 ± 1.19
9.17 ± 0.97 11.87 ± 1.00 -7.20 ± 5.68 1.76 ± 1.084 8.87 ± 1.06 11.65 ± 1.06 -6.20 ± 6.03 1.55 ± 1.18
10.76 ± 1.17 14.00 ± 1.67 -4.60 ± 5.53 2.41 ± 1.865 10.45 ± 1.27 13.96 ± 1.77 -3.80 ± 5.96 2.29 ± 1.95
10.02 ± 1.50 13.35 ± 1.81 -4.29 ± 5.21 2.52 ± 1.826 9.69 ± 1.58 13.26 ± 1.89 -3.60 ± 5.72 2.35 ± 1.87
8.14 ± 1.46 12.14 ± 1.44 -1.44 ± 5.18 3.15 ± 1.417 7.81 ± 1.43 11.96 ± 1.48 -1.31 ± 5.50 2.94 ± 1.42
11.99 ± 1.21 15.03 ± 1.40 -2.33 ± 4.06 2.25 ± 1.188 11.68 ± 1.31 14.95 ± 1.46 -1.57 ± 4.40 2.04 ± 1.26
12.63 ± 1.04 14.51 ± 1.32 -2.35 ± 4.37 1.01 ± 1.129 12.37 ± 1.15 14.41 ± 1.40 -1.52 ± 4.62 0.84 ± 1.20
9.33 ± 3.59 12.43 ± 1.17 -1.78 ± 5.26 2.25 ± 3.8310 9.17 ± 4.16 12.28 ± 1.24 -0.93 ± 5.46 1.88 ± 4.23
8.53 ± 3.12 13.09 ± 1.82 -1.02 ± 5.85 3.85 ± 3.4911 8.25 ± 3.07 13.11 ± 1.91 -0.84 ± 6.11 3.66 ± 3.33
8.17 ± 3.76 13.55 ± 1.94 -1.72 ± 6.23 4.65 ± 4.0012 7.90 ± 3.14 13.59 ± 2.03 -1.09 ± 6.89 4.50 ± 3.30
7.58 ± 1.45 11.57 ± 1.37 -0.58 ± 5.91 3.10 ± 1.5013 7.32 ± 1.49 11.40 ± 1.42 -0.39 ± 6.05 2.86 ± 1.56
8.75 ± 1.30 12.40 ± 1.19 1.56 ± 3.91 2.75 ± 1.2214 8.46 ± 1.33 12.21 ± 1.23 2.32 ± 4.10 2.54 ± 1.28
6.86 ± 3.17 10.89 ± 1.17 2.07 ± 4.59 3.20 ± 3.3615 6.59 ± 2.02 10.70 ± 1.21 2.93 ± 4.44 2.91 ± 2.09
6.48 ± 4.66 11.58 ± 1.63 0.69 ± 6.22 4.29 ± 4.8316 6.37 ± 4.44 11.46 ± 1.63 0.41 ± 6.68 3.90 ± 4.49
5.97 ± 4.49 11.17 ± 1.57 1.62 ± 3.21 4.28 ± 5.1117 5.71 ± 3.63 10.94 ± 4.68 2.58 ± 3.18 4.03 ± 1.68

analysis, K-S test results on different global and regional indexes do not reject the null
hypothesis of being from the same distribution at the 5% significance level.
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Figure 2.8: Regional analysis of LV shapes covering 40,000 subjects in terms of distri-
bution of wall thickness at ED and ES phases. Here, red, blue and green lines indicate
ground-truth values for 4,620 subjects, automated values for 4,620 subjects and auto-
mated values for 40,000 subjects, respectively. In all plots, the y-axis represents the
relative frequency.

An important final note is that although our image parsing implementation per-
forms fully in 3D, to ensure a fair comparison with both ground-truth data and the
methods we compare with in this chapter, we had to convert our segmentation results
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Figure 2.9: Regional analysis of LV shapes covering 40,000 subjects in terms of distribu-
tion of wall motion and thickening. Here, red, blue and green lines indicate ground-truth
values for 4,620 subjects, automated values for 4,620 subjects and automated values for
40,000 subjects, respectively. In all plots, the y-axis represents the relative frequency.

to 2D contours from 3D meshes; this does not pose a problem for objective quanti-
fication of segmentation accuracy, however, given the sparse nature of CMR images,
where voxel resolution along the z axis is typically on the order of 10mm, gross miscal-
culations may occur when approximating volumetric measurements such as ventricular
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

volumes and myocardial masses via simple integration methods such as Simpson’s rule.
We believe that although many CNN-based methods have recently received a lot of
attention, showing the capacity for image texture characterisation, most of them are
restricted to handling 2D data. This simplification can introduce large biases in volume
computations, and be less resilient to image artefacts such as those caused by breathing
motion. In addition to our pipeline approach fully supporting 3D data, our method
provides other advantages when compared to 2D CNN-based implementations. More
specifically, the size of the training dataset required to achieve similar performance for
an equal task differs by at least one order of magnitude between CNNs and ASM-based
methods. Further, ASM implementations such as SPASM have the inherent ability
to handle multi-view image volume segmentation without the need to retrain. This
is particularly useful for functional CMR segmentation in which multiple views of the
heart are captured as part of standard analysis protocols.

In addition, because the output of our segmentation are 3D meshes, more apt math-
ematical formulations can be used for volumetric computation, i.e. Green’s theorem
for surface integration, and any further higher level structural analyses of the cardiac
tissue. Some CNN-based methods such as those proposed by Zheng et al. [49] do
take into account inter-dependencies between short-axis slices potentially resulting in
more robust segmentations, even so, such CNN-based algorithms are still not globally
constrained, their output is typically two dimensional in nature, their training is very
costly both in time and sample size requirements, and they cannot handle dynamically
changing input image views without redefinition of the architecture and re-training.
We present the key differences between our implementation and the 2D CNN-based
implementation method by Bai et al. [37] on Table 2.10.

2.3.3 Hardware and Computational Cost

In terms of computational cost of training and testing, method B takes approximately
10 hours to train the VGG-16 network on a Nvidia Tesla K80 GPU, and about 11
seconds to segment all 2D slices of a full cardiac cycle for one subject [37]. For our
method, it takes approximately 30 minutes to train both the PDM and IAM on a
Intel Xeon(R) CPU E5-1620 @3.60GHz with 32 GB of RAM, and about 15 minutes
to generate the 3D shapes of a full cardiac cycle for one subject. Finally, the total
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2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

end-to-end execution time for the 40,000 subjects using our MULTI-X platform was
performed using 50 Amazon Web Service (AWS) ”m4.10xlarge” machines each with 40
2.4-GHz Intel Xeon ES-2676 v3 vCPUs, and 160 GB of RAM.

2.3.4 Sub-Cohort Analysis

Thus far in this chapter we have only shown a global population analysis of the UKB.
We have presented statistics on the most commonly used clinical indexes derived from
CMR exams. With the exception of the ”healthy” group as defined by Petersen et
al. [36], introduced in this chapter on Table 2.6, and corresponding quantification
results shown on the first two columns of Table 2.7, we have only presented global
population statistics. We believe however that the power of population studies lies in
the opportunity to define and characterise human sub-populations.

Though in this chapter our principal aim is to present the first fully automatic
large-scale, global and segmental, 3D analysis of this magnitude we have included some
preliminary quantification results on UKB sub-populations in this section. Based on
the 40,000 subjects available, we have used patient age at the time of imaging, and
patient gender (male, female), to present cardiovascular index reference ranges for
these cohorts. Table 2.11 presents the arithmetic mean, and upper/lower bounds of the
95% prediction interval for each clinical index, and each age group. Each of the three
age-groups span a 10-year interval, and the total age range includes patients 45 to 74
years old. Also, for each clinical index, and age-group we compute separate statistics
for males and females.

Figure 2.10 shows the mean value for each of the five clinical indexes, for the three
different age groups, and for males and females. Perhaps the most evident, and in
some ways expected feature of these plots, is the consistent decline in cardiac volumes
and cardiac mass with ageing. For the five indexes LVEDV, LVESV, LVM, RVEDV
and RVESV, we see a decline of 9%, 15%, 7%, 8%, and 13% for males, and 11%, 17%,
5%, 6%, and 11% for females. As stated before, a deep analysis of sub-populations is
out of the scope of this chapter, nevertheless, we hope to have shown the potential of
the techniques presented in this chapter to gain insight from large population imaging
studies.

50



2.3 Experiments and Results

Ta
bl

e
2.

11
:

M
al

e
(M

)
an

d
Fe

m
al

e
(F

)
ve

nt
ric

ul
ar

re
fe

re
nc

e
ra

ng
es

de
ta

ili
ng

m
ea

n,
lo

we
r

re
fe

re
nc

e
lim

it
an

d
up

pe
r

re
fe

re
nc

e
lim

it
by

ag
e

gr
ou

p.
R

ef
er

en
ce

lim
its

ar
e

de
riv

ed
by

th
e

up
pe

r
an

d
lo

we
r

bo
un

ds
of

th
e

95
%

pr
ed

ic
tio

n
in

te
rv

al
fo

r
ea

ch
pa

ra
m

et
er

at
ea

ch
ag

e
gr

ou
p.

A
ge

gr
ou

ps
(y

ea
rs

)
45

-5
4

55
-6

4
65

-7
4

M
al

e
ge

nd
er

(%
)

43
%

43
%

52
%

lo
we

r
m

ea
n

up
pe

r
lo

we
r

m
ea

n
up

pe
r

lo
we

r
m

ea
n

up
pe

r
M

10
9

17
0

23
1

10
2

16
3

22
3

94
15

4
21

3
LV

ED
V

(m
l)

F
95

14
0

18
4

88
13

2
17

5
80

12
4

16
8

M
31

81
13

0
28

75
12

2
25

69
11

3
LV

ES
V

(m
l)

F
25

58
91

21
53

85
15

48
82

M
71

11
2

15
2

69
10

9
14

8
66

10
4

14
2

LV
M

(g
)

F
44

78
11

1
43

76
10

8
42

74
10

7
M

11
5

19
7

27
9

11
2

19
1

26
9

10
5

18
2

25
9

RV
ED

V
(m

l)
F

73
14

5
21

8
72

14
1

21
0

72
13

6
20

0
M

38
10

2
14

4
34

96
13

7
31

89
12

7
RV

ES
V

(m
l)

F
16

66
11

6
15

63
11

0
14

59
10

5

51



2. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC VENTRICLES

45-54
55-64

65-74

A
ge

120

130

140

150

160

170

LVEDV (ml)

45-54
55-64

65-74

A
ge

40 50 60 70 80 90

LVESV (ml)

45-54
55-64

65-74

A
ge

70 80 90

100

110

120

LVM (g)

45-54
55-64

65-74

A
ge

130

140

150

160

170

180

190

200

RVEDV (ml)

45-54
55-64

65-74

A
ge

50 60 70 80 90

100

110

RVESV (ml)

M
ale

F
em

ale

Figure
2.10:M

ale
(blue

starm
arker)and

Fem
ale

(red
circle

m
arker)clinicalindexesshow

ing
theirm

ean
value

perage
group.

52



2.4 Summary

2.4 Summary

In this chapter, we presented a fully automatic framework capable of performing high-
throughput end-to-end 3D cardiac image analysis of 40,000 subjects. We validated our
workflow on a reference cohort of 4,620 subjects for which both manual delineations
and reference functional indexes exist. Our results show that differences between our
automatic workflow and the manually obtained global and regional reference indexes
are within the expected variability observed in human raters. The method is fast and
scalable, overcoming limitations associated with current clinical CMR image analysis
routine, which is manual, time-consuming and prone to subjective errors. This pipeline
has remarkable potential for improving work efficiency and assisting clinicians in dia-
gnosing and performing large-scale clinical research. Our proposed framework includes
quality analysis modules designed to detect possible erroneous results for review, allow-
ing fully automated analysis of CMR images. Additionally, this would help decrease
inter-and intra-observer variabilities, which are unavoidable when such analyses are
performed manually, thereby streamlining the overall process.

Furthermore, the 3D results can provide more comprehensive anatomical and func-
tional details because of the additional dimension compared with all the 2D segment-
ation methods. This proposed approach ensures the global coherence of the cardiac
anatomy and naturally provides detailed surface models for applications in which full
3D anatomy is necessary; for example, in mechanical and flow simulations, intervention
planning and subsequent image-guided interventions could benefit significantly from
the availability of high-quality 3D mesh models. The analysis and interpretation of
these spatio-temporal information from the cardiac structure and function in large-
scale population imaging data can help find and understand patterns and trends across
population groups, and consequently, reveal insights into key risk factors before CVDs
fully develop.

In the next chapter, we will present a novel deep neural network using both CMR
images and patient metadata to directly predict cardiac shape parameters. The pro-
posed method uses the promising ability of statistical shape models to simplify shape
complexity and variability together with the advantages of convolutional neural net-
works for the extraction of solid visual features.
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Chapter 3

Quantitative Population Analysis of Cardiac
Chambers

Accurate 3D modelling of cardiac chambers is essential for clinical assessment of cardiac
volume and function, including structural, and motion analysis. Furthermore, to study
the correlation between cardiac morphology and other patient information within a
large population, it is necessary to automatically generate cardiac mesh models of each
subject within the population. In this chapter, we introduce MCSI-Net (Multi-Cue
Shape Inference Network), where we embedded statistical shape models inside a fully
convolutional neural network to jointly learn phenotypic and demographic information
from the cohort. In this way, we leveraged the ability of the network to learn the
appearance of cardiac chambers in cine cardiac magnetic resonance (CMR) images,
and generate plausible 3D cardiac shapes, by constraining the prediction using a shape
prior, in the form of the statistical modes of shape variation learned a priori from a
subset of the population. This, in turn, enabled the network to generalise to samples
across the entire population. The motivations for utilising deep neural networks for
this application are three-fold: 1) it allows the method to extract much more solid
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visual features at each network layer and incorporate spatial context from neighbour-
ing regions by using all available image views. 2) it has superior accuracy to reference
shapes than the previous methods while being on average about 30 times faster during
inference, producing the nearly real-time output either directly used as the final result
or further input into other systems. 3) it allows multiple input types, e.g. imaging and
non-imaging; different types of features out of different types of data can be combined
for more informative distribution of parameters. We show that including this inform-
ation provides the network with a variable prior by learning the likely distributions of
shape parameters across different populations. To the best of our knowledge, this is
the first work that uses such an approach for patient-specific cardiac shape generation.
MCSI-Net is capable of producing accurate 3D shapes using just a fraction (about 23%
to 46%) of the available image data, which is of significant importance to the community
as it supports the acceleration of CMR scan acquisitions. We trained and evaluated
the MCSI-Net on a large-scale dataset of 3,925 and 600 subjects, respectively, from the
UK Biobank. We also present the results from analysing 40,000 subjects of the UK
Biobank at 50 time-frames, totalling two million image volumes. Our results broadly
show strong agreement with the reference annotations, achieving an average Dice score
of 92.5% across cardiac ventricles and atria.

3.1 Introduction

According to the World Health Organisation [3], cardiovascular disease (CVD) is the
most prevalent cause of death worldwide, accounting for nearly 18 million deaths each
year. Identifying individuals at risk of CVDs and ensuring they receive appropriate
and timely treatment can help prevent premature deaths.

Early quantitative assessment of cardiac structure, motion, and function support
preventive care and early cardiovascular treatment. Therefore, fully automated analysis
and interpretation of large-scale population-based cardiovascular magnetic resonance
(CMR) imaging studies is of high importance. This analysis helps to identify patterns
and trends across population groups, and accordingly, provides insights into key risk
factors before CVDs fully develop.

UK Biobank (UKB) is currently the world’s most extensive prospective population
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study [34], which contains questionnaire data, biological samples, physical measure-
ments, CMR images, and so forth [13]. CMR is an essential element of multi-organ,
multi-modality imaging visits for patients in multiple dedicated UKB imaging centres
that will acquire and store imaging data from 100,000 participants by 2022. At this
time, CMR scans of 40,000 subjects have been released and are available for health-
related research.

We believe that 3D analysis is critical for the accurate clinical assessment of cardiac
function. In this chapter, we introduce a new approach that ensures the global co-
herence of cardiac anatomy and naturally lends itself to any further analysis requiring
the full 3D anatomy; for example, in interventional treatment planning requiring pre-
cise volumetric quantification, mechanical and flow simulations, motion analysis, and
modelling the associations between cardiac structure and patient metadata (such as
socio-demographic, lifestyle and environmental factors, or family history, genetic, and
omics data). Though fully automatic 3D segmentation is required to facilitate such
analyses, the complexity of anatomical structures, intensity and morphology variation
across a population cohort, and the sparse information available from CMR images
(typically on average around 12 image slices covering the full heart) make this task
challenging.

In chapter 2, which already published as [48] and [58], we showed that 3D statistical
shape model-based approaches have the power and potential to automatically segment
cardiac structures, and generate associated cardiac function indexes. This success is
attributed to the inclusion of prior knowledge of cardiac shape, within the segmentation
method. These segmentation approaches typically use simple sets of features to fit a
shape model through an iterative process and the goal is to minimise the Mahalanobis
distance between an intensity profile sampled at a candidate position and its corres-
ponding intensity appearance model, by deforming the shape within its range of normal
variation to match the image data.

On the other hand, in the last decade, fully convolutional networks (FCN) have
shown great potential in image-based pattern recognition in a variety of tasks, including
cardiac segmentation. However, their output results are, by nature, 2D segmentation
masks for every short axis (SAX) and long-axis (LAX) CMR slice. Although these
2D masks are sometimes extended via a further step of non-rigid registration to a 3D
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atlas to produce a 3D cardiac shape [59], this is not efficient for learning topological
shape information. Furthermore, this is based on the strong assumption that all the
2D segmentation masks are always correct and meaningful, however, in practice, there
are often errors in pixel-wise segmentation approaches due to spurious false positives.
For instance, Painchaud et al. [60] recently proposed a generative model based on a
variational autoencoder to identify anatomically implausible results following 2D seg-
mentation, and corrected these to fit the closest anatomically correct contours, based
on the learned latent space. This provides further evidence that, conducting CMR seg-
mentation in 2D requires a subsequent quality control step, in order to ensure that the
downstream quantitative analyses are accurate. Consequently, large-scale studies would
benefit from an efficient approach for reconstructing cardiac shapes in 3D, as it would
remove the need for multiple sequential steps involving pixel-wise 2D segmentation,
followed by quality control, and iterative registration-based 3D shape reconstruction,
which can be cumbersome and time-consuming.

In order to address these limitations, in a recent study [61] published at MICCAI
2019, we proposed an approach to exploit image features obtained using deep FCNs
trained on both SAX and LAX views, along with a rich shape prior learned using
a statistical shape model, to directly predict the shape-space parameters required to
reconstruct 3D cardiac shapes. Another significant aspect of this study was the in-
tegration of patient metadata into the process of shape prediction using a Multilayer
Perceptron (MLP). This information, which is currently ignored by most cardiac seg-
mentation or shape generation techniques, has been shown in different clinical studies
to have an impact on cardiac morphology and structure [62]. To evaluate our method,
in addition to comparing against manual measurements, we also compared our per-
formance against two state-of-the-art methods that have reported the highest accuracy
thus far, namely, the work by Bai et al. [37] in which the authors propose a 2D convo-
lutional neural network (CNN)-based segmentation method and our previous work [58]
presented in chapter 2 where, we analysed and reported cardiac functional indexes of
40,000 subjects of the UKB through a fully automatic quality-controlled image parsing
framework.

The main contributions of this chapter are as follows:

• We extend the shape model from biventricular to four-chamber cardiac mesh
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model. We segment all four cardiac chambers; namely, left ventricle (LV), right
ventricle (RV), left atrium (LA), and right atrium (RA). For the LV, we segment
both the endocardium and epicardium surfaces; while for the other chambers, we
only segment the endocardium. This is because the myocardium is too thin to
reliably distinguish epicardium from the endocardium. Consequently, there is no
label available to use for the training. This was achieved by first generating a
reference cohort of four-chambered cardiac meshes through the non-rigid registra-
tion of a four-chambered cardiac atlas, to a set of 3D points obtained from manual
delineations. To ensure high accuracy when fitting the 3D shape to the stack of
manually delineated contours, we adopted an alternating global-local non-rigid
registration approach, using the Coherent Point Drift (CPD) method [63].

• We propose an innovative end-to-end deep neural network that directly predicts
3D shape parameters derived from a Principal Component Analysis (PCA) space.
The network is optimised using a loss function defined in the domain of shape
space parameters which weights each PCA mode of variation independently, prior-
itising the more significant modes and leading to more accurate shape prediction.
In addition to the shape parameters, the network also learns the similarity trans-
formation parameters required to transform the generated shape back from the
normalised PCA space, to the image space. We achieved this through a multi-
task learning approach, where the extracted features are used to jointly optimise
a second loss function defined over the desired transformation parameters.

• We utilise a novel approach of exploiting all the CMR image views (short axis
and long axis two-, three- and four-chamber CMR images) and a comprehensive
range of patient metadata simultaneously, to predict 3D four-chambered cardiac
shapes. The introduction of the metadata yielded a substantial positive impact
on shape prediction with about 5% average improvement across all metrics. We
hope this idea inspires other researchers to exploit such informative priors in
their applications, to improve the performance of their models. We categorised
the available patient metadata into four main groups, i.e. demographics, blood
pressure, biological samples, and lifestyle. We carried out systematic experiments
to understand and report the impact of different metadata categories on the
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predicted cardiac shape.

• We investigate the importance of the available CMR slices towards the accuracy
of the final predicted shape and evaluate the performance of our approach in
scenarios where only a few SAX and/or LAX slices are available. These experi-
ments were conducted to validate the hypothesis that 3D cardiac shapes can be
predicted accurately, given sparse CMR acquisitions. This is particularly relevant
to applications requiring acceleration of CMR scan acquisitions, at minimal cost
to subsequent cardiac quantification accuracy.

3.2 Method

In the sections that follow, we describe the data and methods used within each step of
our framework, and our corresponding design choices. These are ordered as follows —
first, we describe the generation of reliable 3D reference shapes from the stack of 2D
manual contours; next, the construction of the point distribution model; and finally,
we provide details of the input data used to train and validate MCSI-Net, and describe
its architecture.

3.2.1 Reference 3D Cardiac Shapes

To generate the reference cohort of 3D cardiac shapes, we first construct the 3D stack
of 2D manual delineations by combining all the available contours from the three views
(i.e. SAX, two- and four-chamber LAX slices) while exploiting the recorded orientation
and position information available in the DICOM header to be aligned with their actual
corresponding CMR images, as shown in Figure 3.1. Subsequently, the mean shape of a
high-resolution atlas of the human heart available from a study by Hoogendoorn et al.
[64] is rigidly and then non-rigidly registered to the 3D stack of manual delineations,
to produce the patient-specific, four-chamber cardiac shape model. The resulting 3D
mesh model comprises five structures; the Left Ventricle (LV) endo- and epicardium,
Right Ventricle (RV), Left Atrium (LA) and Right Atrium (RA).

To generate the reference cardiac meshes, we used the standard Coherent Point
Drift (CPD) algorithm [63] for rigid and non-rigid registration of the two point-sets
i.e., vertices of the cardiac mesh and points in the 3D stack of manual delineations. For
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biventricular 
contours from 
SAX view 
slices

left atrium contour 
from 2-chamber
LAX view slice

left and right atrium contours 
from 4-chamber LAX view slice

Figure 3.1: An example 3D stack of 2D manual contours on SAX, two- and four-chamber
LAX view slices.

each subject comprising manual delineations, we start with rigid registration to align
the two point sets and then perform non-rigid registration to deform the 3D cardiac
mesh to fit the set of 3D points obtained from manual delineations.

Here, we briefly review the CPD algorithm and highlight our proposed approach
to improve its overall performance in this application. CPD treats the problem of
registering a source point set X ∈ Rn×3 to a target point set Y ∈ Rn×3 as one of
probability density estimation. X is considered to represent the centroids of a Gaussian
Mixture Model (GMM), from which a transformed set of observations Y are sampled.
Consequently, by fitting the GMM to Y, in a manner analogous to data clustering, the
underlying spatial transformations that map X to Y and maximise the likelihood of the
latter being sampled from the former, are estimated. This is achieved by maximising
the log-likelihood function using the expectation-maximisation (EM) algorithm, given
as follows:

p(Y|X,T) =
M∑
j=1

log
N∑
i=1

πiN(yj |Txi, σ2), (3.1)
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where xi=1...N ∈ X denotes a mixture component, yj=1...M ∈ Y are the observed data
points, T is spatial transformation parameters, πi is a mixture coefficient and N is a
normal distribution function with variance σ2.

EM is necessary as no tractable solution exists for directly maximising Equation
3.1. The EM algorithm iteratively alternates between two steps. In the expectation
(E)-step, the posterior probabilities that describe the responsibility of each mixture
component xi, in describing the observed data points yj , are estimated. In the maxim-
isation (M)-step, the posterior probabilities estimated in the preceding E-step are used
to maximise Equation 3.1 with respect to the unknown spatial transformation para-
meters T, mixture coefficients πi, and the covariance σ2I associated with each mixture
component. CPD considers an isotropic and shared covariance across all components
in the GMM (i.e. covariance of the GMM is a single scalar parameter). Both rigid and
non-rigid registration are achieved by alternating between these two steps of EM, until
a suitable convergence criterion is reached.

In our case, the target point set (observed data) Y is given by the 3D stack of 2D
manual contours (refer to Figure 3.1), while the source point set X, representing the
GMM centroids, is defined by vertices of the mean atlas mesh [64]. Registration of
X to Y is achieved over three steps, starting with an initial rigid registration, where,
the global rotation and translation parameters required to align X to Y are estimated.
Subsequently, we conduct region-wise non-rigid registration, wherein, each chamber of
the heart in X, is registered independently to the corresponding region-specific contours
in Y (i.e. for example, vertices of the LV mesh in X, are only registered non-rigidly
to the LV contour points in Y). This step is necessary as the standard non-rigid
registration approach proposed in CPD does not explicitly account for multi-region
point sets and enforces a global smoothing constraint on the estimated deformation field
through Tikhonov regularisation. While this is necessary to prevent gross topological
changes during registration, it also causes intersections between adjacent regions in the
registered mesh/point set. Furthermore, such a global smoothness constraint limits the
recovery of fine structural details following registration of Y to X, resulting in issues
such as underestimation of myocardial thickness, among others. By conducting non-
rigid registration in a region-wise manner, we correct for these issues as it allows region-
specific parameters to be defined, to control the degree of smoothness of the deformation
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field estimated for each region. The non-rigid transformation in CPD is parameterised
as a linear combination of Gaussian radial basis functions. Two parameters control the
degree of smoothness of the deformation field, namely, λ a weight which controls the
trade-off between smoothness and registration accuracy, and β, which represents the
width of the Gaussian kernel, used to parameterise the deformation.

Following the region-wise non-rigid registration, we revert to the standard global
non-rigid registration formulation of CPD in order to ensure that the overall topology
of the full heart meshes, and the spatial relationships between its constituent chambers
are maintained. We empirically determined that registering X to Y in this manner,
and adopting n iterations for region-wise and global non-rigid registration, provided
better registration quality than using either approach alone. The values used for these
parameters, for all four chambers of the heart are summarised in Table 3.1, all of which
were determined empirically.

Table 3.1: Parameters used for region-wise and global registration in the CPD method.

LVendo LVepi RV LA RA global
β 2 2 2 2.5 2.5 3
λ 2.5 2.5 2.5 3 3 5
n 100 100 100 50 50 25

Typical β values are in the range [1.5, 3]. Increasing this value increases interaction
between the points in the point cloud, and results in a coherent motion of larger neigh-
bourhoods of points in the point cloud (i.e. similar displacements are estimated for
larger proportions of points). Alternatively, decreasing this value reduces interaction
between the points in the point cloud and conduces localised displacement of points.
Similarly, typical λ values are in the range [0.1,10]. Increasing this value produces more
coherent motion. More details of the algorithm we used to achieve this effect can be
found in work published by Myronenko et al. [63, 65].

Finally, all the reference shapes were quality controlled to maintain high accuracy in
the generated shapes. As a first check, we computed the point-to-point distance of the
generated shape to the 3D stack of 2D manual contours, and if the average error was less
than half of the in-plane pixel spacing, we used the shape for the PDM construction. We
then visually checked all the shapes overlaid on the stack of 2D contours to discard any
sub-optimal shapes from the dataset. Ultimately, 4,525 subjects were available after
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quality control and were randomly split into two sets of 3,925/600 for training/test,
i.e. 3,925 subjects for training the neural network, and 600 subjects for evaluating
performance.

In the next section, we describe how we use the generated 3D reference shapes to
construct the point distribution model, as illustrated in Figure 3.2.

RA LA

RV
LV

…
Manual

Delineation

Stacks

CPD rigid & non-rigid registration

PDM Construction

te
m

p
la

te

…
Triangular

Mesh

Models

Figure 3.2: The template is registered to each stack of 2D manual delineations to
produce high resolution and smooth triangular mesh models for each subject. Then all
the new generated reference shapes are used to create the point distribution model.

3.2.2 Point Distribution Model (PDM)

To encode the mean and variance of the 3D cardiac shapes, we use a PCA-based PDM.
We construct the PDM by applying PCA on a set of generalised Procrustes aligned
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shapes.
Following Procrustes analysis, for a training set of M shapes zi, we get M new

shapes si (representing the i-th shape of the dataset) where all the nuisance pose
parameters, i.e., translation t = (Tx, Ty, Tz), rotation r = (Rα, Rβ, Rγ) and scaling (C)
were removed. Hence using these 7 transformation parameters, we can transform back
the Procrustes-aligned shapes to their original (image) coordinates as follows:

zi = Ci × si × ri + ti, (3.2)

where si ∈ R3N represents the i-th shape as (xi1,yi1, zi1, ...,xiN ,yiN , ziN )T vector. The
shape covariance is represented in a low-dimensional PCA space providing l < min(M,N)
eigenvectors Φ = [ϕ1ϕ2...ϕl], and corresponding eigenvalues Λ = diag(λ1, λ2, ..., λl)
computed through the Singular Value Decomposition of the covariance matrix. Thus,
assuming the group of shapes follows a multi-dimensional Gaussian distribution, we can
approximate any shape in the group using the shape class mean s̄ and the following
linear generative model:

s ≈ s̄ + Φb (3.3)

where, b ∈ Rl are shape parameters restricted to |bi| ≤ β
√
λi; to capture 99.7% of

shape variability, we set β = 3. The shape parameters of s can then be estimated as
follows:

b = ΦT
l (s− s̄). (3.4)

where the entries of b are the projection coefficients of mean-centred shapes (s − s̄)
along the first l columns of Φl. Figure 3.3 shows the mean ± 3 standard deviation
(SD) of the first five PCA modes variation and illustrate the variations present in the
training dataset.

3.2.3 Network Architecture and Loss Function

The overall architecture of MCSI-Net is shown in Figure 3.4. The network has five in-
puts: SAX view images, two-, three and four-chamber LAX view images, and metadata.
The network has two sets of outputs: 1) the predicted shape parameters bP = {bPj |j =
1, ..., k} that are obtained from the top branch of the network, and 2) the predicted
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mean

+3 SD

-3 SD

Figure 3.3: Representation of the mean ± 3 standard deviation (SD) of the first five
modes of variation in the 3D shape models of four-chambered cardiac.

transformation parameters tP = {Tx, Ty, Tz, Rα, Rβ, Rγ , C} which are obtained from
bottom branch of the network. The two tasks are learned through the two branches of
the network simultaneously. The proposed network is trained using the following loss
function:

E(θ) = ψLb + (1− ψ)Lt (3.5)

where

Lb =
k∑
j=1

f(bPj (θ), bRj ) . w(j, k) (3.6)

w(j, k) =
√
k − j + 1

k
(3.7)

and,

Lt =
7∑
l=1

f(tPl (θ), tRl ) (3.8)
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where ψ is a hyper-parameter that weights the relative influence of each loss term, on
the overall gradient back propagated through the network to update the constituent
weights. We empirically obtained the optimal weight as 0.5 where the network equally
optimises the the two terms. k is the number of shape parameters, θ denotes the net-
work parameters, f(.) denotes the absolute error of the difference between the reference
values (bRj and tRl ) and the values predicted by the network (bPj (θ) and tPl (θ)). w(.)
denotes a function that weights the importance of the j − th mode of variation, on
shape prediction, i.e. it assigns a higher weight to the first few modes of variation in
the shape’s PCA space. The first few modes of variation in PCA space are critical
as they capture the largest proportion of shape variability observed in the population.
Correspondingly, small variations in their shape parameters (bPj ) have a substantial im-
pact on the predicted cardiac shape. Therefore, predicting these accurately is essential,
as they have the greatest control over the final predicted shape.

Ultimately, having the mean shape, eigenvectors and predicted shape parameters,
the final shape can be reconstructed using Eq. 3.3 and Eq. 3.2. We highlight that
MCSI-Net uses all the available labels jointly and simultaneously. Once the network
is trained, it is capable of segmenting all five sub-parts of the heart in different views
simultaneously. While other state-of-the-art approaches have been proposed to segment
the heart in multi-view CMR images, to the best of our knowledge, none of them
exploit the contextual shape information provided by each view, to enhance cardiac
shape reconstruction in 3D, as done by MCSI-Net.

As shown in Figure 3.4, we used FCNs to extract image features. We looked into re-
cent deep learning networks that have demonstrated the best performance in regression
problems [66], namely U-Net [67], VGG-16 [68], DenseNet [69], and ResNet [70].

All these FCNs are available in their standard architecture, in a Pytorch package
called torchvision, and are used here for the purpose of feature extraction. However, as
U-Net is an autoencoder, we exploited only the down-sampling path of U-Net architec-
ture with an encoder depth of 4. We added an extra convolutional layer with the kernel
size equal to the feature map dimensions to produce a vector of features. We examined
the performance of the above mentioned FCNs in our application, and found that the
ResNet outperforms the other architectures. We computed the segmentation accuracy
using three key metrics: Dice Similarity Coefficient (DSC), Mean Contour Distance
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(MCD) and Hausdorff Distance (HD). DSC is between 0 and 1, with a higher DSC
indicating a better match between the two shapes. MCD and HD measure the mean
and maximum distance, respectively, between the manual and automatic results, with a
lower value indicating a better the agreement. These metrics were defined in Equations
1.12, 1.13 and 1.14, respectively, in Section 1.5.2. Table 3.2 summarises the perform-
ance of each architecture investigated within our framework. This indicates that the
best performing FCN is ResNet, which appears at the right-most column of the table.
It consistently achieves the largest overlap and lowest point-to-point distance, across
all sub-parts of the heart. Thus, we used ResNet as the deep feature extractor within
our approach, for all subsequent experiments conducted throughout the study.

Table 3.2: Comparison of shape prediction accuracy using different FCNs in terms
of DSC, MCD(mm) and HD(mm) for LV endo-/epicardium, RV, LA and RA. Bold
indicates best performing method.

U-Net VGG-16 DenseNet ResNet

LVendo

DSC 0.80 ± 0.10 0.83 ± 0.08 0.89 ± 0.07 0.95 ± 0.03
MCD 2.12 ± 1.05 1.98 ± 0.92 1.73 ± 0.69 1.04 ± 0.30
HD 5.89 ± 2.51 4.39 ± 1.76 3.91 ± 1.15 3.10 ± 0.91

LVmyo

DSC 0.71 ± 0.15 0.80 ± 0.10 0.82 ± 0.09 0.89 ± 0.03
MCD 2.31 ± 1.25 2.00 ± 0.99 1.81 ± 0.69 1.11 ± 0.39
HD 6.11 ± 2.22 4.88 ± 1.98 4.12 ± 1.65 3.65 ± 1.21

RVendo

DSC 0.76 ± 0.17 0.81 ± 0.11 0.86 ± 0.09 0.91 ± 0.05
MCD 2.56 ± 1.76 2.22 ± 1.05 2.10 ± 1.00 1.70 ± 0.62
HD 11.02 ± 4.01 9.13 ± 3.85 8.11 ± 3.09 6.98 ± 2.60

LA2ch

DSC 0.77 ± 0.13 0.81 ± 0.10 0.89 ± 0.08 0.92 ± 0.04
MCD 2.65 ± 1.89 2.19 ± 1.74 1.99 ± 1.63 1.67 ± 1.05
HD 10.82 ± 7.07 8.11 ± 6.09 7.90 ± 6.11 6.26 ± 5.45

LA4ch

DSC 0.78 ± 0.14 0.83 ± 0.10 0.88 ± 0.08 0.94 ± 0.03
MCD 2.61 ± 1.81 2.18 ± 1.10 1.66 ± 0.89 1.15 ± 0.37
HD 8.05 ± 4.19 6.65 ± 3.98 4.79 ± 2.38 4.06 ± 2.16

RA4ch

DSC 0.77 ± 0.13 0.82 ± 0.09 0.87 ± 0.07 0.94 ± 0.03
MCD 2.62 ± 2.01 1.99 ± 1.02 1.61 ± 0.65 1.10 ± 0.41
HD 8.17 ± 4.15 7.09 ± 4.01 4.92 ± 2.60 4.16 ± 2.25

As shown in Figure 3.4, we also used an MLP to learn features from patient
metadata and integrate it with the extracted image-based features. The MLP is a
two-hidden-layer function denoted g(η), where, η is the input (metadata feature vector
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with 31 neurons). It comprises two hidden layers (with 64 and 128 neurons), and an
output layer (with 256 neurons). ReLU is used in the hidden and output layers as an
activation function, such that:

g(η) = ReLu
(
c(2) +w(2)

(
ReLu

(
c(1) + . . .

w(1)
(
ReLu

(
c(0) +w(0)η

))))) (3.9)

where {c(0), c(1), c(2)} and {w(0),w(1),w(2)} denote biases and weights for the input
and two hidden layers, respectively.

The outputs of the five sub-networks are concatenated to construct one feature vec-
tor that contains the behavioural, phenotypic, and demographic information derived
from the metadata in addition to appearance information from the imaging data. This
information is fed into two fully connected layers, with ReLU activation functions, so
that, by minimising E(θ) from Eq. 3.5, they produce the first k parameters in PCA
space, which describe the 3D shape of the cardiac chambers and the corresponding
transformation parameters. To capture 99.7% of shape variability in the training data-
set, we set k = 71 and regress only those parameters from randomly initialised weights.

3.3 Experiments and results

3.3.1 Data and Annotations

We performed train/test experiments on CMR images of 4525 subjects from the UKB
using both end-diastolic (ED) and end-systolic (ES) time points. In terms of popula-
tion sample size, experimental setup, and quality control, the most reliable reference
annotations of cardiovascular structure and function found in the literature are those
reported by Petersen et al. [36], in which CMR scans were manually delineated and
analysed by a team of eight expert observers. These delineations were used to generate
the reference 3D shapes, as explained in Sec. 3.2.1.

Regarding the image data, each slice (SAX and LAX views) was intensity- and
spatially-normalised similar to our previous work [61]. After the pre-processing, every
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slice has a size of 100×100 px and intensity values ranging between 0 and 1. As the
number of SAX slices in CMR images varies typically from 7 to 15 slices, the SAX
image volumes were resampled to a fixed volume size of 15 slices, using cubic B-spline
interpolation.

With respect to the metadata, based on available literature and advice from our
clinical collaborators, we selected a list of attributes that might directly/indirectly
contribute to variations in cardiac morphology. Table 3.3 shows the summary of the
metadata available for every subject in the UKB. All variables were scaled to the range
[0, 1], including categorical variables, which were first indexed by grouping variables
and then scaled (viz. sex ∈ (0, 1), or smoking status ∈ (0, 0.5, 1)).

3.3.2 Implementation and Training

The method was implemented using Python and Pytorch. The network was trained
using Adam for optimising the loss function (Eq. 3.5) through 300 epochs with a learning
rate of 0.001 and batch size of 8 subjects, all of which were determined empirically.
There was no data augmentation. Training took ∼24 hours on Nvidia Tesla V100
GPUs hosted by Amazon Web Service and accessed using the MULTI-X platform [38].
At test time, it took about 5 seconds to predict the shape parameters of the full cardiac
cycle.

3.3.3 Accuracy of Predicted Shapes

Figure 3.5 shows a sample of our 3D cardiac shape result, at ED and ES phases,
and its corresponding 2D contours (in blue) overlaid with the corresponding reference
contours (in red). It confirms that the system is capable of producing accurate shape
parameters to generate shapes very similar to the reference contours obtained by manual
delineations. We evaluated the performance of our approach using standard metrics for
assessing segmentation accuracy. These include DSC, MCD and HD between reference
and predicted contours.

Table 3.4 shows the list of state-of-the-art methods that have been proposed for
cardiac MR image segmentation and their corresponding average accuracy reported in
terms of the three common metrics: DSC, MCD(mm), and HD(mm). The method
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Table 3.3: Summary of the metadata (MD) of 40,000 subjects used in this study.
According to the nature of the metadata, we have grouped them into four categories,
i.e. MD1: demographics, MD2: blood pressure, MD3: biological samples, and MD4:
lifestyle. Continuous values indicate mean ± standard deviation.

Type Metadata Range

MD1

Sex Male / Female
Age (years) 57 ± 8
Height (cm) 170 ± 9
Body mass index (kg/m2) 27 ± 4
Weight (kg) 78 ± 16
Body surface area (m2) 1.8 ± 0.2
Ethnic background White / Mixed / Other

MD2

Systolic blood pressure (mmHg) 139 ± 19
Diastolic blood pressure (mmHg) 82 ± 11
Diastolic brachial blood pressure (mmHg) 69 ± 12
Systolic brachial blood pressure (mmHg) 137 ± 22
Pulse rate (bpm) 69 ± 12
Central systolic blood pressure during PWA (mmHg) 134 ± 21
End systolic pressure during PWA (mmHg) 113 ± 19
Mean arterial pressure during PWA (mmHg) 96 ± 14

MD3

HbA1c (mmol/mol) 36.1 ± 6.7
Cholesterol (mmol/L) 5.7 ± 1.1
C-reactive protein (mg/L) 2.5 ± 4.3
Glucose (mmol/L) 5.1 ± 1.2
HDL Cholesterol (mmol/L) 1.4 ± 0.3
IGF-1 (nmol/L) 21.3 ± 5.6
LDL direct Cholesterol (mmol/L) 3.5 ± 0.8
Triglycerides (mmol/L) 1.7 ± 1.0

MD4

Smoking status Never / Previous / Current
Number of cigarettes smoked daily 15 ± 8
Sleep duration (hours/day) 7 ± 1
Duration of moderate activity (minutes/day) 66 ± 75
Duration of vigorous activity (minutes/day) 44 ± 47
Duration of walks (minutes/day) 61 ± 77
Alcohol drinker status Never / Previous / Current

Alcohol intake frequency

- Never
- Daily or almost daily
- Three or four times a week
- Once or twice a week
- One to three times a month
- Special occasions only
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by [37] has shown the highest accuracy in literature thus far, for segmenting all four
chambers of the heart. Thus, in addition to manual delineations and our previous work
[58], we compare the performance of MCSI-Net against the fully automated CNN-based
method by [37]. In Table 3.5, we present the data we used for training, testing and
evaluating different methods. Here, the proposed method MCSI-Net is labelled as C,
our previous work [58] in chapter 2 is labelled as A, and the method by Bai et al. [37]
is labelled as B. To reasonably compare our results with those of B and A, we used
the same training and testing datasets. Nearly 7% of the test set of 600 subjects are
with CVDs, namely, cases with myocardial infarction, chronic ischaemic heart disease,
cardiomyopathy, and heart failure.

As an additional assessment, we conducted a quantitative evaluation of human
performance by measuring the inter-observer variability among the segmentations per-
formed manually by three different clinical experts. Here, we randomly selected 50
subjects, where, each subject was analysed independently by three expert observers
labelled O1, O2 and O3. We compare segmentation results on the same set of subjects
to show automated versus human performance.

Tables 3.6, 3.7, and 3.8 present DSC, MCD and HD measures, respectively, that
compare automated and manual segmentation results. Evaluations were performed on
test sets consisting of 50 and 600 subjects which have not been used to train the PDM
or MCSI-Net. Here, the group of 50 subjects is the same set used to evaluate inter-
observer variability, whereas the set of 600 subjects is the same set used as a test set
by [58] and [37]. Note that n is the number of subjects; we evaluated every subject at
ED and ES phases, so there are 100 and 1200 image volumes in total for the dataset
of 50 and 600, respectively.

In Table 3.6, the mean and standard deviations of DSC for the LVendo, LVmyo,
RVendo, LA2ch, LA4ch and RA4ch with n = 600 are 0.95 ± 0.03, 0.89 ± 0.03, 0.91 ± 0.05,
0.92 ± 0.04, 0.94 ± 0.03 and 0.94 ± 0.03 respectively, indicating excellent agreement
between manual delineations and automated segmentation with the average DSC of
0.92. Due to the annular shape of LVmyo which has a larger perimeter (i.e. endo and
epicardial boundary) and causes some overlap shifts, its DSC value is slightly less than
that of the other cases.

In Table 3.7, we observe that the MCD is 1.04 ± 0.30 mm for the LVendo, 1.11 ± 0.39
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mm for the LVmyo, 1.70 ± 0.62 mm for the RVendo, 1.67 ± 1.05 mm for the LA2ch,
1.15 ± 0.37 mm for the LA4ch, and 1.10 ± 0.41 mm for the RA4ch, all of which are
smaller than the in-plane pixel spacing range of 1.8 to 2.3 mm.

In Table 3.8, the HD measures are 3.10 ± 0.91 mm, 3.65 ± 1.21 mm, 6.98 ± 2.60
mm, 6.26 ± 5.45 mm, 4.06 ± 2.16 mm and 4.16 ± 2.25 mm for the LVendo, LVmyo,
RVendo, LA2ch, LA4ch, RA4ch, respectively. Although HD measures are larger than the
in-plane pixel spacing, they are still within an acceptable range when compared with
inter-observer variability (O1-O3), or performance of methods A and B. For instance,
the first three columns of Tables 3.6, 3.7, and 3.8 show inter-observer variability, where
the variability between observers O1 and O2 for the HD metric is 7.56 ± 5.51 mm.
Note that the performance of the proposed method (C) on LV and RV is consistently
better than the other approaches (A and B) in the test set of 600 subjects, with p<0.01
in paired t-tests.

3.3.4 Accuracy of Cardiac Function Indexes

Here, we report clinical cardiac functional indexes derived from manual and automated
segmentation such as atrial and ventricular end-diastolic and end-systolic volume. To
reproduce the reference ranges reported by Petersen et al. [36], we first extract contours
corresponding to the intersection between our 3D triangular meshes and CMR image
slices. Then, for the ventricular indexes calculated on SAX slices, we use Simpson’s
method of integration, whereby a cardiac 3D volume can be approximated by summing
the areas within 2D segmentation contours and multiplying by the inter-slice spacing.
Similarly, for the atrial indexes, we calculated the volume according to the area-length
method on LAX slices.

We processed and quantified all the available 40,000 subjects of the UKB; each
imaged at 50 time points, i.e. in total two million image volumes. Figure 3.6 illustrates
the mean and standard deviation of LV mass and the ventricular and atrial volumes of
all subjects at each time point. The volumes trend matches well with the physiology
of the heart where ventricles have the highest blood volume at ED, and lowest at ES
phase. At the same time, the atria have the opposite behaviour where, it contains the
lowest blood volume at ED and highest at ES phase. LV mass remains consistent over
the cardiac cycle, which is apparent in the diagram.
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3. QUANTITATIVE POPULATION ANALYSIS OF CARDIAC CHAMBERS

Having quantified cardiac chamber volumes across all 50 time points, we report
the following indexes: LVEDV, LVESV, LVSV, LVEF, LVM, RVEDV, RVESV, RVSV,
RVEF, LAEDV, LAESV, LASV, LAEF, RAEDV, RAESV, RASV, and RAEF. Tables
3.9 and 3.10 show the main aforementioned cardiac functional indexes, with the first
column representing the indexes derived from all the available manual segmentation.
As we used part of this dataset to train our model, we compare only with the test set
of 600 subjects, which is the same for all three methods of A, B and C. We also report
the same indexes for the population of 40k subjects in the last column of the table.
We observe here that there is excellent agreement between the clinical indexes of our
proposed method and the ground truth values for all the indexes listed in the table.

Tables 3.11 and 3.12 presents the mean absolute and relative differences between the
automated and manual measurements, as well as between the automated and manual
measurements computed by different expert human observers. We observe here that
the absolute and relative differences for the two subsets of 50 and 600 subjects matched
well, and were within the error range of the three expert human observers. Similarly,
although the range of differences over the cohort of 600 subjects were not directly
comparable with a small test set of only 50 subjects, the difference range still was either
within, or very close, to the difference range obtained by the different expert observers.
We also looked into the automated values from a built-in automated segmentation
software of the scanner device (i.e. inlineVF D13A), which was only available for the
LV. Overall, A, B, and C performed substantially better than inlineVF, achieving an
improvement of nearly 45% for all metrics. Note that these data were retrieved for
every subject from the central UKB database.

Next, in Figure 3.7 and 3.8, we present Bland-Altman plots and correlation plots
of the main ventricular and atrial parameters computed using our approach and the
manual reference covering 600 test subjects. The Bland-Altman plot is commonly used
for analysing agreement and bias between two measurements. In Figure 3.7, we have
reported the mean difference (i.e. bias) and limits of agreement (LoA), i.e. ± 1.96
standard deviations from the mean. The Bland-Altman plots show strong agreement
and a mean difference line at nearly zero, suggesting that the clinical indexes estimated
using our approach have little bias. Conversely, the bias between different pairs of
human observers as reported by Bai et al. [37] is considerable – i.e. approximately 10
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(ml) for ventricular parameters.

Figure 3.8 presents correlation plots comparing the manual and automated meth-
ods, for different cardiac function indexes. The correlation coefficient (corr) measures
the strength of the relationship between two sets of observations. The strength and dir-
ection of the relationship indicate the predictive power of our framework. Coefficients
for all indexes ranged between 0.90 and 0.97, indicating a strong relationship between
our approach and the manual delineations.
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Figure 3.7: Illustrating the repeatability of various cardiac functional indexes com-
paring the manual and automated analysis of 600 subjects from the UKB cohort;
Bland-Altman plots for various cardiac functional indexes computed both manually
and automatically in which manual segmentation was available. The solid horizontal
lines denote the bias or the mean difference (Automatic − Manual), whereas the two
dashed lines denote limits of agreement (LoA) i.e. ± 1.96 standard deviations from the
mean.

Furthermore, to demonstrate whether the values of clinical indexes estimated auto-
matically share the same distribution as those acquired via the manual approach, we
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Figure 3.8: Illustrating the repeatability of various cardiac functional indexes compar-
ing the manual and automated analysis of 600 subjects from the UKB cohort; Correla-
tion plots for various cardiac functional indexes computed both manually and automat-
ically in which manual segmentation was available. The dashed and solid line denote
the identity and linear regression lines, respectively.
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visualise their distributions in Figure 3.9. Here, we present probability distribution
plots for various cardiac functional indexes computed both manually and/or automat-
ically over three sets, i.e. set of all available 4875 subjects with manual delineations, set
of 600 subjects we used to test our method (not used for training), and the full cohort
of 40k subjects. From these, we observe that the distribution of the various indexes es-
timated using our approach agrees almost exactly with those obtained from the manual
segmentations. We observe the same distribution shape, location and scale, and similar
tail behaviour. Furthermore, Figure 3.10, illustrates the Q-Q plots of the same indexes
on the test of 600 subjects, confirming the agreement on different quantiles over all the
indexes, where we see the quantiles points roughly forming a straight line.

We also performed two-sample Kolmogorov-Smirnov (K-S) tests to verify that ventricu-
lar and atrial parameters obtained through manual and automated approaches are
drawn from the same distribution, under the null hypothesis that the manual and
automatic methods are from the same continuous distribution in terms of clinical in-
dexes. From our analysis, K-S test results on different indexes do not reject the null
hypothesis of being from the same distribution at the 5% significance level.

3.3.5 Sub-Cohort Analysis

The proposed approach enables us to perform large-scale population-wide analysis of
CMR images, demonstrated thus far on data from the UKB, with statistics on the
most commonly used clinical indexes derived from CMR exams. We believe, however,
that the power of population studies lies in the opportunity to define and characterise
human sub-populations, and investigate the patterns and trends across different sub-
populations.

Table 3.13 compares the ventricular and atrial volume and LV mass, derived from
our approach, between two groups of subjects, namely, healthy subjects (n=800), and
subjects with myocardial infarction (MI) (n=800). The table shows that MI is associ-
ated with increased ventricular and atrial volume and LV mass with statistical signific-
ance (p-value< 0.001). This is consistent with previous findings, from manual analysis
of a few dozens of subjects, where cardiac remodelling and enlargement happens in
patients with MI. Now we can confirm similar findings and perform similar studies,
with the advantage of reliable automated analysis on really large-scale datasets such
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as UKB, where, there is tons of data available to discover different associations and
patterns.

Table 3.13: Example comparison of cardiac function on large-scale datasets using auto-
matically derived clinical indexes of 1600 subjects. Illustration of cardiac remodelling
on healthy subjects vs subjects with myocardial infarction (MI).

Healthy MI p-value
LVEDV (ml) 144 ± 34 166 ± 43 < 0.001
LVESV (ml) 59 ± 18 72 ± 33 < 0.001
LVM (g) 86 ± 24 103 ± 24 < 0.001
RVEDV (ml) 154 ± 40 163 ± 37 < 0.001
RVESV (ml) 69 ± 24 73 ± 21 < 0.001
LAEDV (ml) 27 ± 11 40 ± 24 < 0.001
LAESV (ml) 66 ± 20 75 ± 30 < 0.001
RAEDV (ml) 46 ± 19 55 ± 26 < 0.001
RAESV (ml) 80 ± 25 81 ± 31 = 0.630

3.3.6 Impact of Metadata on Shape Accuracy

Several studies ([75], [62] and [76], just to name a few) have shown the correlation
between baseline features (such as lifestyle and demographics) and cardiac morphology
and structure. In this subsection, we report the effect of including metadata (as shown
in Table 3.3) as additional information in our network. As expected, the use of metadata
alongside image information improves the network, leading to more accurate prediction
in all cardiac substructures.

Table 3.14 summarises the effect of including different sets of metadata on our
method. The first column shows the accuracy metrics of DSC, MCD and HD when we
only used the image data (labelled as IMG). The next four columns report the accuracy
of the predicted shapes using four different sets of metadata, i.e. (1) demographics,
(2) blood pressure, (3) biological samples, and (4) lifestyle (labelled as MD1 to MD4)
alongside the image data (IMG). We observe that MD1, MD2 and MD4 which represent
the demographics, blood pressure and lifestyle, have a considerable impact on the
shape accuracy (p-value< 0.01), while, MD3 does not contribute significantly (p-value<
0.1). The right-most column represents the most accurate results where we use all the
metadata alongside the image data, achieving on average, around 5% improvement
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compared with the first column (p-value< 0.001), where, we only use the image data.
This can be attributed to the combined use of image and patient metadata within a
single network to directly predict shape parameters. The introduction of the metadata
yielded a substantial positive impact on shape prediction accuracy, across all metrics.
We believe that including this information provides the network with a variable prior
by allowing it to learn the likely distributions of shape parameters across different
populations.

3.3.7 Contribution of Slices on Shape Accuracy

We further investigated generating accurate 3D cardiac shapes when only a fraction of
the image data is available. This was considered highly relevant to this study for the
following reasons: (1) Despite all the advantages of CMR scans, there is an explicit
limitation of acquisition time. A routine CMR scan takes 20-60 minutes, which is
time-consuming and expensive, especially in environments where resources are strained
and availability of scan time is limited. Additionally, such long scan times may be
infeasible entirely, for certain niche groups of patients. Besides, CMR often requires
breath-holds, which could be not easy for many patients. Accordingly, it is essential to
decrease the acquisition time, while maintaining the quality of subsequent quantitative
analyses. Consequently, accurate cardiac quantification using fewer CMR slices, would
help facilitate the acceleration of CMR scan acquisitions, improving patient comfort
and reducing expenses. (2) Typical artefacts found during CMR image acquisitions
are missing slices, which result in missing contours from 2D segmentation methods
(such as the previously mentioned by [37]) across the heart and, as a result, sub-
optimal estimation of volumetric indexes. Consequently, a 3D cardiac shape generation
framework that is robust to the presence of such variations would be of significant
clinical value as it would enable accurate quantification of cardiac functional indexes,
despite the presence of such artefacts. To address these issues, in addition to the
default image data set where we use all the available SAX and LAX image slices, we
used incomplete samples to train our network, and subsequently, predicted complete
cardiac shapes. We extended our training dataset by adding new cases where the image
data in SAX and LAX are not all present, i.e. retaining only

• the three Basal, Mid and Apical slices (labelled as BMA) without any LAX slices,
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• SAX slices (on average ten SAX slices without any LAX slices), and

• the three LAX view slices (two-, three and four-chamber view) without any SAX
slices.

Using this process, we generated three new samples, from every sample in the ori-
ginal dataset. To keep the network architecture, input format, and structure consistent
across all experiments, slices were excluded during training by replacing them with an
empty slice, i.e. with zero values for all pixels.

Table 3.15 summarises the shape prediction accuracy of our approach for all cardiac
structures, compared with the manual delineations, where, we do not use all the avail-
able image data. As expected, we observe that the most accurate results are obtained
when we use all the available image data, reported in the right-most column of the
table.

The first column shows the accuracy metrics of different cardiac structures when
we only use Basal, Mid and Apical slices (BMA). We see the accuracy of our approach
is satisfactory (average DSC of 0.84 for ventricles and 0.80 for atria) using three SAX
slices that do not cover the atria. It is encouraging to see that the network can still
predict the atrial shapes to a reasonable degree of accuracy based on the minimal cues
available in the three SAX slices.

The second column presents the results associated with the SAX slices only. We
see that the results become better in terms of both ventricles and atria segmentation
accuracy when the network has access to more image data. Note, on average the number
of slices is at least three times higher than the BMA case, but the improvement is about
2% on average. Similarly, the third column shows the results of segmentation when
three LAX images are used, and we get comparable results for the ventricles (relative
to BMA and SAX). However, we see higher accuracy for atria as the LAX cover the
atria regions, while, in SAX and BMA there is no direct information of atria regions.

We see the addition of the three LAX slices to the three BMA slices (labelled as
BMA+LAX), results in higher accuracy compared with BMA, SAX and LAX, as the
visual cues exist to describe both ventricles and atria regions, covering the sagittal and
transverse representation of the heart. Overall, we see the potential strength of this
method to produce accurate and high-resolution 3D meshes of cardiac shape using only
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a fraction (about 23% to 46%) of image data. Figure 3.11 presents three sets of sample
output shapes generated from a fraction of image data, overlaid with the corresponding
CMR images.

3.4 Summary

This chapter presented a fully automatic method capable of performing high-throughput
end-to-end 3D cardiac MR image analysis via the simultaneous use of images and pa-
tient metadata. In this chapter, we introduced MCSI-Net, where we embedded statist-
ical shape models within a fully convolutional neural network to jointly learn phenotypic
and demographic information at scale. We leveraged the ability of the network to learn
the visual features of cardiac chambers in cine CMR images, and generate plausible 3D
cardiac shapes, by constraining the prediction using a shape prior, in the form of the
statistical modes of shape variation learned a priori from a subset of the population.
We validated our workflow on a reference cohort of 600 subjects for which both manual
delineations and reference functional indexes exist, and the full dataset with 40,000
subjects. Our results show that differences between our approach and the manually
obtained reference indexes are within the expected variability observed in human raters.
Similar to the previous chapter, this method provides the scientific community with the
first fully automated 3D analysis of cardiac chambers from the sparse CMR images.
This method provides a detailed analysis of cardiac morphology from high-resolution
spatio-temporal information provided by the cardiac mesh models. We also presented
the positive impact of the inclusion of patient metadata on the accuracy of the pre-
dicted shapes. We believe that including this information provides the network with
a variable prior by learning the likely distributions of shape parameters across differ-
ent sub-cohorts. We hope this significant improvement encourages other researchers to
consider all the available information such as these side metadata as priors in other ap-
plications for potentially more accurate and patient-specific models. Furthermore, we
showed that the proposed method achieves comparable results using just a fraction of
image data, which supports the idea of accelerating the CMR scan acquisition by cap-
turing significantly fewer image slices. Facilitated by the architecture of the network,
training of the network is performed jointly using all the available image views at the
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3.4 Summary

same time, which leads to a more informative and rich model containing the contextual
and topological representation of the cardiac shape. This simultaneous use of different
image views also supports the network to handle cases where there are missing imaging
data from any short-axis or long-axis view slices.

In the next chapter, we will present a new method for automatically quantifying
epicardial fat tissue in CMR images. This method will be built up on top of the cardiac
segmentation method we have developed so far. We will then look into the distribution
of epicardial fat in different sub-populations to identify the relationship of the quantified
fat and other clinical variables for the first time at this scale.
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Chapter 4

Quantitative Population Analysis of Epicardial
Fat Tissue

Epicardial fat tissue (EFT) is a visceral adipose tissue that surrounds the myocardium
and has a significant role in cardiac function. It is necessary to better define nor-
mal reference values and the risk associated with EFT to further assess its function
in cardiovascular and metabolic diseases. In this chapter, we introduce a new EFT
quantification method based on our fully validated cardiac segmentation pipelines. We
use the privilege information given by our cardiac segmentation method as accurate
contours of the epicardium wall. Then we will use a clustering approach to identify
the fat pixels in a minimised search region around the epicardial wall. To the best of
our knowledge, this is the first work addressing a fully automated EFT quantification
approach for a large-scale dataset of CMR images available in the UK Biobank. We
evaluated the proposed method on a dataset of 200 random CMR image slices, and our
results broadly show strong agreement with the reference annotations, achieving an av-
erage Dice similarity coefficient of 92.25 (%), and Hausdorff distance of 2.44 (mm). We
present the results from analysing 40,000 subjects of the UK Biobank, and investigate
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the association of the EFT volumes with different baseline clinical characteristics and
genetic variations. Finally, we present the distribution and relationship of the EFT
for three groups of Non-Diabetic, Prediabetic, and Diabetic subjects. These different
sub-cohort analyses revealed significant findings which are of high importance to the
community and will help to explain the role of EFT in the progress of cardiovascular
diseases.

4.1 Introduction

The layers of fat on the surroundings of the heart have several physiological functions
such as local distribution and regulation of vascular flow through a molecular mechan-
ism, immune barrier, protecting the myocardium from inflammatory and pathogenic
substances; local source of fatty acids for the myocardium during of high-demand mo-
ments, and thermogenic effects related to brown adipose tissue [77, 78]. However, these
types of fats are also correlated to several health risk factors such as atherosclerosis,
carotid stiffness, coronary artery calcification, atrial fibrillation and many others. They
can release and uptake free fatty acids and to affect low glucose utilisation, which plays
an essential role in metabolic syndrome and Cardiovascular Disease (CVD) [78–80].

In particular, Epicardial Fat Tissue (EFT) is the visceral adipose tissue surround-
ing epicardium, the outer layer of the cardiac myocardium. However, the terminologies
used to define fat deposits surrounding the heart in the current literature is diverse
and, to some extent, confusing. There is no consensus regarding its exact anatomical
definition, location, and the gold standard modality (ultrasound, cardiac computed
tomography (CT), or cardiovascular magnetic resonance (CMR)) for an in vivo quan-
tification of EFT. Consequently, different studies quantify different regions or layers
of cardiac fat deposited around the epicardium as EFT [81–84]. A previous study by
Homsi et al. [85] also has shown that the quantities of different layers of fat are highly
correlated, suggesting measuring the total fat around epicardium is sufficient to study
and analyse cardiac fat structure and function.

Thus, since the standard protocol for cardiac fats is currently not adequately es-
tablished in the literature, we decided to choose the anatomical definition in which
EFT is the total fat located just around the epicardial wall, which also agrees with
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several studies, such as Thomas et al. [86], Brinkley et al. [87], and Raggi et al. [88].
Moreover, this definition also matches well with our dataset of interest, i.e. CMR im-
ages of the UK Biobank (UKB) where there is no change in pixel intensity for different
types of adipose tissue surrounding epicardium, showing a homogeneous region of fat
for different layers of fat, as shown in Figure 4.1.

Figure 4.1: Sample CMR image showing the adipose tissue (bright regions) surrounding
the epicardial boundary (dashed line).

Table 4.1 summarises the recently published attempts that have studied the EFT
and its correlation with other biomarkers or baseline CVDs risk factors. As shown in
the table, most of the studies perform manual delineation or semi-automatic approaches
for the EFT quantification. There have been very few methods that have used fully
automated approaches to quantify the EFT regions. This could be due to the fact that
the EFT often has unstructured shape and distribution with extremely variant size
across the population.

The method proposed by Rodrigues et al. [103], as one of the very early fully
automated EFT quantification approaches, has proposed a method which uses a hybrid
approach of registration and classification algorithms to perform the segmentation by
classifying fat pixels using a set of extracted low-level features. In a recent study, Fulton
et al. [104] has proposed an automated algorithm in which the image is transformed
into the polar domain. By training two neural networks, the model estimates the inner
and outer edge of the EFT for identifying the thickness of the fat at a radial location
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Table 4.1: Summary of the most recent articles studied EFT and its association with
other biomarkers.

Study Method Modality Number of subjects
Wu et al. (2017) [89] Manual MRI 180
Woerden et al. (2018) [90] Manual MRI 64
Mahajan et al. (2018) [91] Manual MRI 26
Henningsson et al. (2020) [92] Manual MRI 15
Aliyari et al. (2018) [93] Manual CT 44
Seker et al. (2017) [94] Manual Echocardiography 226
Chen et al. (2017) [95] Manual Echocardiography 167
Philouze et al. (2018) [96] Manual Echocardiography 79
Wang et al. (2017) [97] Manual Echocardiography 98
Militello et al. (2019) [98] Semi-Automatic CT 145
Marwan et al. (2019) [99] Semi-Automatic CT 127
Mangili et al. (2016) [100] Semi-Automatic CT 97
He et al. (2020) [101] Automatic CT 40
Zhang et al. (2020) [102] Automatic CT 20
Rodrigues et al. (2016) [103] Automatic CT 20
Fulton et al. (2020) [104] Automatic MRI 12

in a slice. In a similar study, He et al. [101] has proposed to use a deep attention U-Net
method to learn from the manual labels to segment the EFT for cardiac CT image
directly. In another recent study by Zhang et al. [102], they have put forward a method
for automatic segmentation and quantification of EFT from CT scans. They use two
U-Nets; one to detect the pericardium, and the other to refine the inside region of the
pericardium to segment the EFT.

However, the number of train and test dataset in all studies mentioned above are
very limited to truly evaluate the performance of the method. The extreme morphology
variations pose challenges and obstacles when attempting to segment and quantify
the EFT fully automatically. Consequently, the studies have been published to date
have analysed very small datasets, of which population generalisability and normative
reference values are under question.

Furthermore, the variation within the structure and shape of the EFT lead to
significant difference and remarkable inter/intra-observer variability in reference ranges
when manually delineating the EFT regions. For instance, as reported by Li et al. [78]
and Bertaso et al. [77], the difference between reference ranges of EFT is incredibly
significant. This inconsistency makes those limited manually driven labels sub-optimal

104



4.1 Introduction

for the purpose of training a reliable and generalisable machine (or deep) learning
approach for fully automated EFT quantification method.

Thus, to thrive in data-poor environments where both the quantity and quality of
available data is limited by the challenges and costs involved in its collection, automated
image analysis methods must leverage available information as much as possible to
extract the most relevant information. As explained above, this is particularly obvious
in the research area of EFT quantification, where EFT regions are often quantified by
manually delineating acquired 2D slices for a very limited cohort.

However, due to the importance of the function of other cardiac regions (such as
ventricles, myocardium, and atria) and their correlation with other CVDs risk factors,
and also, their coherent and consistent structure within different populations, quanti-
fication of cardiac chambers have received considerable attention, and there are various
labels and reference contours of cardiac regions available in the community. In terms
of population sample size, experimental setup, and quality control, the most reliable
reference ranges for cardiovascular structure and function found in the literature are
those reported by Petersen et al. [36], in which CMR scans were manually delineated
and analysed by a team of eight expert observers using the commercially available
cvi42 post-processing software (Version 5.1.1, Circle Cardiovascular Imaging Inc., Cal-
gary, Canada). This rich source of information has enabled the community to develop
very accurate fully automated segmentation methods of cardiac chambers, such as our
proposed methods presented in previous chapters [48, 58, 61] where we successfully
analysed two million CMR images of 40,000 UKB subjects. In this chapter, we use this
privilege information available from the rich source of accurate automatic delineation
of the cardiac ventricles to look for the fat pixels around the cardiac epicardial wall
from all the available two million UKB CMR images of 40,000 subjects.

The main contributions of this chapter are as follows. First, we propose a novel ap-
proach of EFT quantification using a pre-developed and validated cardiac segmentation
approach and providing volumetric reference ranges for EFT. We perform this through
a fully scalable framework, capable of processing arbitrarily large population imaging
studies, in a completely automatic manner. We demonstrate this by processing 40,000
subjects from the UKB study, each comprised of 50 time frames for a total of two
million image volumes. Second, we look into the EFT volume and its association with
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other risk factors in a very large scale dataset. Having analysed such enormous dataset
of subjects have revealed interesting findings that will be discussed in the following
sections.

The remainder of this chapter is organised as follows. In Section 4.2, we present our
strategy for EFT quantification and an evaluation of our method both from technical
and clinical perspectives. In Section 4.3, we look into the association of the EFT
with different baseline clinical characteristics and genetic variations of all 40,000 UKB
subjects. Finally, in Section 4.4, we present final remarks.

4.2 Method

In the sections that follow, we describe the data and methods used within our framework
and our corresponding design choices.

4.2.1 Image Analysis Method

As discussed in the previous section, we propose to use the privilege information given
by the advances in method developments for the accurate and fully automated seg-
mentation of cardiac ventricles. In this approach, instead of directly segmenting the
EFT regions in the CMR image volumes, we take advantage of using an automated
segmentation approach to limit our region of interest to the area surrounding the epi-
cardial boundary. This approach allows looking for fat pixels in a minimal search region
and intensity variation compared with the entire CMR image volume.

Here, for the large-scale analysis of cardiac ventricles, we utilise our proposed fully
automatic image parsing workflow [58] in Chapter 2, where we have extensively valid-
ated the workflow on the UKB CMR imaging study. We briefly review the pipeline;
CMR images first go through the pre-processing and data organisation, then flow into
both the image quality analysis and segmentation phases, which in turn communicate
with one another, next, produce 3D surface meshes of cardiac ventricles of the full
cardiac cycle. Finally, the 3D surface meshes fed into quality evaluation and quantific-
ation. The output 3D mesh models are comprised of two structures; the Left Ventricle
(LV) and the Right Ventricle (RV). The LV is a closed water-tight mesh comprising
both endo and epicardial walls. The RV is an open mesh representing only the RV
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endocardium. The RV has two openings, the atrioventricular valve opening, and the
pulmonary valve opening.

Having access to this modular pipeline within the in-house cloud-based image ana-
lytics framework called MULTI-X1 [38], we developed a new module for the extraction
and volumetric quantification of fat tissue around the epicardial boundary. Figure 4.2
illustrates the overview of our proposed approach to quantify the EFT regions of the
UKB CMR images.

The EFT quantification method works as follows. The output 3D mesh model of
the cardiac ventricle is intersected by the image slices, producing 2D contours spanned
by the intersections of the mesh triangles. The 2D contours are obtained from the
intersections of the epicardial wall mesh with the image slices by first propagating them
to the nodes of the mesh, and projecting them onto the local surface normals. Then,
the 2D patches of search regions are sampled around the intersections (2D contours)
and along the local surface normals at different image planes.

Consequently, as the sampled patches around the epicardium cover a small frac-
tion (about 1.5 %) of the entire CMR image volume, a simple clustering approach
can detect the fat pixels from non-fat pixels. Here, we use k-means clustering [105]
method on the grey values of a 3D volume patch surrounding the epicardial wall
mesh to detect the EFT regions. k-means method is a widely used unsupervised ma-
chine learning algorithm for data clustering. Here, given an image patch of n pixels
(x1, x2, ..., xn), k-means clustering aims to partition the n pixels into k (≤ n) regions
(clusters) S = {S1, S2, ..., Sk} by minimising the within-cluster sum of squares with the
following objective function:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2, (4.1)

where µi is the mean of pixels in Si. Details of the algorithm we used to achieve this
effect can be found in the work published by Arthur and Vassilvitskii [105]. Here we set
k = 2, and as a result of the k-means, two tissue clusters exist in the extracted patches
around the epicardial wall; bright and dark regions. Blood and fat regions have similar
intensity and are bright while myocardium and other neighbouring regions are dark. So

1https://multi-x.org
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the bright areas are either fat or blood. Then the relative ordering of the tissues with
respect to their spatial representation from the centre of the cardiac are as follows: the
bright outer cluster is accounted as fat, while the bright inner cluster as blood. This
approach can be summarised as follows:

(1) Search region: extracting a rectangular image patch at each intersection between
the mesh and all image planes and grey values from the patches are pooled accordingly.

(2) Clustering: using k-means clustering operation for the image patches, grey
values are classified as bright or dark based on the intensities of fat/blood and myocar-
dium/others.

(3) Quantification: pixels belonging to the bright cluster are considered as EFT if
they are spatially located outside the epicardial wall within the transition from cardiac
centre to outside. Finally, the EFT 3D volume can be approximated by summing the
areas of all the fat segments surrounding the epicardial wall and multiplying by the
inter-slice spacing. EFT volume for a single subject is a median of all the EFT volumes
over the full-cardiac cycle.

4.2.2 Data

We performed experiments on 2,000,000 cine CMR image volumes from the UKB using
all 50 time points of 40,000 subjects. A short-axis image stack of each time points
typically consists of 10 image slices with the in-plane image resolution of 1.8×1.8 mm2,
slice thickness of 8.0 mm and slice gap of 2.0 mm. Table 4.2 shows the summary
of the clinical characteristics of subjects of the UKB, including both continuous and
categorical variables. In section 4.3, we will perform a thorough study of different
sub-cohorts according to different clinical characteristics.

4.2.3 Method Validation

Although we extensively evaluated the performance of our fully automated segmenta-
tion method for the cardiac ventricles in Chapter 2 we also evaluated the performance
of our fully automated EFT quantification method compared with the manual con-
tours. As there are no publicly available reference manual contours available for the
EFT regions, we randomly sampled 200 short-axis slices from the dataset and manu-
ally delineated the EFT regions using MATLAB imageSegmenter app (version R2019a).
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Table 4.2: Summary of the clinical characteristics of 40,000 subjects of the UKB ana-
lysed in this study. Continuous values indicate mean ± standard deviation.

Variables Range
Female 52%
Age (years) 59 ± 8
Height (cm) 170 ± 9
Body mass index (BMI) (kg/m2) 27 ± 4
Weight (kg) 78 ± 16
Body surface area (m2) 1.8 ± 0.2
Systolic blood pressure (mmHg) 139 ± 19
Diastolic blood pressure (mmHg) 82 ± 11
Pulse rate (bpm) 69 ± 12
HbA1c (mmol/mol) 35.0 ± 5.2
Cholesterol (mmol/L) 5.7 ± 1.1
C-reactive protein (mg/L) 2.5 ± 4.3
Glucose (mmol/L) 5.1 ± 1.2
HDL Cholesterol (mmol/L) 1.4 ± 0.3
IGF-1 (nmol/L) 21.3 ± 5.6
LDL direct Cholesterol (mmol/L) 3.5 ± 0.8
Triglycerides (mmol/L) 1.7 ± 1.0

Figure 4.3 illustrates eight sample image slices from different subjects, different ana-
tomical location, and different time-points in a cardiac cycle, with their corresponding
manual and automatic segmentation. It confirms that the system is capable of ac-
curately segmenting EFT regions very similar to the reference contours obtained by
manual delineations.

Then, to measure the accuracy of our method, we used the standard metrics, includ-
ing Dice Similarity Coefficient (DSC), Mean Contour Distance (MCD) and Hausdorff
Distance (HD) between reference and predicted contours, explained in details in Section
1.5.2. Table 4.3 presents the mean and standard deviation (SD) of DSC, MCD and HD
measures that compare automated and manual EFT segmentation results of 200 CMR
image slices. The mean and standard deviation of DSC is 92.251 ± 6.125, indicating
excellent agreement between manual delineations and automated segmentation. We
observe that the MCD is 1.534 ± 0.446 mm which is smaller than the in-plane pixel
spacing range of 1.8 to 2.3 mm. The HD measure is 2.448 ± 1.336 mm, and slightly
larger than the in-plane pixel spacing, however, still within an acceptable range.
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Table 4.3: Segmentation accuracy. The comparison of the automated segmentation res-
ults with the reference manual contours in terms of DSC(%), MCD(mm) and HD(mm).

DSC (%) MCD (mm) HD (mm)
Mean 92.251 1.534 2.448
SD 6.125 0.446 1.336

In the next section, we report and investigate all the processed and quantified 40,000
subjects of the UKB; each imaged at 50 time points, i.e. in total two million image
volumes.

4.3 Statistical Analysis and Interpretation

In this section, we look into the statistical analysis and interpretation of the EFT
volumes in different sub populations. In particular, we look into the sub-cohort analysis
based on the Glycated Hemoglobin (HbA1c) values to identify the association of EFT
with HbA1c and different clinical variables. We also perform a genome-wide association
study (GWAS) for identifying associations between genetic regions (loci) and EFT
volumes of 40,000 UKB subjects.

4.3.1 Association of EFT with HbA1c

HbA1c is measured primarily to determine the three-month average blood sugar level.
It can be used as a diagnostic test for diabetes mellitus and as an assessment test for
glycemic control. Figure 4.4 shows the distribution of the EFT volume (ml) and HbA1c
(mmol/mol) for the entire population. The mean and standard deviation of the EFT
volume and HbA1c of the 40,000 subjects of the UKB is 17.57 ± 6.06 and 35.04 ± 5.19,
respectively.

To better understand the association between EFT and HbA1c, we investigated
the distribution of EFT volume of subjects based on their corresponding HbA1c levels.
We categorise the subjects based on their HbA1c into three groups: Non-Diabetic
(HbA1c < 42), Prediabetic (42 ≤ HbA1c < 48), and Diabetic (HbA1c ≥ 48). Fig-
ure 4.5 shows the distribution of EFT in three groups of Non-Diabetic, Prediabetic,
and Diabetic, each contributing 95.40%, 2.73%, and 1.87% of the total number of 40,000
subjects. We observe that increases in EFT are closely associated with HbA1c level
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Figure 4.4: Distribution of EFT volume (ml) and HbA1c (mmol/mol) of 40,000 subjects
of the UKB.

and, in general, groups with a higher amount of HbA1c have a higher amount of EFT
with p-value of less than 0.0001.

4.3.2 Association of EFT with Demographics

In the previous section, we observed that the average EFT volume in Diabetic group is
significantly more than Prediabetic and in Prediabetic more than Non-Diabetic. Here,
we look into the EFT changes in each category stratified by some of the primary demo-
graphics data. Besides, there has been a surprising lack of consensus in the literature
on the impact of gender, BMI, and age on the amount of EFT. Taking this into con-
sideration, and to further understand the distribution of EFT volumes in three groups
of Non-Diabetic, Prediabetic, and Diabetic, we also look into the sub-cohort analysis
within each of the three groups based on the three main characteristics of the subjects:
gender, BMI, and age. Figure 4.6 shows the EFT volumes of each group separated by
gender. We observe that the female population consistently in all three groups have a
significantly higher amount of EFT. In a similar plot, in Figure 4.7, we see subjects with
BMI over 25 who are considered as overweight subjects, in all three groups of HbA1c
levels have a higher level of EFT, indicating risk of developing additional CVDs risk
factors. Correspondingly, the EFT distribution in two age groups of 45-60 and 60-75
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p < 0.0001

p < 0.0001

p < 0.0001

Figure 4.5: Distribution of EFT over three different groups of Non-Diabetic, Predia-
betic, and Diabetic shows an extremely significant difference. Numbers in parenthesis
shows the percentage of each category in the entire population.

is shown in Figure 4.8, where we see the older age group have significantly higher EFT
volume in all three HbA1c groups. We notice there is a broad individual variation in
the amount and distribution of EFT attributed to their demographic characteristics.
We see that having the opportunity of looking into these patterns in large-scale datasets
of this size, and revealing new findings or confirming the findings in the literature but
with much more substantial evidence is only plausible where can run fully automated
analysis and experiments at this scale.

4.3.3 Association of EFT with Cardiac Function

In this section, we look into the association of EFT volume with the main cardiac func-
tion indexes. Here, we use our automatic four-chamber CMR quantification method
presented in Chapter 3 to compute the following indexes; LVEDV, LVESV, LVEF,
LVM, RVEDV, RVESV, RVEF, LAEDV, LAESV, LAEF, RAEDV, RAESV, and RAEF.

Table 4.4 shows the mean and standard deviation of the above-mentioned cardiac

114



4.3 Statistical Analysis and Interpretation

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

p
<
0
.0
0
0
1

M
al
e

Fe
m
al
e

Fi
gu

re
4.

6:
D

ist
rib

ut
io

n
of

EF
T

fo
r

m
al

e
an

d
fe

m
al

e
su

bj
ec

ts
.

Fe
m

al
e

su
bj

ec
ts

ha
ve

hi
gh

er
EF

T
co

m
pa

re
d

w
ith

m
al

e.
N

um
be

rs
in

pa
re

nt
he

sis
sh

ow
s

th
e

pe
rc

en
ta

ge
of

ea
ch

ca
te

go
ry

in
th

e
en

tir
e

po
pu

la
tio

n.

115



4. QUANTITATIVE POPULATION ANALYSIS OF EPICARDIAL FAT TISSUE

p
<

0
.0

0
0

1
p

<
0

.0
0

0
1

p
=

0
.1

4

B
M

I < 2
5

B
M

I ≥ 2
5

Figure
4.7:

D
istribution

ofEFT
for

subjects
w

ith
norm

alBM
Iand

overweight
show

s
overweight

subjects
have

higher
EFT

.
N

um
bers

in
parenthesis

show
s

the
percentage

ofeach
category

in
the

entire
population.

116



4.3 Statistical Analysis and Interpretation

p
<

0
.0

0
0

1
p

<
0

.0
0

1
p

=
0

.1
0

A
ge

 <
 6

0
A

ge
 ≥

 6
0

Fi
gu

re
4.

8:
D

ist
rib

ut
io

n
of

EF
T

fo
r

tw
o

ag
e

gr
ou

ps
.

O
ld

er
su

bj
ec

ts
ha

ve
hi

gh
er

EF
T

co
m

pa
re

d
w

ith
yo

un
ge

r.
N

um
be

rs
in

pa
re

nt
he

sis
sh

ow
s

th
e

pe
rc

en
ta

ge
of

ea
ch

ca
te

go
ry

in
th

e
en

tir
e

po
pu

la
tio

n.

117



4. QUANTITATIVE POPULATION ANALYSIS OF EPICARDIAL FAT TISSUE

function indexes for two groups of subjects with low (less than the median) and high
(greater than the median) amount of EFT in different HbA1c levels (Non-Diabetic,
Prediabetic, and Diabetic). The proportion of the subjects with low or high EFT also
has been reported in each HbA1c level group. We see that LV indexes are mainly
affected by the level of fat. Interestingly, in the first three columns, we see that all LV
driven indexes, RVESV, and RVEF of subjects with low and high EFT are different (p-
value<0.001). We do not see any effect on LA indexes while RAEDV and RAEF change
significantly (p-value<0.001). In the Prediabetic group, we see a similar pattern for LV
driven indexes while there is no significant change for RV. In the Prediabetic group,
we also see that LVEF, RVEF, and RAEF of subjects with high EFT is significantly
higher than those of low EFT. Furthermore, in the set of Diabetic subjects, LV, RV,
and RA volume at both end-diastolic and end-systolic phases are significantly higher
for those with less EFT (p-value<0.05).

4.3.4 Association of EFT with Genetic Variations

We performed a genome-wide association study on the quantified EFT volumes, us-
ing the genotypic data provided by the UKB, which covers more than 800,000 genetic
variants, i.e. single-nucleotide polymorphism (SNPs) and short indels. We adjusted
normalised EFT values for gender, height, BMI, age and diastolic blood pressure by
performing linear regression against these covariates and taking the residues as the
phenotype of interest. The reason is that these particular covariates have been found
to correlate with cardiac function indexes, and we wish to correct for non-genetic factors
affecting our phenotypes of interest. Finally, we inverse-normalised the resulting phen-
otypes. These values were tested against each genetic variant across the autosomes,
which is encoded as 0, 1 or 2 depending on the dosage of the non-reference allele that the
individual has for that particular variant. Only variants on autosomes (chromosomes
1 through 22) were tested.

In particular, we tested each genetic variant, Xi ∈ {0, 1, 2}, for association with
EFT value z through a univariate linear additive model of genetic effects:

z = βiXi + εi (4.2)

where εi is the component not explained by the genotype, assumed to be normally
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4. QUANTITATIVE POPULATION ANALYSIS OF EPICARDIAL FAT TISSUE

distributed. The null hypothesis tested is that βi = 0.

The outcome of GWAS is usually represented via the so-called Manhattan plots. In
these plots, the horizontal axis corresponds to the genomic position of the SNP, where
the different chromosomes are juxtaposed along the axis. The vertical axis measures
the strength of the association, usually via − log10(p), where p is the p-value of the
association as derived from the linear regression in Equation 4.2. Figure 4.9 shows the
GWAS results displayed in the Manhattan plot where the red and blue lines indicate the
Bonferroni significance threshold (0.05/800000), and a less stringent threshold (10−5),
respectively.

We observe that the significant genetic loci found are located in chromosomes 2
and 10, where they have been mapped to genes TTN and BAG3. Both genes have
been previously reported to be associated with LV phenotypes [106]. TTN encodes
for protein titin, which is responsible for the sarcomere assembly of the myocytes,
which determines stretching, contraction and passive stiffness of the myocardium, and
protein-truncating TTN variants have also been shown to be responsible for dilated
cardiomyopathy. The protein that BAG3 encodes for has been shown to have several
functions, and also to be a cause for dilated cardiomyopathy [106]. More investigation
of these results and unveiling the association of these two loci with the role of EFT will
require further research which is beyond the scope of this work. We also acknowledge
some limitations in our study. Despite being the largest GWAS of EFT phenotype, the
relatively small discovery sample size translated to the discovery of two loci. However,
the expected collection of 100,000 CMR images in the UKB, together with our proposed
pipeline, will probably support future studies to detect more genetic loci.

4.4 Summary

EFT has several systemic effects and plays a vital role in developing both insulin res-
istance and CVDs. In the last couple of years, particular attention has been paid to
the EFT in which non-invasive cardiac imaging techniques can be exploited to quantify
those regions of interest. EFT volume has a relatively strong genetic and demographics
dependence, similarly to other cardiac sub-structures. In this chapter, the anatom-
ical and visual characteristics of the EFT were reviewed. In particular, we presen-
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4. QUANTITATIVE POPULATION ANALYSIS OF EPICARDIAL FAT TISSUE

ted a fully automatic method capable of performing high-throughput end-to-end EFT
quantification. The method was developed based on our previously developed cardiac
segmentation method, which was extensively validated. We used the privilege informa-
tion given by our cardiac segmentation method as accurate contours of the epicardium
wall. Then we exploited a clustering approach to identify the fat pixels in a minimised
search region around the epicardial wall. We validated our EFT quantification method
on a reference cohort of 200 random slices for which manual delineations exist. We
processed all the available CMR images of 40,000 subjects of UKB and generated the
corresponding EFT volume for every single subject. To the best of our knowledge, this
is the first attempt to analyse the EFT in the UKB and the first EFT quantification
and analysis at this scale. All the previous studies have been published to date, have
used manual delineation or semi-automatic approaches for the EFT quantification on
tiny datasets, of which population generalisability and normative reference values are
under question.

Having quantified EFT for the whole dataset, we looked into the EFT distribution
in three main HbA1c based clinical conditions, i.e. Non-Diabetic, Prediabetic, and
Diabetic. We found that EFT volume for groups with a higher level of HbA1c was
significantly higher. We also observed that the older, female gender and overweight
groups have significantly higher EFT than the younger, male gender, and normal weight
range group. Finally, we looked into the association of the genetic variations with EFT
volume in the entire population. We discovered two genes that were already known to
be linked to the ventricles structure. These are significant findings which would provide
insights into the patterns and trends across the diabetic, and prediabetic population
at risk of CVDs before it fully develops. As future work, we would like to increase
our method’s robustness to handle other CMR sequences and image modalities. In
addition to UKB, we would like to extend our analyses to establish reference ranges for
other available cohorts and look into further sub-cohort analysis of these populations
to discover more insight into the development of CVDs.
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Chapter 5

Conclusions

In this chapter, we summarise the main achievements of this thesis which facilitate the
move toward the quantitative image analysis of population cardiac magnetic resonance
imaging. Moreover, we explain some of the existing limitations and introduce future
directions for the development of new methods that can be built upon the frameworks
proposed in this thesis.

5.1 Summary and Achievements

The motivation of this thesis was the development of fully automated workflows to
cope with some of the challenges associated with the processing of large amounts of
cardiac image data. In particular, we have developed algorithms and methods for the
quantification of several cardiac regions in large-scale CMR studies. Our fully auto-
matic pipelines have an excellent potential for improving work efficiency and assisting
clinicians in diagnosing and performing large-scale clinical research. In the following
paragraphs, we outline the main contributions of the thesis.

Firstly, in Chapter 2, we presented a fully automated quality-controlled workflow
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5. CONCLUSIONS

capable of performing high throughput CMR image analysis and tested its performance
on the UKB cardiac dataset of 40,000 subjects each imaged at 50 timepoints, i.e. two
million image volumes. This study has been the first published attempt tackling the
fully automatic 3D analysis of the UKB population study, providing reference ranges
for all key cardiovascular functional indexes, from both left and right ventricles of the
heart.

Secondly, in Chapter 3, we presented a new method for the accurate 3D model-
ling of cardiac four chambers. We proposed a novel deep neural network using both
CMR images and patient metadata to directly predict cardiac shape parameters. The
proposed method uses the promising ability of statistical shape models to simplify
shape complexity and variability together with the advantages of convolutional neural
networks for the extraction of solid visual features. The newly proposed method was
capable of producing accurate 3D shapes using just a fraction (about 23% to 46%) of
the available image data, which is of significant importance to the community as it
supports the acceleration of CMR scan acquisitions.

Finally, in Chapter 4, we presented a new method for quantification of epicardial
fat tissue, a marker of cardiovascular risk. Having developed fully automated meth-
ods for cardiac ventricles segmentation, we extended the method for the volumetric
quantification of epicardial fat tissue. This study has been the first attempt looking
into the large-scale quantification of the epicardial fat tissue and its association with
other patient information which revealed new findings such as a significant difference of
epicardial fat volume in different sub-cohorts and identification of two genes associated
with epicardial fat.

5.2 Limitations and Further Research Directions

Here, we point out some of the improvement and challenges that require further at-
tention for better and better fully automated analytics workflows. As future work,
the robustness of methods should be increased to handle more severe morphological
variations due to pathology and variable image quality, and extend its generalisability
to cope with other CMR sequences and image modalities. Our work’s main limitation
is that the models were trained only on one dataset, limiting the model’s generalis-
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5.2 Limitations and Further Research Directions

ability. The UKB CMR dataset does not include all the possible variability of image
quality and CMR protocols existing in different clinical environments. Moreover, most
of the data are from a healthy population within a limited age group of 45-75. Al-
though we have shown that the method works well on the UKB pathological cases,
there can be different pathological patterns in the clinical environment, which are not
currently manifested by the UKB cohort. To ensure that the image-driven phenotypes
and biomarkers are consistent across the dataset, UKB has acquired CMR images us-
ing a standard imaging protocol through the same scanner model and configurations.
However, this also indicates that the trained models have inherited the UKB image
patterns and features and might not generalise to other vendors or sequence datasets.
It would be of interest to investigate whether we could design a large-scale dataset for
training and evaluation, covering a wide range of typical CMR imaging protocols and
scanner types. A possible solution to extend these datasets’ generalisability is to use
the proposed large-scale segmentation pipelines in this thesis to segment other CMR
datasets. We observed that our methods could analyse the CMR images in a large
cohort very fast, overcoming limitations associated with current clinical CMR image
analysis routine, which is manual and time-consuming. Considering our pipelines may
not perform the best in all cases, we then correct sub-optimal segmentation contours
through a semi-automatic approach and then include the revised contours in the next
round of our training phase to improve the generalisability of the model.

Further to this, we foresee including automatic feedback loops in our pipeline
that would allow the automatic adjustment of segmentation parameters for image re-
processing, based on quality assessment modules. Such feedback loops may include
triggering new modules designed to handle low image quality or missing data imputa-
tion. Similarly, alternative segmentation techniques could be triggered upon detection
of specific pathologies. We also foresee including 3D+t quality control methods to
assess the 3D shape accuracy over the full cardiac cycle, allowing more generalised
and comprehensive quality control of the output 3D shapes considering the inter-frame
dependency along the cardiac cycle.

In addition to the essential above mentioned points for further improvement of the
current quantification results and semantic interpretation of the those integrated with
other metadata, the other future directions could be carried out on intelligent data
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5. CONCLUSIONS

preparation for further analysis. The datasets collected by researchers and clinicians
from different imaging sites are currently recorded in varying formats and protocols.
This means that they cannot be processed directly by the computational techniques,
such as the ones developed in this thesis, without re-organising the image files. However,
achieving this wholly and consistently is a technical challenge. It could be addressed
by developing deep learning methods to organise the image data based on the image
content, not the image metadata recorded in the header of image file which is usually
prone to subjective error during the image acquisition. For practical large-scale analysis
of the data, the data organisation is an essential pre-processing step.

Besides increasing the robustness of the system, further analysis of reference ranges
for specific sub-populations is of high importance. The UKB provides a wealth of pa-
tient information including, socio-demographic, lifestyle and environmental, family his-
tory, genetic, and omics data. Also looking into the modelling the relationship between
cardiac morphology and function, and other available demographics, genetic, and omics
data, would help improve our understanding of disease progression, potentially leading
to improved treatment planning and delivery.

A potential future direction based on the results of this thesis is patient stratific-
ation. By enabling the high-throughput computation of morphological and functional
information obtained from a very large population, a new patient could be examined
and compared to those of a baseline statistics or intricate data-driven patterns within
the population for better decision making during the diagnosis and treatment. This
approach is possible through the smart combination of image-driven phenotypes and
other clinical, biochemical, environmental, and genetic information. Thus, it confirms
the importance of the very accurate quantification of the anatomy of interest, using
techniques similar to what developed in this thesis.

In summary, large-scale medical image analytics is an emerging trend that is creating
new opportunities, as well as challenges. In the future, we will see the accelerated,
extensive implementation and application of large-scale analytics across healthcare-
related organisations, so establishing standards and continuously improving the tools
and technologies are crucial. In this context, thus, the fully automated quantification
and analysis tools that have been presented in this thesis are an essential step toward
the capability of achieving large-scale analytics of population CMR imaging.
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5.3 Code and Results Availability

5.3 Code and Results Availability

Here, we provide some more details about the source code of the methods developed in
the three main chapters of this thesis and their corresponding output results.

To scale both data access and computation, we used our in-house cloud-based image
analytics framework called MULTI-X 1 [38]. It enables both secures distributed access
to data storage and distributed execution of our workflows on the cloud. In particular,
we used Amazon Simple Storage Service (S3) for data storage and Amazon Elastic
Compute Cloud (EC2) for cloud computing.

All the input files, intermediate files, and final results generated during the analysis
of 40,000 subjects of the UKB through three different workflows (presented in Chapters
2, 3, and 4) are stored in the following directory,

s3://results-ukbb-cardio/FULL_ANALYSIS_11350/

where they can be accessed through the portal with the prior permissions. Regarding
the source code, each of the proposed workflows is located in a separate Amazon virtual
Linux machine with their customised software and hardware configurations. The vir-
tual machines are also accessible through the MULTI-X portal with the admin’s prior
guaranteed access keys. Once obtained the access, a copy of the virtual machine with
all its prerequisite packages and libraries can be instantiated and immediately ready to
explore, run, or modify. In the following, we provide more details about the structure
and interaction of the main components of every workflow.

Chapter 2 : The virtual machine name is UKB_LVRV_Quantification with the fol-
lowing icon. The machine contains all the required files to run the workflow.

Figure 5.1 shows the architecture of the workflow addressing the
issue of large-scale analysis of CMR images. It consists of several
modules to analyse every single subject of the database. A workflow
manager software package is required to create a modular workflow
and enable processing of multiple subjects in parallel. This provides
an infrastructure for the set-up, performance and monitoring of a

defined sequence of tasks, regardless of their programming language. In our implement-
1https://multi-x.org
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ation, the Nipype package [39] has been used. It allows us to combine a heterogeneous
set of software packages within a single and highly efficient workflow, processing several
subjects in parallel using cloud computing resources.

DO

OD

MI

S

Q

DS

SQA

IQA

DB

…

Outputs

DG

𝑺𝒏𝑺𝟏 𝑺𝟐

SQA

IQA DO

OD

MI

S

Q

DS

𝑺𝒏−𝟏

𝑺𝒊

SQA

IQA DO

OD

MI

S

Q

DS

SQA

IQA DO

OD

MI

S

Q

DS

SQA

IQA DO

OD

MI

S

Q

DS

Figure 5.1: The fully automatic image parsing workflow for the analysis of cardiac
ventricles in parallel. Left: The workflow includes the following modules: DO: Data
Organisation, IQA: Image Quality Assessment, OD: Organ Detection, MI: Model Ini-
tialisation, S: Segmentation, SQA: Segmentation Quality Assessment, Q: Quantifica-
tion, DS: Data Sink. Right: The quantitative functional analysis of a large database in
parallel mode. DB: Database, DG: Data Grabber, n: number of subjects, and Si: ith
subject of the dataset.

Under the following directory /MULTIX/WORKFLOWS/, there are three main files:

• input.txt This file contains the S3 full path of every subject of the dataset
required to be processed. Each line corresponds to one subject; therefore, if the
plan is to process 1000 subjects, this file should contain 1000 lines of the full path,
as shown below.
s3 : / / dataset −ukbb−c a r d i o /11350/10 xxxxx /1000215/
s3 : / / dataset −ukbb−c a r d i o /11350/10 xxxxx /1000336/
s3 : / / dataset −ukbb−c a r d i o /11350/10 xxxxx /1000363/
s3 : / / dataset −ukbb−c a r d i o /11350/10 xxxxx /1000380/
.
.
.

• main.py This is the main python file that works as a wrapper and contains
different classes for different modules of the workflow. Each module is man-
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5.3 Code and Results Availability

aged by a node of workflow with its specific inputs and outputs. After defin-
ing all the required classes (nodes of the workflow), they are connected to each
other to streamline the data from the unstructured input data all the way to
the final output results. The workflow nodes are connected as shown below and
can simply be appended, removed or modified to change the workflow structure.
Every module’s corresponding files and libraries are located under this directory
/MULTIX/ANALYSE/.
cardiacWorkflow = Workflow ( name= ’ c a r d i a c P i p e l i n e ’ )
cardiacWorkflow . connect ( [ ( o r g a n i s a t i o n , iqa , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,

( o r g a n i s a t i o n , i n i t i a l i s a t i o n , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( i n i t i a l i s a t i o n , segmentation , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( segmentation , q u a n t i f i c a t i o n , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( segmentation , sqa , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( q u a n t i f i c a t i o n , datas ink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( iqa , datas ink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( sqa , datas ink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,

] )
cardiacWorkflow . run ( )

• workflow.nf This is a Nextflow file that sets the high-level configuration of the
workflow and its parallelisation details when running on the cluster of virtual
Linux machines. In this file, the main.py and input.txt files, as mentioned
earlier, are used. The following command starts the workflow and processes all
the subjects listed in the input file using the maximum capacity of computation
resources allocated in the workflow.nf file.

next f low run workflow . nf

Chapter 3 : The virtual machine name is UKB_4Chamber_SHARE with the following
icon. The machine contains all the required files and packages to generate the shape
parameters within a deep learning based approach, presented in details in Chapter 3.

In the deep learning based methods, usually, the training takes a
long time, the inference phase is speedy, and the produced model is
a big file, each of which is the opposite of the previous strategy. Due
to this difference, the pipeline structure and its execution on large
scale datasets would differ from the previous approach. Figure 5.2
shows the schematic of the workflow, where, in this case, chunks
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of data (green arrows) are addressed sequentially while the analysis of subjects within
each chunk is performed in parallel.

Preprocess

MCSI-Net

Database

Download

Upload

Figure 5.2: The schematic of the fully automatic workflow for the analysis of cardiac
chambers. Green arrows indicate a chunk of data to be processed in every round.
Chunk size, which is the number of subjects to be processed simultaneously, depends
on the virtual machine’s computational resources.

Under the following directory /MULTIX/APPS/, there are five main files:

• inputs.csv This file contains the S3 full path of every single subject of the
dataset required to be processed.

• main_preprocess.py This python file preprocesses the input image data where
all images are intensity- and spatially-normalised so that every slice has a standard
size and intensity values. This file produces ROI.csv in which the coordinates of
a square fitted to the region of interest is stored. Instead of making a copy of the
data and storing the cropped version of the images, we keep the images as they
are, and we work with the cropped image’s coordinates to read only the region of
interest which reduces the computational time and resources.

mcsi_net.py This file contains the network architecture. Different imaging and
non-imaging data pass through multiple fully connected layers to learn the tasks
and produce the model weights for our application.

main_mcsi_net.py This file is the main python file used fro train/test the net-
work. This file uses the network as mentioned earlier, mcsi_net.py, and sets the
high-level configuration and hyperparameters to train and then test the network,
as shown below.
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i f n a m e == ” m a i n ” :

p a r s e r = a r g p a r s e . ArgumentParser ( d e s c r i p t i o n= ’ MCSI Net ’ )
p a r s e r . add argument ( ’−−o p t i m i s e r ’ , type=str , d e f a u l t= ’Adam ’ )
p a r s e r . add argument ( ’−− l r ’ , type=f loat , d e f a u l t =1e −3)
p a r s e r . add argument ( ’−−epochs ’ , type=int , d e f a u l t =300)
p a r s e r . add argument ( ’−−b a t c h s i z e ’ , type=int , d e f a u l t =8)
p a r s e r . add argument ( ’−−d i r d a t a s e t ’ , type=str , d e f a u l t= ’ . / i n p u t d a t a / ’ )
p a r s e r . add argument ( ’−−d i r i d s ’ , type=str , d e f a u l t= ’ . / i n p u t d a t a / i d s /ROI . csv ’ )
p a r s e r . add argument ( ’−−p e r c e n t a g e ’ , type=f loat , d e f a u l t =0.75)
p a r s e r . add argument ( ’−−n b v a l s ’ , type=int , d e f a u l t =71)
p a r s e r . add argument ( ’−−n r o t v a l s ’ , type=int , d e f a u l t =7)
p a r s e r . add argument ( ’−−s a x i m g s i z e ’ , type=l i s t , d e f a u l t =[100 , 100 , 1 5 ] )
p a r s e r . add argument ( ’−−l a x i m g s i z e ’ , type=int , d e f a u l t =100)
p a r s e r . add argument ( ’−−num metadata ’ , type=int , d e f a u l t =31)
p a r s e r . add argument ( ’−−s a v e d i r ’ , type=str , d e f a u l t= ’ . / r e s u l t s / ’ )
p a r s e r . add argument ( ’−−save model ’ , type=str , d e f a u l t= ’ m c s i n e t ’ )
p a r s e r . add argument ( ’−−t r a i n ’ , type=bool , d e f a u l t=True )
a r g s = p a r s e r . p a r s e a r g s ( )

main_large_scale.py This python file has been designed to manage high through-
put analysis of a massive data set, for example, CMR images of the UKB where
we processed more than two million image volumes. Depending on the compu-
tational and storage resources, this script sets some high-level configurations to
automatically process the whole dataset using the maximum hardware capacity
and our pretrained model. There are three main variables, each responsible for a
specific aspect of the machine resources. chunk_size defines the chunk size, i.e.,
the number of subjects to be read and downloaded each round. This depends
on the disk size of the virtual machine. core_numbers defines the maximum
number of parallelisation threads. The higher the number of cores, the quicker
CPU based tasks are completed. batch_size defines the number of subjects to
be processed using the GPU capacity. The more powerful GPU the quicker is
the analysis of the chunk. Subsequently, once all the chunks are processed, the
results are uploaded to the S3, and the disk is cleaned and available for the next
chunk of the data.

Chapter 4 : The virtual machine name is UKB_EFT_Quantification with the follow-
ing icon. The machine contains all the required files and software packages to run and
manage the workflow in a parallel mode for simultaneously running program tasks on
multiple clusters of virtual machines.
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As mentioned in Chapter 4, this module was built up on top
of the workflow presented in Chapter 2. The idea was to use the
epicardial boundary’s accurate segmentation, as an initial starting
point, to look for fat pixels in a limited search region. Figure 5.3
shows how the new EFT module is added to the existing workflow

to process new subjects. It uses the output of the segmentation module to produce the
EFT quantification results.

Preprocess

MCSI-Net

Database

Download

Upload

EFT

Figure 5.3: Addition of a new module to the existing workflow for the fully automatic
analysis of epicardial fat tissue in a large scale dataset. We use the privilege information
given by our cardiac segmentation workflow to quantify fat tissue accurately.

For the analysis of new subjects, the cardiac ventricles segmentation workflow should
be extended with the following module. It returns the EFT quantification results in the
same directory where all the intermediate and final segmentation results are located.

def e f t q u a n t i f i c a t i o n ( i n p u t p a t h ) :
from nipype . i n t e r f a c e s . base import CommandLine
mcr = ’ /MULTIX/APPS/ v96 ’
e f t q u a n t i f i c a t i o n e x e = ’ /MULTIX/ANALYSE/ e f t q u a n t i f i c a t i o n /run EFT . sh ’
c l i = CommandLine (command=e f t q u a n t i f i c a t i o n e x e )
c l i . i n p u t s . a r g s = mcr + i n p u t p a t h

try :
c l i . run ( )

except Exception :
pass

return i n p u t p a t h

e f t = Node ( Function ( input names =[ ’ i n p u t p a t h ’ ] , output names =[ ’ i n p u t p a t h ’ ] ,
f u n c t i o n=e f t q u a n t i f i c a t i o n ) , name= ’ EFT Quantif ication Module ’ )
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Under the following directory /MULTIX/WORKFLOWS/, there are two main files:

• inputs.txt Similar to previous approaches, this file contains the S3 full path of
every single subject of the dataset required to be processed.

• main.py This is the main python file that extends the workflow with a new
module and runs the workflow in the same way that cardiac biventricular seg-
mentation workflow performs using Nextflow and Nipype package. As we already
had processed the CMR images and the segmentation contours were available,
we only used the output segmentation to quantify fat tissue with the following
compact workflow.
eftWorkflow = Workflow ( name= ’ e f t P i p e l i n e ’ )
eftWorkflow . connect ( [

( r e s o u r c e , download , [ ( ’ s u b j e c t i d ’ , ’ i n p u t p a t h ’ ) ] ) ,
( download , e f t , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( e f t , datasink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] )

] )

eftWorkflow . run ( )

However, if we want to process a new set of subjects, the workflow has the fol-
lowing nodes and connections.
cardiacWorkflow = Workflow ( name= ’ c a r d i a c P i p e l i n e ’ )
cardiacWorkflow . connect ( [ ( o r g a n i s a t i o n , iqa , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,

( o r g a n i s a t i o n , i n i t i a l i s a t i o n , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( i n i t i a l i s a t i o n , segmentation , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( segmentation , q u a n t i f i c a t i o n , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( segmentation , sqa , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( segmentation , e f t , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( q u a n t i f i c a t i o n , datas ink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( iqa , datas ink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( sqa , datas ink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,
( e f t , datasink , [ ( ’ i n p u t p a t h ’ , ’ i n p u t p a t h ’ ) ] ) ,

] )
cardiacWorkflow . run ( )
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[49] Qiao Zheng, Hervé Delingette, Nicolas Duchateau, and Nicholas Ayache. 3D
consistent & robust segmentation of cardiac images by deep learning with spatial
propagation. IEEE Transactions on Medical Imaging, 2018.

[50] Florian Andre, Stephanie Lehrke, Hugo A Katus, and Henning Steen. Reference
values for the left ventricular wall thickness in cardiac MRI in a modified AHA
17-segment model. Journal of Cardiovascular Magnetic Resonance, 14(S1):P223,
2012.

[51] Alejandro Deviggiano, Patricia Carrascosa, Macarena De Zan, Carlos Capuñay,
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