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Introdution
The estimation of morphological changes of biological tissues over time is an

ubiquitous problem in medical imaging. Image registration methods are suit-
able to solve this kind of problems since they allow to establish dense point cor-
respondences between images, which in turn can be used to quantify deforma-
tion. Given a discrete image sequence I(x, t) = I(x, 0), I(x, 1) · · · , I(x,N− 1), in
the context of this thesis, sequence registration means to find a transformation
T(x, t) : (x, 0) → (x′, t) that puts into correspondence points belonging to the
same sequence. This term must not be confused with its meaning in the context
of intersubject sequence registration [1], where the objective is to find a transforma-
tion T12(x1, t1) : (x1, t1) → (x2, t2) that establishes correspondences between points
of different sequences I1(x1, t1) and I2(x2, t2). In this thesis we have focused on
two challenging applications such as wall motion estimation in cerebral aneurysms
from Digital Subtraction Angiography (DSA), and deformation estimation of the
heart from Tagged Magnetic Resonance Imaging (T-MRI) [2, 3]. Figures 1 and 2
show examples of the images used in this thesis.

The quantification of pulsation in cerebral aneurysms is important for studying
the connection between haemodynamics and rupture. One of the hypothesis that
explain the rupture of aneurysms is the stress concentration on the vessel wall. This
can be quantified by computing wall shear stress values from computational fluid
dynamics (CFD) simulations. Wall motion information can be used in this context
to impose boundary conditions in CFD simulations performed on non-rigid models
as described in Chapter 1.

Wall motion estimation in cerebral aneurysms is also important since the po-
tential connection between pulsation and risk of rupture, as reported in [4–6]. The
underlying hypothesis is that rupture owes to a weakness of the vessel wall, which
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should change the pulsation amplitude of the aneurysm. To study the interrela-
tionships between rupture and pulsation it is necessary to quantify this pulsation,
which can be performed by measuring displacements of the vessel wall over the
cardiac cycle.

Most of wall motion values reported in the literature correspond to experiments
with phantoms [5, 7], simulated images [8], or experimental models [9]. Only a
few attempts of in-vivo quantification have been reported in human beings [4, 10].
In this thesis we have developed an automatic method to quantify wall motion in
cerebral aneurysms from DSA sequences. This method was then applied to study
the relationship between rupture status and pulsation (Chapter 2).

Methods for cardiac deformation estimation are important for studying the be-
havior of the heart under normal, pathological, and simulated conditions. Among
other applications, these methods are useful for studying the mechanical effects of
cardiac diseases [11] and for the development of electro-mechanical models. Pair-
wise registration maximizing the Mutual Information (MI) between component vol-
umes of T-MRI sequences has been successfully applied for recovering displacement
fields of the heart [12, 13]. This motivated us to study extensions of methods based
on information theory both for inclusion of spatial and temporal information.

Normally, the similarity metrics used in image registration methods are based
on pixel intensity information. Such metrics ignore spatial information in the pixel
neighborhood that could provide valuable information for guiding the registration
process. We have explored the use of metrics based on wavelets transforms for non
rigid registration of 2D T-MRI sequences (Chapter 3).

Joint sequence registration refers to the simultaneous alignment of all the frames
in the sequence, opposite to the pairwise approach in which all frames are succes-
sively registered (one by one) to the first (or previous) one of the sequence. We have
developed a novel method for recovering cardiac displacement fields by joint align-
ment of T-MRI sequences (Chapter 4), and applied it for studying regional strain
differences between patients with myocardial infarction and a group of healthy
subjects (Chapter 5).

The results of this research have been presented in several conferences, and
submitted to scientific journals for their publication. A list of these publications can
be found after the Chapter 5. In the same list, we have added other publications
resulting from colaborations with external groups, to which we have contributed
with the experience obtained during these years in the field of image registration.



9
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Figure 1: Example of a DSA sequence showing an aneurysm along the cardiac cycle.
Time is expressed as a percent of the cardiac cycle.

base mid apex long.

Figure 2: Example of T-MRI sequences of the heart. From left to right: basal, medial,
apical, and longitudinal planes. Top row corresponds to End-of-Diastole (ED) and bot-
tom row to End-of-Systole (ES).
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CHAPTER 1
Compliant models for CFD simulations in intraranial aneurysms
Abstract - Haemodynamics, and in particular wall shear stress, is thought to play a crit-
ical role in the progression and rupture of intracranial aneurysms. A novel method is

presented that combines image-based wall motion estimation obtained through non-rigid

registration with computational fluid dynamics (CFD) simulations in order to provide re-
alistic intra-aneurysmal flow patterns and understand the effects of deforming walls on the

haemodynamic patterns. In contrast to previous approaches, which assume rigid walls or
ad hoc elastic parameters to perform the CFD simulations, wall compliance has been in-

cluded in this study through the imposition of measured wall motions. This circumvents

the difficulties in estimating personalized elasticity properties. Although variations in the
aneurysmal haemodynamics were observed when incorporating the wall motion, the overall

characteristics of the wall shear stress distribution do not seem to change considerably. Fur-
ther experiments with more cases will be required to establish the clinical significance of the

observed variations.

Adapted from L. Dempere-Marco, E. Oubel, M. Castro, C. Putman, A. F. Frangi, and J. R. Cebral.
CFD Analysis Incorporating the Influence of Wall Motion: Application to Intracranial Aneurysms. In
R. Larsen, M. Nielsen, and J. Sporring, editors, 8th International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI’06), Copenhagen, Denmark: Springer, October 2006, pp. 438-45.
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1.1 Introduction

Intracranial aneurysms are pathological dilations of cerebral arteries, which tend
to occur at or near arterial bifurcations, mostly in the circle of Willis. The opti-

mal management of unruptured aneurysms is controversial and current decision-
making is mainly based on considering their size and location, as derived from
the International Study of Unruptured Intracranial Aneurysms (ISUIA) [14]. How-
ever, it is thought that the interaction between haemodynamics and wall mechanics
plays a critical role in the formation, growth and rupture of aneurysms. Although
there is little doubt that arterial and aneurysmal walls do move under the physi-
ologic pulsatile flow conditions [4], there is no accurate information on the mag-
nitude and other motion characteristics required for understanding the interaction
between the haemodynamics and the wall biomechanics. Visualization of aneurys-
mal pulsation seems to have become possible with the advent of 4D-CTA imaging
techniques [15, 16]. Confounding these observations, a number of imaging artifacts
were present related to motion of bony structures [4]. Since there are no reliable
techniques for measuring flow patterns in vivo, various modeling approaches were
considered in the past [17, 18]. Hitherto, most computational fluid dynamics (CFD)
methods assume rigid walls due to a lack of information regarding both wall elas-
ticity and thickness. Moreover, in order to perform simulations that account for the
fluid-structure interaction, it is also necessary to prescribe the intra-arterial pres-
sure waveform, which is not normally acquired during routine clinical exams. In
this paper, wall motion is quantified by applying image registration techniques to
dynamic X-ray images. To study the effects of wall compliance on the aneurysmal
haemodynamics, the obtained wall motion is directly imposed to the 3D model
derived from the medical images.

1.2 Method

1.2.1 Dataset

Three case studies have been considered in this paper. Each patient underwent
conventional transfemoral catheterization and cerebral angiography using a Philips
Integris Biplane angiography unit. As part of this examination, a rotational ac-
quisition was performed using a six seconds constant injection of contrast agent
and a 180 degrees rotation at 15 frames per second over 8 seconds. These im-
ages were transferred to the Philips Integris Workstation and reconstructed into 3D
voxel data using the standard proprietary software, which was used for generating
a 3D anatomical model. Biplanar dynamic angiogram at 2 Hz was subsequently
performed using a six second contrast injection for a period of at least 6 seconds.
In addition, an expert neuroradiologist measured the diameters D1 and D2 (maxi-
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mum height and width, respectively) on these projection views. This information
was then used to establish the pixel size and to quantify the wall motion.

1.2.2 Wall motion estimation

In order to estimate the wall motion, image registration, which establishes corre-
spondences between points in two different images, was applied to the series of 2D
images. To this end, a 2D version of the non-rigid registration algorithm proposed
by Rueckert et al. [19] was applied. This method is based on free-form deforma-
tions, which are modeled through the 2D tensor product of 1D cubic B-splines. By
moving a set of control points originally distributed into a regular lattice, a smooth
and continuous transformation is obtained that is subsequently used for deform-
ing one image into the other. The control points are moved in order to maximize
the similarity between the two images. The similarity metric used in this study
to characterize the alignment between the two images is the Normalized Mutual
Information (NMI) [20].

For each series of sequential X-ray projection images, a set of landmarks were
manually delineated in the first frame, and subsequently propagated by using the
transformations derived from the image registration procedure. The complete se-
ries was registered to the initial reference frame. Thus, wall motion was estimated
from the propagated landmarks by calculating the distance between corresponding
points. A distribution of displacement vectors was obtained for the complete set
of landmarks. The wall motion was estimated by using two assumptions: differ-
ential motion (i.e. different amplitude for different regions), and uniform motion
(i.e. same amplitude for all regions). Thus, the statistical characterization of the
displacement field was performed on the whole aneurysm and also on several dif-
ferent anatomical regions. In order to characterize the behavior of each region, both
the median and the 90th percentile of the displacement vector modulus were cal-
culated. By considering the 90th percentile, an upper boundary to the wall motion
amplitude in the simulations is obtained while excluding outliers.

1.2.3 Compliant model

In order to compute the intra-aneurysmal flow patterns, personalized models of
blood vessels were constructed from 3D rotational angiography (3DRA) images.
The segmentation procedure was based upon the use of deformable models by first
smoothing the image through a combination of blurring and sharpening opera-
tions, followed by a region growing segmentation and isosurface extraction. This
surface was then used to initialize a deformable model under the action of inter-
nal smoothing forces and external forces from the gradients of the original unpro-
cessed images [17]. The anatomical model was subsequently used as a support
surface to generate a finite element grid with an advancing front method that first
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re-triangulates the surface and then marches into the domain generating tetrahe-
dral elements [21]. The blood flow was mathematically modeled by the unsteady
Navier-Stokes equations for an incompressible fluid:

∇ · v = 0, ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · τ (1.1)

where ρ is the density, v is the velocity field, p is the pressure, and τ is the deviatoric
stress tensor. The fluid was assumed Newtonian with a viscosity of µ = 4 cPoise
and a density of ρ = 1.0 g/cm3. The blood flow boundary conditions were derived
from PC-MR images of the main branches of the circle of Willis obtained from a
normal volunteer. Traction free boundary conditions were imposed at the model
outflows. At the vessel walls, no-slip boundary conditions were applied. Since the
velocity of the wall was estimated through imaging techniques, wall compliance is
implicitly included in the simulation process. As it was not possible to determine
the shape of the distension waveform at low sampling rates, it was assumed as
a first order approximation, that it followed the flow waveform. Such waveform
was scaled locally to achieve the measured displacement amplitude in each of the
regions considered. The walls were assumed to move in the normal direction, and
such motion was directly imposed to the 3D mesh derived from the volumetric
medical images. The grid was updated at each time step by a non-linear smoothing
of the wall velocity into the interior of the computational domain [22].

1.3 Results

In Figure 1.1, the results from the segmentation of the 3DRA medical images for
the three cases considered in this study are displayed. To establish whether the
detected motion could be discriminated from the intra-observer variability in de-
lineating contours, a manual segmentation was performed by an expert observer in
the first frame by selecting closely located points on the boundary of the aneurysm
and subsequently fitting a spline to the series of points. By considering also the in-
dependently selected landmarks for this same frame, the distributions of distances
derived from: a) original landmarks to the spline, and b) propagated landmarks
and original landmarks, were compared. To this end, Student paired t-test and
ranked sum Wilcoxon tests were performed. As established before, the landmarks
were tracked in the complete series in order to quantify the wall motion. Figure 1.2
illustrates the landmarks propagation from which wall deformation estimates fol-
low. The amplitude of the motion is characterized in Figure 1.3 by both the median
and the 90th percentile.

For patient #1, statistically significant differences were found between the two
distributions for 8/11 frames (pTTEST < 0.04, pWIL < 0.02). In all of these cases,
the average distance between propagated landmarks and original landmarks was
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Figure 1.1: Segmented models corresponding to the 3DRA medical images considered
in this study (from left to right: patient #1, patient #2, and patient #3).

Figure 1.2: Illustration of the propagation of the landmarks between different frames.
[left] patient #1-frame #1, [middle] zoom corresponding to region containing the lobule,
[right] patient #1-frame #2.

(a) (b)

Figure 1.3: Estimation of wall deformation discriminated from intra-observer variability.
(a) median of the modulus of the displacement vectors, and (b) 90th percentile of the
modulus of the displacement vectors for patient #1. The sign of the wall deformation
indicates whether dilation (+) or contraction (-) is obtained, and a null deformation has
been imposed to those frames for which wall deformation cannot be discriminated from
intra-observer variability.
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larger than that due to intra-observer variability. Thus, although small deformation
fields are obtained for all the images within the temporal series (see Figure 1.2),
these differ in a statistically meaningful way from the error made in the manual de-
lineation of the contours. Pairwise one-way ANOVA analyses were also performed
on the series defined by the median of the displacement of the landmarks for all the
frames and statistically meaningful differences (p < 0.004) were found between the
distribution corresponding to the lobule and the rest of distributions.

For patient #2, the deformations recovered by the registration algorithm required
subpixel accuracy to be detected. In fact, statistically significant differences were
found between the two distributions for 3/6 frames (pTTEST < 0.02, pWIL < 0.04),
however, the intra-observer variability was found to be larger than the average wall
motion detected. Thus, it was concluded that the deformation field was so small
that could not be reliably quantified given the available image resolution (i.e. max-
imum mean wall deformation of 0.07 mm in the temporal series).

For patient #3, the deformation fields obtained yielded statistically significant
differences for 6/9 (pTTEST < 0.04, pWIL < 0.03) frames, with the average wall
deformation larger than the error due to intra-observer variation. The amplitude of
the maximum displacement observed was 0.25 mm, i.e. about 3% of the aneurysm
diameter, with no significant differences between regions.

A total of five simulations were carried out for patient #1, using different vessel
wall velocity conditions: 1) maximum displacement (i.e. 90th percentile), differen-
tial motion, 2) maximum displacement, uniform motion, 3) median displacement,
differential motion, 4) median displacement, uniform motion, and 5) rigid walls.
For patients #2 and #3, a compliant and a rigid simulation were carried out. Since
for patient #2 it was not possible to detect a significant wall deformation, a uniform
wall motion with amplitude just below the resolution of the technique was used for
the compliant model. For patient #3, only the maximum uniform wall motion was
imposed in the elastic model to assess the maximum effect that wall motion would
have. In order to compare the results obtained with the different vessel wall move-
ments, the following characterization of the wall shear stress (WSS) was used: the
necks of the aneurysms were manually selected on the anatomical models, and a
region of approximately 1 cm of the parent vessel (denoted proximal parent vessel)
from the neck of the aneurysm was identified (see Figure 1.4). At each time instant,
the average WSS magnitude was computed in the proximal parent vessel region
and used to normalize the instantaneous WSS in the aneurysm and to identify re-
gions of elevated WSS (NWSS>1). Table 1.1 shows the area of these regions, the
percent of the total aneurysm shear force applied over these regions, and a “shear
force concentration” factor (percentage of the shear force applied in these regions
divided by the percent area of the regions), for each of the wall motion regimes
considered and for each of the three patients.

Visualizations of the instantaneous WSS distribution at five selected instants
during the cardiac cycle and for all the wall motion conditions of patient #1 are
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(a) (b)

Figure 1.4: (a) Aneurysm subdivision for differential wall motion estimation (vessel, sac
and lobulation), and (b) flow waveform used to prescribe pulsatile velocity conditions
at the inlet boundary of the models. The dots indicate the instants during the cardiac
cycle at which flow visualizations are presented.

Table 1.1: Percent of the area of the aneurysm under elevated wall shear stress, percent
of the shear force applied in this region, and concentration factor (CF) for each patient
under different wall motion conditions. The values shown are time averages over the
cardiac cycle.

Patient (#) Conditions Area (%) Force (%) CF

1 max diff 1.31 7.46 5.8
1 max unif 1.40 8.06 6.0
1 med diff 1.44 8.34 6.0
1 med unif 1.41 8.11 5.9
1 rigid 1.12 6.09 5.7
2 elastic 2.04 6.37 3.3
2 rigid 1.37 4.71 3.5
3 elastic 2.16 19.48 9.4
3 rigid 1.82 18.86 10.4
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presented in Figure 1.5 . These visualizations and the data presented in Table 1.1
reveal a region of elevated WSS in the dome of the aneurysm. Although this region
covers a small area of the aneurysm ( 1.4%), it contributes to a significant fraction of
the total shear force ( 8%), i.e. it is subject to a “concentrated shear force”. A graph
of the WSS obtained with the rigid wall model and the compliant model with max-
imum differential wall motion is shown in Figure 1.7. This figure shows that rigid
models tend to overestimate the WSS compared to the compliant models. However,
the overall WSS distributions obtained with the different wall models have similar
appearances and characteristics in spite of small local deviations. Visualizations
of the instantaneous WSS distributions at the five selected instants during the car-
diac cycle for patients #2 and #3 are presented in Figure 1.6. The results obtained
with both compliant (maximum uniform wall deformation) and rigid models are
shown. The visualizations reveal a stable region of elevated WSS in the dome of the
aneurysm for patient #2. For patient #3, the region of elevated WSS expands from
the neck to the dome of the aneurysm.

The regions of elevated WSS (i.e. WSS larger than the average WSS over the
proximal parent vessel) cover approximately 2% of the area of the aneurysms for
both patients #2 and #3. It is interesting to note that compliant models tend to yield
slightly larger areas of elevated WSS. This may be due to lower WSS values in the
proximal parent artery for distending vessels.

1.4 Discussion and conclusions

The purpose of this study was to introduce a novel way to combine image-based
motion estimation with CFD analysis to better understand the effects of aneurysm
wall compliance on intra-aneurysmal blood flow patterns. It has been proven that
it is possible to determine wall motion from X-ray dynamic imaging through image
registration. Furthermore, the reported global or regional estimates provide a basis
for potentially more accurate compliant wall CFD simulations. This study adds
further evidence to the results reported by [15,16] where wall motion was observed
and found to be different in the bleb.

The methodology for wall motion estimation can be improved in a number of
ways such as image acquisition at higher frame rates, use of larger catheters and
higher contrast injection rates. Also, ideally the images could be gated to heart
rate or temporally registered with arterial pressure waveforms. In this study, only
low frame rate acquisitions were available. However, it is expected that with higher
frame rates, the complete distension waveform will be reproduced, thus avoiding
the need to assume any particular temporal function. Moreover, the structural dif-
ferences between frames due to the passage of the bolus will be minimized. In
fact, a potential limitation of this technique is that homogeneous mixing of the con-
trast cannot be assured at the current injection rates and catheter sizes. It is also



1.4. Discussion and conclusions 31

Figure 1.5: Instantaneous WSS distri-
butions obtained with different wall
motions. From top to bottom: 90th per-
centile differential, 90th percentile uni-
form, median differential, median uni-
form, and rigid walls. Each column cor-
responds to a time instant indicated in
Figure 1.4 (b).

Figure 1.6: Instantaneous WSS distri-
butions obtained for patient #2 (top
panel) and #3 (bottom panel), using
compliant walls (top row) and rigid
walls (bottom row). Each column cor-
respond to the time instants indicated
in Figure 1.4 (b).

Figure 1.7: WSS obtained with different
wall motions (rigid vs compliant walls)
when 90th percentile uniform motion is
prescribed for patient #1.
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expected that with the advent of new technological advances, an improvement in
spatial resolution will follow and more subtle variations will therefore be detected.

When assessing the influence of wall motion on the haemodynamics, relatively
small changes in the distribution of WSS were observed when imposing different
wall motions. Point-wise comparisons of the WSS magnitudes obtained with the
rigid and compliant models were carried out and it was observed that rigid mod-
els tended to over estimate the WSS magnitude. This effect was less pronounced
when the wall motion was small. This result is in agreement with those reported
by Shojima et al. [23]. In contrast, a number of haemodynamic characteristics did
not exhibit substantial variations. For all patients, the compliant and rigid mod-
els provided consistent estimations of the location and size of the flow impaction
zone. In particular, the area of the aneurysm that is under elevated wall shear stress
with respect to the average WSS in the proximal parent vessel, the contribution to
the total shear force of this region, and the shear force concentration factor were
relatively unaffected by the wall motion. In addition, changing the amplitude of
the wall motion or imposing differential rather than uniform deformations did not
have a considerable effect on these variables either.

Although WSS is thought to play an important role on the mechanobiology
of the arterial wall, further investigation is required to determine which haemody-
namic variables are clinically relevant and the effect of wall motion on them. Finally,
it is widely believed that aneurysmal wall is always compliant to some extent, how-
ever,the range of variability of wall motion among patients is still unknown. Studies
with larger numbers of aneurysms are required to determine how common mea-
surable wall motions are in the population at large and if differences in compliance
can be related to clinical outcomes such as aneurysmal growth and rupture.



CHAPTER 2
Wall motion estimation in intraranial aneurysms

Abstract - The quantification of wall motion in cerebral aneurysms is becoming important
owing to its potential connection to rupture and its importance for computational fluid dy-

namics (CFD) simulations. Most of papers report values obtained with experimental phan-

toms, simulated images, or animal models, but the information for real patients is limited. In
this chapter, we have combined non-rigid registration (IR) with signal processing techniques

to measure pulsation in real patients from high frame rate digital subtraction angiography
(DSA). We have obtained physiological meaningful waveforms with amplitudes in the range

0mm-0.3mm for a population of 18 patients including ruptured and unruptured aneurysms.

Statistically significant differences in pulsation were found according to the rupture status,
in agreement with differences in biomechanical properties reported in the literature. To our

knowledge, this is the first time that wall motion is quantified in intracranial aneurysms,
and that a potential connection with rupture status is established.

Adapted from E. Oubel, J. R. Cebral, M. De Craene, R. Blanc, J. Blasco, J. Macho, C. M. Putman, and
A. F. Frangi. Wall Motion Estimation of Intracranial Aneurysms From DSA Sequences. Under review.
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2.1 Introduction

Intracranial aneurysms are pathological dilations of cerebral arteries, which tend
to occur at or near arterial bifurcations, mostly in the Circle of Willis (CoW).

The optimal management of unruptured aneurysms is controversial and current
decision-making is mainly based on considering their size and location, as derived
from the International Study of Unruptured Intracranial Aneurysms (ISUIA) [14]. It
is thought that the interaction between haemodynamics and wall mechanics plays a
critical role in the formation, growth and rupture of aneurysms. The quantification
of wall motion in aneurysms is becoming important since its likely connection with
rupture risk [4–6] and its importance for incorporating patient specific boundary
conditions in CFD simulations [24].

Many of the reported values in the literature correspond to experiments with
phantoms, simulated images, or experimental models [5, 7–9]. Only a few attempts
of in-vivo quantification have been reported. Wardlaw et al. [10] have measured
pulsation in vivo by using Power Doppler Ultrasound (PD-US), and validated their
method using phantoms [25]. However, many conclusions of the study with phan-
toms are valid for the large changes in size considered (42% of the cross section), but
not necessary extendable for the small changes occurring in intracranial aneurysms.
Meyer et al. [4] have measured aneurysmal volume changes by using Phase-Contrast
Magnetic Resonance Angiography (PC-MRA). For ruptured aneurysms they ob-
tained values of 51% ± 10%, which are quite large in comparison to the visual
changes observed in our clinical experience. With the advent of ECG-gated 4D
Computed Tomography Angiography (4D-CTA), the visualization of aneurysmal
pulsation seems to have become feasible [6,15,16]. However, this technique presents
helical motion artifacts resulting from the lack of cone beam correction during im-
age reconstruction [26], which are visualized as a wavelike motion and produce the
apparent movement of bony structures [15]. This observation and other inconsis-
tencies about the presence of bleb pulsation have been pointed out by Matsumoto
et al. [27]. These problems seem to be corrected with 64-slice CT scanners, but so
far only studies of feasibility have been carried out with phantoms [7]. Recently,
Zhang et al. [8] have presented a method to recover pulsation by deforming the 3D
Rotational Angiography (3D-RA) rendered volume to match its projections to the
2D acquisitions used for the volumetric reconstruction. However, this technique has
been tested only with phantom data and its application in human beings must still
be proven. Table 2.1 summarizes the previous work.

Recently, we have presented preliminary results of the application of non rigid
registration techniques to recover in vivo wall motion from Digital Subtraction An-
giography (DSA) sequences [28]. In this chapter, we present an improved version
of the method that solves some drawbacks of the initial approach. We have applied
the technique to quantify wall motion in 15 patients and found a correlation be-
tween rupture and regional differences in pulsation. To our knowledge, this is the
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Table 2.1: Previous work on wall motion quantification in cerebral aneurysms.
R=Ruptured, U=Unruptured; WMO = Wall motion occurrence; WMQ = Wall motion
quantification.

Authors Modality Data Status WMOa WMQ

Hayakawa et al. [16] 4D-CTA in vivo All R 4/23 no
Kato et al. [6] 4D-CTA in vivo All U 2/15 no
Yaghmai et al. [7] 4D-CTA phantom - - yes
Boecher-Schwarz et al.b [9] - animal model - 5/8 yes
Wardlaw et al. [10] PD-US in vivo All R 15/16 yes
Ueno et al. [5] PD-US phantom - - yes
Meyer et al. [4] PC-MRI in vivo 6 R / 10 U 15/16 yes
Zhang et al. [8] 3D-RA phantom - - yes

aWall motion occurrence is the ratio between the number of cases that present pulsation and the total
number of cases.

bThe modality is not specified since the authors used an experimental system in which the aneurysmal
pulsation is measured by a laser displacement sensor.

first time that the pulsation of intracranial aneurysms is quantified over time, and
that a connection with rupture is established.

2.2 Method

2.2.1 Dataset

Figure 2.1 shows the DSA sequences used in this paper. These sequences were ac-
quired in three clinical centers: 1) Department of Interventional Neuroradiology, In-
ova Fairfax Hospital, 2) Department of Vascular Radiology, Hospital Clinic i Provin-
cial de Barcelona, and 3) Department of Interventional Neuroradiology, Rothschild
Foundation. At each center, an expert clinician measured neck, depth, and width
of the aneurysms in the first frame using standard measuring tools of angiography
scanners. To know the image resolution, the same magnitudes were measured in
the 3D-RA image to avoid errors due to geometric magnification. Table 2.2 provides
detailed information about each sequence.
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#1 #2 #3

#4 #5 #6

#7 #8 #9

#10 #11 #12

#13 #14 #15

#16 #17 #18

Figure 2.1: First frames of the DSA sequences used in this chapter. When available, the
3D-RA reconstruction is shown at right.
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Table 2.2: Table summarizing relevant information about the sequences used in this chapter. M=Male, F=Female; FPS=Frames
Per Second; ICA=Internal Carotid Artery, ACA=Anterior Cerebral Artery, BA=Basilar Artery, PCom=Posterior Commu-
nicating Artery, ACom=Anterior Communicating Artery, MCA=Middle Cerebral Artery; AR=Aspect Ratio; R=Ruptured,
U=Unruptured; LAT=Lateral, TER=Terminal; Y=Yes, N=No, n/a = not available

Patient Gender Age Location Size AR Status Type Injection FR Pulsation

Dome Bleb
# M/F years D × W × N (mm) R / U cc @ cc/s FPS Y / N

1 F 60 ICA 8.5 × 6.6 × 5.0 1.7 U LAT 9 cc @ 3 cc/s 30 Y n/a
2 M 50 ACA 7.2 × 7.8 × 7.8 0.9 U LAT 9 cc @ 3 cc/s 30 Y n/a
3 F 47 BA 11.3 × 9.7 × 3.8 3.0 R TER 9 cc @ 3 cc/s 30 Y Y
4 F 78 ACM 10.0 × 7.7 × 5.2 1.9 U TER 9 cc @ 3 cc/s 10 N N
5 F 56 ICA 4.0 × 4.0 × 2.0 2.0 R LAT 9 cc @ 3 cc/s 30 N N
6 F 47 BA 13.0 × 8.3 × 5.4 2.4 R TER 24 cc @ 4 cc/s 7.5 N N
7 F 46 ICA 19.8 × 18.9 × 3.5 5.7 R LAT 24 cc @ 4 cc/s 3 Y Y
8 M 28 ICA 9.0 × 8.8 × n/a n/a U TER 24 cc @ 4 cc/s 2 Y n/a
9 F 71 ICA 12.2 × 9.2 × 2.9 4.2 R TER 24 cc @ 4 cc/s 7.5 Y Y
10 F 41 ICA 17.1 × 19.8 × 9.9 1.7 U LAT 15 cc @ 4 cc/s 30 Y n/a
11 F 51 ICA 4.2 × 3.5 × 3.0 1.4 U LAT 15 cc @ 4 cc/s 30 N n/a
12 F 37 PCom 7.2 × 6.2 × 2.4 3.0 R TER 15 cc @ 4 cc/s 60 Y Y
13 F 37 MCA 2.0 × 2.9 × 2.8 0.7 U TER 15 cc @ 4 cc/s 60 N n/a
14 M 54 ACom 7.1 × × 3.3 2.2 R LAT 15 cc @ 4 cc/s 30 Y n/a
15 M 21 PCom 5.2 × 5.0 × 1.9 2.7 U LAT 15 cc @ 4 cc/s 60 N n/a
16 F 75 ICA 27.6 × 30.0 × 10.6 2.6 U LAT 15 cc @ 4 cc/s 30 Y n/a
17 F 44 ICA 8.2 × 10.2 × 6.6 1.2 U LAT 15 cc @ 4 cc/s 30 N n/a
18 M 46 ICA 4.2 × 4.0 × 2.5 1.7 U TER 15 cc @ 4 cc/s 60 N n/a
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2.2.2 Wall motion estimation

The method applied for quantifying pulsation consists of three main steps described
next (Figure 2.2).

Image registration

A DSA study consists of an image sequence I(x, t) = I0(x) · · · In−1(x) of n phases
that provides the voxel intensity at spatial position x and time t. To quantify tem-
poral changes in the magnitude of interest, it is necessary to establish a dense point
correspondence between images. This was performed by registering each frame
It(x) to the first one I0(x), yielding a set of transformations T = {Ti(x)}i=1:n that
provide such correspondence. In a previous paper [28], we applied an Optical
Flow (OF) method [29] for IR since this type of methods are preferred for recov-
ering small magnitude changes [30]. However, OF methods are quite sensitive to
variations in intensity due to quantum noise [31] and inhomogeneities in the con-
trast distribution, and non-smooth deformation fields are obtained. To obtain a
smoother deformation field, in this chapter we have used Free-Form Deformations
with B-Spline interpolation functions [32, 33], and Mutual Information (MI) [34, 35]
as metric.

Point propagation and feature quantification

We have analyzed temporal changes in aneurysm depth (d(t)), aneurysm width
(w(t)), and artery diameter (a(t)). These variables were measured by taking the
euclidean distance between pair of points placed in the first frame, and propagated
over time with the set of transformations T . The points used to calculate the artery
diameter were placed far away from the aneurysm to ensure the healthy state of
the artery at the measurement point, and to avoid the influence of aneurysmal
deformations. For the spacing between control points employed in this chapter,
the spatial support of each B-Spline was in the order of the aneurysm size, and
landmarks placed close to the aneurysm could be modified even in the absence of
artery deformation. The points used to define the depth and with of the aneurysm
were placed as shown in Figure 2.2.

Post-processing analysis

If changes in image intensity during the contrast filling were modeled linearly as
It(x) = αI0(x) + c, with α and c constant values, the use of MI-based IR would
account for these changes in intensity. This is because MI-based IR is robust to
changes in intensity scale1 as shown in Figure 2.3. However, intensity changes that

1Note that this does not mean invariance of MI, in fact MI(A, αA) = H(A) + log‖α‖ [36]
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Figure 2.2: Wall motion estimation method. (1) image registration, (2) point propagation
and feature quantification, and 3) post-processing. Crosses (×), circles (◦), and squares
(�), show the points used to measure changes in the artery (a(t)), depth (d(t)), and
width (w(t)) of the aneurysm. IR = image registration; SP = signal processing.

occur during the contrast injection cannot be described accurately by this model,
probably because of complex blood filling patterns. We have not found in the liter-
ature models of intensity changes due to contrast agent distribution to assess their
influence on the IR, but a visual inspection of intensity profiles over time reveals
that an exponential dependency of time is a reasonable approximation. Figure 2.4
shows that, even when the size of the aneurysm does not change, the optimizer
will tries to match the intensity profiles by scaling the moving image. This over-
estimation of the aneurysmal size results in an increase in the mean value of the
dilation curves over time. Fortunately, this change has low frequency with respect
to pulsation, and can be removed by applying high-pass filters (Figure 2.5).

2.2.3 Differential pulsation index

As mentioned in the introduction, measuring pulsation is important to investigate
the potential connection between regional differences in pulsation and rupture sta-
tus. This is supported by the apparent concensus in the literature about a weakness
of the vessel wall induced by a deficit in collagen and elastine [37–42]. What is
more, collagenase and elastase activities seem to be increased in ruptured cerebral
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Figure 2.3: Robustness of MI to intensity scaling. In this example, the pixel intensity
of the fixed image I f (x) (a) is half the intensity of moving image Im(x) (b) (Im(x) =
0.5*I f (x)). (c) MI(I f , Tis(Im)) as a function of the scaling factor for an isotropic scaling
transformation Tis. MI has a maximum at 1.
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Figure 2.4: Overestimation of dilation when considering a non-linear relationship of
intensities. In this example, the fixed image I f (x) (a) presents a quadratic intensity pro-
file, whereas the moving Image Im(x) (b) presents a quartic profile. (c) MI(I f , Tis(Im))
as a function of the scaling factor for an isotropic scaling transformation Tis. MI has a
maximum at a value higher than 1.
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Figure 2.5: Distension waveform before (a) and after (b) filtering.
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aneurysms versus unruptured aneurysms [37]. Assuming that this deficit is higher
in the aneurysm than in the parent artery, a difference in pulsation should be ob-
served. To quantify the differential pulsation, we have defined the following index:

µ =
|max

{
D̂, Ŵ

}
− Â|

δart

where D̂, Ŵ, Â represent the peak-to-peak amplitude of d(t),w(t), a(t) respectively,
and δart is the artery diameter.

2.3 Results

Figure 2.6 shows d(t), w(t), and a(t) for sequences exhibiting wall motion. To
distinguish curves carrying information about wall motion from those containing
just measurement noise, we have compared them to the model in Figure 2.9, and
the presence/absence of wall motion was assessed based on the similarity. Since
contrast injection times depend on the specific protocols of each clinical center, we
show deformations for a single cardiac cycle for normalization purposes. As a
consequence of the image acquisition issues mentioned Section 2.4, curves present
distortions in some time intervals. This occurs in particular at the beginning and at
the end of the contrast injection, where the largest changes in the image take place.
Therefore, when information was available for several cardiac cycles, we selected the
central part of the acquisition window to minimize distortions. Table 2.3 presents
parameters extracted from d(t), w(t), and a(t) for all sequences in Figure 2.6

Figure 2.7 (a) shows the distribution of the differential pulsation µ defined in
Section 2.2.3 with respect to the rupture status. As shown in the Figure, the dis-
tribution of µ for ruptured aneurysms presents a higher mean value than the dis-
tribution for unruptured aneurysms (µR = 6.1% vs. µU = 1.3%). As the standard
deviations are not small, a statistical analysis was performed to assess the statistical
significance of these differences. The result of a t-test showed that the null hypoth-
esis of equal means is rejected for p = 0.05, i.e. the differences are significant at a
level of 5 %.

We have also investigated variations in the pulsation magnitude according to
type and size. Figure 2.7 (b) shows that terminal aneurysms present a higher pulsa-
tion amplitude than lateral aneurysms, but this difference is not significant accord-
ing to a t-test. Figure 2.8 shows a linear correlation between µ, ∆dmax, and the log-
arithm of the aneurysm volume log(vol.). This is in agreement with the difference
in mean volume between ruptured (vR = 0.91cm3) and unruptured (vU = 0.58cm3)
aneurysms.

To study the consistency between measured and observed pulsation, the presence
of visual pulsation was assessed by two observers in two sessions separated by
one week. According to the Kappa statistics, the intra-observer accuracy is 0.76 for
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Figure 2.6: Distention curves a(t), d(t), and w(t) over the cardiac cycle for sequences
showing wall motion. Time is expressed as percent of the cardiac cycle. w(t) is omitted
for sequence #16, since it could not be estimated because of defects in contrast filling.
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Table 2.3: Parameters extracted from curves a(t), d(t), and w(t) for sequences showing
wall motion. R=Ruptured, U=Unruptured; µ = differential pulsation; D̂, Ŵ, Â = peak-
to-peak amplitude of d(t),w(t), a(t) respectively; φda, φdw, φwa = phase difference d(t)-
a(t), d(t)-w(t), and w(t)-a(t), expressed as percent of the cardiac cycle.

Patient Status µ D̂ Ŵ Â φda φwa φdw

# R/U % mm mm mm % % %
1 U 2.26 0.15 0.14 0.074 0 -16 20
2 U 2.40 0.07 0.06 0.023 7 13 -7
3 R 15.97 0.29 0.04 0.042 -25 6 -34
6 R 5.16 0.08 0.03 0.005 33 0 33
7 R 8.02 0.26 0.07 0.018 31 31 0
8 U 0.17 0.01 0.01 0.005 0 0 0
9 R 3.53 0.14 0.11 0.013 -16 -16 0
10 U 2.34 0.12 0.07 0.017 -47 13 28
12 R 3.71 0.09 0.02 0.017 46 46 0
15 U 2.84 0.16 0.06 0.262 40 9 31
16a U 8.25 0.45 - 0.077 39 - -
18 U 0.52 0.19 0.17 0.204 38 38 0

a It was not possible to estimate w(t) for patient #16 because of defects in the contrast filling.
Therefore, measurements involving this curve are omitted in this table.

both observers (substantial agreement according to Landis and Koch’s paper [43])
and the interobserver accuracy of 0.41 (moderate agreement). The reason why a
perfect agreement was not achieved is most likely due to the fact that the wall mo-
tion amplitudes are quite small, and in many cases close to the image resolution.
Figure 2.7 (c) shows the distribution of pulsation amplitudes according to pres-
ence of visual motion as assessed by the observers mentioned in Section 2.4. As
expected, aneurysms classified as “pulsating” presented a higher pulsation ampli-
tude in mean than “non-pulsating” aneurysms.

2.4 Discussion

In previous work [24,28], we described temporal changes in aneurysms by measur-
ing the displacements of points on the vessel wall. This approach requires a previ-
ous segmentation to assess the sign of the displacement, i.e. whether points move
inwards or outwards the aneurysm at the reference point. Besides adding an extra
step in the pipeline, (according to our experience) the segmentation of DSA images
is extremely difficult since this modality does not provide a proper definition of the
vessel lumen. As the wall displacement is in the order of the image resolution, even
small segmentation errors can make the method fail to recover pulsation. In this
chapter we have circumvented this drawback by measuring the euclidean distance
between pairs of points, which avoids the need for a previous image segmentation.

In some cases, we have founded a rigid motion associated to the global pulsa-
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Figure 2.7: Pulsation of aneurysms according to (a) rupture status, (b) type, and (c)
visual motion. Note that the y axes units are different for all figures: the µ index is
plotted in (a), the maximal deformation (relative to the artery diameter) in (b), and
image pixels in (c). Bars show the standard deviations of distributions. The µ value for
sequence #16 was considered as an outlier, and excluded in (a).
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Figure 2.8: Variations in the magnitude of pulsation with the size of the aneurysm. (a)
µ vs volume, (b) Maximum displacement vs. volume. The size of the aneurysms was
measured as the volume of the prolate ellipsoid with minor radii a = b = with and
major radius c = depth. The volume is represented by using a logarithmic scale, since
this is more appropriate for the distribution of volumes in our database.
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tion of the intracranial vasculature that should be corrected before estimating the
deformation. Fortunately, this motion was very small 2 and was captured by the
non-rigid transformation. Therefore, the rigid motion was corrected automatically
without adding an extra step.

It is important to make some remarks with respect to image acquisition. The
Nyquist theorem establishes that the minimum sampling frequency fmin

s that al-
lows recovering the aneurysmal pulsation is twice the signal bandwidth (BW) [44].
To our knowledge, there are no measurements of temporal changes of intracranial
aneurysms in the literature to estimate BW, and we have used simulated pressure
data [45] for the Common Carotid Artery (CCA) (Figure 2.9) to estimate it. Two
important assumptions are made here. 1) The wall displacement and pressure
waveforms are the same (except for a scale factor): this is true if linear elasticity
of the vessel wall is assumed, but both waveforms could differ slightly if a vis-
coelastic model and large mass-effects are considered. 2) The pressure waveform
does not change from the CCA to the location of the aneurysm. Figure 2.9 shows
that the most important frequency components are comprised in the range 0-4 Hz,
and therefore we can establish a fmin

s =8 Hz as the minimum fs to recover aneurys-
mal pulsation. Even when this estimation is based on simulated data, it allowed
obtaining curves resembling the typical arterial pressure waveform [46] (see for ex-
ample sequences #1, #2, #9, #10, #12, #15 in Figure 2.6 ). This similarity supports the
assumption that the recovered deformations effectively quantify the wall displace-
ments of the vessel, and do not come from sources of variations like image noise,
intensity changes, or movement artifacts. As shown in Table 2.2, some sequences
were acquired at lower sampling frequency than this inferior limit. Sometimes,
low fs values are preferred to obtain a higher image quality, and values as low as
2Hz can be found. Figure 2.6 shows the result when fs does not meet the require-
ments imposed by the Nyquist’s theorem (sequences #7 and #8). As the sampling
frequency for these sequences ( fs = 3Hz and fs = 2Hz, respectively), distension
waveforms cannot be completely recovered.

The dependency of the method on the contrast injection parameters (e.g. injec-
tion rate, total volume) is critical, since they must ensure a complete and homoge-
neous filling of the aneurysm for at least one cardiac cycle. It is very difficult to
select a fixed set of parameters to satisfy these requirements in all aneurysms, since
the filling depends strongly on factors like size, shape, and type of the aneurysm.
The influence of type is well illustrated by terminal aneurysms of the basilar artery
(Figure 2.1, patients #3 and #6). In these cases, the aneurysm receives the blood
jet directly from the parent artery which produces a strong washout of contrast
medium. A large size may be also problematic, since the filling is slower and some-
times the injected contrast is not sufficient to fill the aneurysm (Figure 2.1, patients
#7 and #10). These problems are related to the upper limits imposed by the cel-

2Note that the aneurysmal pulsation is also very small, and therefore any rigid motion must be
completely compensated to have an accurate estimation
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Figure 2.9: (a) Simulated pressure at the Common Carotid Artery (CCA) [45] (b) Mag-
nitude of its DFT (spacing of samples in the Fourier domain 1/T = 1, where T is the
period of the signal). The continuous component ( f = 0) was removed from the DFT
for better visualization of high frequency components. Frequencies higher than 20 Hz
were also omitted because of their small amplitude.

lular effects of contrast media [47], and their connection to nephropathies [48]. If
there were no such limits, the amount of contrast could be made big enough to
compensate the effects of size and type.

Figure 2.6 shows that in some cases the recovered curves are out-of-phase. This
cannot be attributed to the filters used for postprocessing, since the phase difference
persists when filters are not applied (see patient # 6 for example). A possible expla-
nation to this phenomenon is the asymmetric deformation of the aneurysm owing
to specific blood flow patterns. Consider for example the same patient (# 6). As can
be seen from Figure 2.1 this is a basilar aneurysm that receives a direct impingement
of the blood flow coming from the basilar artery. As the direction of the jet is par-
allel to the longitudinal axis of the aneurysm, it increases its depth at the expense
of a decrease in width as shown in Figure 2.10. This explanation predicts a phase
difference of 180 degrees, which in fact was the difference of phase found in the ex-
ample. A similar analysis of other aneurysmal configurations should be performed
to understand the regional differences in pulsation, and a CFD analysis could be
necessary for complex cases. Another explanation for these phase differences is
the pulsation of extravascular structures (like the brain), which could pulsate syn-
chronously with the artery and modify influence the expected deformation pattern
of the aneurysm.

Lateral and terminal aneurysms showed slight non significant differences in
wall motion. However, terminal aneurysms receive a direct impact of the blood
jet coming from the parent artery which should produce a larger deformations. A
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(a) (b) (c) (d)

Figure 2.10: Relationship between blood flow and wall motion for a basilar aneurysm.
Figures (a)-(d) show the deformation of the aneurysm for four temporal points of the
cardiac cycle (shown as an empty circle at bottom left of each figure). Empty arrows
in the parent artery represent the blood blow (their length is proportional to the flow
magnitude). The small black arrows represent the wall displacement with respect to the
previous time instant.

possible explanation are the differences in location of the considered aneurysms,
which should be normalized to ensure similar haemodynamic conditions. Larger
aneurysms exhibited a higher differential pulsation index, and wall motion ampli-
tude. However, other papers have reported no relationship between aneurysm size
and volume increases [4].

The method presented in this chapter allows obtaining deformations in the im-
age plane. This information could be complemented by a second acquisition in an
orthogonal projection. However, according to our experience, the neighboring ves-
sels make extremely difficult to obtain two orthogonal views showing the aneurysm
without an overlapping with other vessels. The presence of neighboring can also
perturb the recovered displacement fields: at the beginning of the contrast filling,
the aneurysm appears isolated from the rest of the vasculature and its boundary
is well defined. As the contrast injection progresses, distal vessels start appear-
ing in the image (Figure 2.11) and a local misregistration occurs due to the lack of
correspondence [49].
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(a) (b)

Figure 2.11: Influence of neighboring vessels: at the beginning of the contrast filling the
boundary of the aneurysm is free (a). As the contrast injection progresses, distal vessels
start appearing in the image causing local misregistration occurs due to lack of point
correspondence.
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2.5 Conclusions

In this chapter we have combined non-rigid registration methods with signal pro-
cessing techniques to quantify wall motion of intracranial aneurysms from dynamic
DSA sequences. To our knowledge, this is the first time that pulsation of is quan-
tified over the cardiac cycle. We applied the presented methodology to a series of
intracranial aneurysms and found a higher index of differential pulsation for rup-
tured aneurysms. These measurements and observations may help us better stratify
aneurysm rupture risk and understand the wall motion effects on aneurysm haemo-
dynamics and their evolution.
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CHAPTER 3
Cardia motion estimation by using omplex wavelets

Abstract - Tagged Magnetic Resonance Imaging (T-MRI) is currently considered the refer-
ence modality for myocardial motion estimation and strain analysis. Non-rigid registration

based on Mutual Information (MI) has been proposed as an automatic method for recovering

cardiac displacement fields. However, the use of MI of voxel intensity ignores the spatial
information provided by the tags, whose inclusion in the similarity metric could increase

the accuracy and robustness. In this chapter, we have used the alpha-MI (MIα) of features
vectors derived from the Complex Wavelet Transform (CWT), which add high frequency

information along six equally spaced directions in the frequency domain. To cope with the

problem of estimating the MI of high-dimensional features, we have used estimators based on
k-Nearest Neighbors Graphs (kNNG), which allow a direct estimation of the metric without

estimating probability density functions. Experiments performed on a series of 2D T-MRI
sequences showed an increase in accuracy with respect to metrics based on image intensity,

but the computational cost of the investigated technique could limit its extension to deal

with real 4D sequences.

Adapted from E. Oubel, A. O. Hero, and A. F. Frangi Complex Wavelets for Registration of tagged
MRI sequences. In J. Kovac̆ević and E. Meijering, editors, Third IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI’06), Arlington, VA, USA, April 2006.
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3.1 Introduction

Tagged magnetic resonance imaging (T-MRI) is a well established technique for
obtaining regional information on the left ventricle (LV) deformation [2], and

therefore it is potentially valuable for the diagnosis of cardiovascular diseases [11].
Basically, this technique consists in perturbing the magnetization of the myocardium
in a specific spatial pattern at end-of-diastole (ED). These perturbations appear as
dark straight stripes (tags) when imaged immediately after application of the mag-
netic field. Since the myocardial tissue retains its magnetization properties, tags
undergo the same deformation as the heart. This allows tracking material points
along the cardiac cycle.

Several methods have been proposed to retrieve LV displacement fields: opti-
cal flow [50–53], Harmonic Phase (HARP) MRI [54–56], tag detection and track-
ing [57–60], and image registration [12,13]. Non-rigid registration based on Mutual
Information (MI) has been proposed as an automatic method for recovering cardiac
displacement fields. However, the use of MI of voxel intensity ignores the spatial in-
formation provided by the tags [61], whose inclusion in the similarity metric could
increase the method accuracy and robustness according to results reported in the
literature [61–63].

In this chapter, we have investigated the use of MI of feature vectors obtained
from the Complex Wavelet Transform (CWT). In a previous paper [64], we have
shown that cardiac motion estimation was feasible by using a similar framework
based on the Discrete Wavelet Transform (DWT). The CWT is an attractive image
representation since it is shift invariant, and it provides better discrimination of
directionality with respect to the DWT [65, 66]. The CWT has already been ap-
plied to motion estimation since its phase depends almost linearly from displace-
ments in the image [67]. As the features derived from the CWT are in a high di-
mensional space, we used an MIα estimator based on k-Nearest Neighbors Graphs
(kNNG) [68]. This estimator permits estimating the MIα without computing a prob-
ability density function (pdf) of the feature vectors.

3.2 Method

3.2.1 Dataset

We have used four 2D T-MRI sequences in short-axis acquired in breath-hold by
using a General Electric Signa CV/i, 1.5 T scanner (General Electric, Milwaukee,
USA). The values of acquisition parameters were: slice thickness = 8mm, in-plane
resolution = 1.56mm × 1.56mm, TR=7.99ms, TE=4.43ms, flip angle = 20 degrees,
and FOV=40cm×40cm. 16 phases per cardiac cycle were acquired. T-MRI images
with a grid pattern of 8mm (tag spacing) were acquired by applying a Spatial Mod-
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ulation of Magnetization (SPAMM) sequence. The method was applied only to
images in systole, because of the tag fading effect of SPAMM sequences.

3.2.2 Motion estimation

Let I(x, t) be a 2D T-MRI sequence of np phases, which provides the voxel intensity
at spatial position x and time t. Cardiac displacement fields can be represented by
a set of np − 1 transformations T (x) = {Ti(x)}i=1:np−1 [69]. The estimation of T (x)

starts registering I(x, 1) to I(x, 0), which provides T1(x). Then, I(x, 2) is registered
to ISA(x, 0) using T1(x) as initialization, and T2(x) is obtained. This process is
repeated for the remaining frames. The transformation model employed in [69] are
Free-Form Deformations with B-Splines as interpolation functions. First proposed
by Lee et al. [32,32] for computer graphics applications, this model was then applied
by Rueckert et al. [19] for detection of cancerous lesions in contrast enhanced MR
breast images.

3.2.3 Complex wavelet transform

The DWT of a discrete signal x(n) is obtained by applying a low pass filter with
impulse response g(n), and a high pass filter with impulse response h(n). The
output of g(n) is called the approximation coefficients, and the output of h(n) are
the detail coefficients. To remove redundancy in the signal representation, the filter
outputs are subsampled by a factor 2 (Figure 3.1). The DWT of an image is obtained
by applying the filters separately to rows and columns. This decomposes the image
into four images called LL, HL, LH, and HH according to the order of application
of filters.

The DWT presents two main drawbacks:

1. Lack of shift invariance: this means that the energy of the DWT coefficients
changes with image shifts.

2. Poor directional selectivity: The LH and HL filtering provides high horizontal
and vertical frequencies respectively, and there is no ambiguity in the infor-
mation. However, the HH filtering provides information on diagonal features
in both directions (it does not differentiate between an edge at 45o and 135o

degrees, for example).

To overcome these problems, Kingsbury [65] introduced the CWT. This trans-
form can be represented by the same block diagram in Figure 3.1, but in this case
the filters have complex coefficients and generate a complex output. Despite being
implemented separately, the complex filters provide true directional selectivity as
they separate all parts of the frequency space. For 2D images the CWT produces
an approximation image H, and six bandpass subimages Gk=0:5 oriented at ±15o,
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Figure 3.1: Filter bank to implement three levels of the unidimensional DWT. x(n):
input signal; h(n): low pass filter; g(n): high pass filter. A subsampling by a factor 2 is
applied to the filter output.

±45o, ±75o. A comprehensive explanation and more details on CWT can be found
in the paper by Kingsbury [66]. Figure 3.2 shows an example of CWT.

3.2.4 MIα estimation using kNNG

Given a set Z = {z1, . . . , zn} of n vectors in R
d, a kNNG is formed by all points

zi=1:n and the edges with their k nearest points Nk,i(Z) = {ẑi1, . . . , ẑik}. Figure 3.3
shows examples of kNNGs for two different point distributions.

Let I f (x) and Im(x) be the images to register, and Z f = {z f 1, . . . , z f n}, Zm =
{zm1, . . . , zmn} n realizations of a random vector Z (the matching feature) in each
image. The MIα of the feature Z can be estimated as [70]:

M̂Iα =
1

α − 1
log

1
nα

n

∑
i=1

k

∑
p=1



 eZ f m,p(z f mi)√
eZ f ,p(z f i)eZm,p(zmi)




2γ

, (3.1)

where eZ ,p(zi) is the distance from the point zi to its p-nearest neighbor zj 6=i in Z ,
and Z f m = {z f m1, . . . , z f mn} is the set of joint features z f m = [z f zm] in R

2d, and
γ = d(1− α).

3.2.5 Feature vectors

The method proceeds by an initial registration by using the CWT approximation co-
efficients, followed by a second registration using the feature vectors defined below.
If all the CWT coefficients were joined in the same feature vector, the registration
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(a) (b)

Figure 3.2: Definition of the feature vector Z. (a) First level of the CWT for Lena,
whose subimages provide details of the original image oriented at ±15◦, ±45◦, and
±75◦. Crosses show spatially corresponding coefficients, which are grouped to form
the vector Z. As the coefficients are complex, each subimage provides two components
to Z. (b) Colormap used for representing complex values.

process could be dominated by approximation coefficients, since their magnitude is
much higher than the detail coefficients. The second step is where high frequency
information in tags is introduced into the registration process.

The feature vector Z = [Z1, ...,Zd] was formed by the detail coefficients of the
first level of CWT decomposition (Figure 3.2 ). Since there are six high-frequency
images of complex coefficients at each level, Z is a vector in R

12 whose components
are defined as:

Zi =

{
Re(Gk(x)), if i is even

Im(Gk(x)), if i is odd
(3.2)

where k = ⌊i⌋, and Gk is the kth image of details .
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(a) (b)

Figure 3.3: Examples of kNNGs (k=5) for a set of 200 points in the plane with (a) uniform
and (b) Gaussian distributions.

t=0% t=25% t=50% t=75% t=100%

Figure 3.4: Gold standard points Li for each frame i from ED to ES of sequence #1.
Time is expressed relative to the systole duration.

3.2.6 Evaluation

Tag intersection points (18 in average) were marked manually in each frame by
two observers in two independent sessions. The intraobserver errors were 0.01±
0.35mm and 0.06± 0.31mm, and the interobserver error was 0.03± 0.29mm. A set
of gold standard landmarks for the image i (Li) was obtained by averaging the
measurements made by both observers. The set of transformations T was then
used to propagate L0 to each phase, producing estimations L̂i of Li. As the mean
square error (MSE) between L̂i and Li increases from end-of-diastole (ED) to end-
of-systole (ES), we computed the average over all phases. Figure 3.4 shows the gold
standard landmarks for each frame in sequence #1.
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Figure 3.5: Mean MSE over systole for all sequences and metrics used in this chapter.
A-MIα of CWT-based features; B-MIα of DWT-based features; C-MIα of pixel intensity;
D-Shannon MI of pixel intensity estimated by histograms.

3.3 Results and discussion

Four methods were applied to the dataset described in Section 3.2.1. They were
identical except for the metric:

A- MIα of CWT-based features (the method described in Section 3.2).

B- MIα of DWT-based features (Haar wavelets [71] were used) [64]

C- MIα of pixel intensity (an unidimensional feature).

D- Shannon MI of pixel intensity estimated by histograms.

Figure 3.5 shows that the method A provided the lowest errors for sequences #1,
#3, and #4. An interesting result is the order of performance of methods A-C, which
suggests an increase in accuracy with the amount of high frequency information
employed. The use of the same MIα estimator in these three cases, allowed to
study the isolated effect of the feature type on the whole method. The effect of the
estimator type is well illustrated also in Figure 3.5: when pixel intensity is used as
feature, the use of histograms provides lower errors than kNNG. This could be a
consequence of the higher smoothness and wider region of capture of histograms
with respect to kNNGs [72].

The results for sequence #2 are also interesting. For this sequence, intensity-
based methods provided lower errors than wavelet-based methods. An examination
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of sequence #2 revealed the presence of high-frequency coil artifacts which could
have misguided the registration step based on details coefficients.

One drawback of the presented method is its high computational cost. When
using gradient-based optimizers, and the gradient is estimated by finite differences,
it is necessary to resample the moving image and calculate its CWT twice for each
degree of freedom of the transformation. This becomes critical for FFDs because of
their high number of parameters: even a coarse bidimensional grid of 8×8 control
points would require the computation of 256 CWTs to estimate the gradient. An-
other factor that makes the method computationally expensive is the use of kNNGs
to estimate MIα. This requires the construction of a kd-tree (O(nlog(n))) and k
queries for each feature.

One possible way of improving the obtained results is the use of CWT phase
information, since it depends almost linearly on displacements in the image [67].
Other ideas are the selection of coefficients based on noise level estimation, and to
take advantage of the multiresolution nature of wavelet transform to implement an
intrinsically multiresolution method. The use of gradient-based optimizers may be
not the best choice, since the smoothness of the MIα cannot be guaranteed in our
context. Experiments with other optimizers like the Nelder-Mead method should
be carried out.

3.4 Conclusions

Spatial information present in tags has been introduced into a registration-based
method for cardiac motion estimation. This has been accomplished by using fea-
ture vectors formed with CWT coefficients. CWT offers shift invariance, good direc-
tional selectivity, and intrinsically multiresolution image representation, properties
that make the transform quite suitable for registration purposes. This has been
demonstrated by obtaining lower errors with respect to the use of Haar wavelet
transform and pixel intensity to form feature vectors. However, a drawback of the
presented methodology is its high computational cost, which could limit its practi-
cal application (specially in 3D datasets).
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Cardia motion estimation by using joint image registration

Abstract - Tagged Magnetic Resonance Imaging (T-MRI) is one of the reference modalities

for obtaining regional information on myocardial deformation, and it is considered a valu-

able tool for the diagnosis of cardiovascular diseases. Image registration techniques have
been proposed as an automatic method for recovering cardiac displacement fields. Initially

performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t
deformation models, requiring metrics of joint image alignment. However, only linear com-

binations of cost functions defined with respect to the first frame have been used. In this

chapter, we have applied k- Nearest Neighbors Graphs (kNNG) estimators of the α-entropy
(Hα) to measure the joint similarity between frames. To cope with the high computational

cost of these estimators, an analytical expression for computing the metric gradient was
obtained. Experiments performed on six subjects showed a significantly higher accuracy

(p < 0.05) with respect to a pairwise approach in terms of mean positional error and vari-

ance with respect to manually placed landmarks. The developed method was used to compare
strains in patients with myocardial infarction with respect to healthy subjects, showing a

consistency between strain, infarction location, and coronary occlusion.

Adapted E. Oubel, M. De Craene, A. O. Hero, M. Huguet, G. Avegliano, B. H. Bijnens and A F.
Frangi. Cardiac Motion Estimation by Joint Alignment of Tagged MRI Sequences. Under review.
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base mid apex long

Figure 4.1: Example of the T-MRI images used in this chapter. From left to right: basal,
medial, apical, and longitudinal planes of the LV are shown. Top row corresponds to
End-of-Diastole (ED) and bottom row to End-of-Systole (ED).

4.1 Introduction

Tagged Magnetic Resonance Imaging (T-MRI) is currently the reference modal-
ity in clinical practice to obtain regional information on left ventricular (LV)

myocardial deformation. Since its introduction by Zerhouni et al. [3] for cardiac
function assessment, this technique has rapidly evolved due to advances in im-
age acquisition, image processing, and clinical applications. The continuous efforts
of researchers to obtain a completely automatic and reliable method for recover-
ing cardiac motion and deformation, have generated interest in this modality. Re-
cently, Axel et al. have presented a review of technical and clinical advances in this
area [11, 73]. Figure 4.1 shows an example of the images used in this chapter.

Non-rigid registration has been applied for recovering cardiac displacement
fields from T-MRI sequences. Radeva et al. [74] have tracked the LV motion by
minimizing the energy of a B-Solid. Other authors [12,75], building upon the initial
approach of Rueckert et al. [19], applied pairwise registrations between the cur-
rent phase and the first [12] (previous [75]) phase in the sequence. All of them
proposed to maximize Mutual Information (MI) as similarity metric between both
images [34,35]. Subsequently, 3D + t transformation models were applied for mod-
eling cardiac motion [76,77], aiming at exploiting the temporal correlation between
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phases. The use of these models immediately raised the issue of defining a metric
of the joint alignment of all phases in order to optimize simultaneously all trans-
formation parameters. This problem was first addressed by a linear combination
of pairwise metrics between each phase and the first one [76, 77]. However, this
approach still measures the image similarity with respect to the first phase and fails
to exploit inter-phase correlation. Shen et al. [78] applied the HAMMER [79] algo-
rithm for simultaneous registration of all phases in a cine MRI (C-MRI) sequence
by matching attribute vectors at corresponding points. In order to exploit temporal
correlation, they included an energy term comparing attribute vectors within a 4D
neighborhood in the total energy functional.

Metrics based on information theory have been successfully applied for regis-
tration of T-MRI images [12, 75], owing to their capability to account for non-linear
intensity changes introduced by the tag fading effect. Therefore, it is worthwhile
to study extensions of such metrics for measuring the joint alignment of an image
sequence. The main challenge is the accurate estimation of the probability density
function (PDF) from a set of samples in a high-dimensional space. Neemuchwala et
al. [72] have recently presented estimators of α- Mutual Information MIα based on
kNNG when high dimensional features are employed, and the use of histograms
is not possible due to the curse of dimensionality [80]. Ma et al. [81] have applied
these estimators for computing deformations in a synthetic sequence of tumor im-
ages, and introduced joint similarity extensions of MIα. More recently, Leonenko et
al. [82] have presented a class of estimators of Hα based on the k-th nearest-neighbor
distances computed from a sample of N i.i.d. vectors with distribution f .

In this chapter, we have extended kNNG estimators of Hα to quantify the joint
alignment of multiview sequences, and applied it to T-MRI sequences to recover
cardiac displacement fields. For quantitative assessment of our method, a com-
parison was run against the method proposed by Chandrashekara et al. [12] for a
population of 6 healthy subjects. Results show a significant decrease in positional
error with respect to manually placed landmarks. For assessing the performances
of our method in quantifying heart failure, we illustrate for 2 patients with myocar-
dial infarction consistency between strain maps as recovered by our algorithm and
DE-MRI and catheterization information. In the context of this chapter, joint align-
ment (JA) refers to the simultaneous alignment of all phases as proposed in [81],
whereas pairwise alignment (PA)joint alignment (JA) refers to the technique proposed
in [76]. Sometimes the term sequence alignment is also used in the sense of JA, and
confusion with methods for intersubject sequence alignment like the one presented
by Perperidis et al. [1] must be avoided.
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4.2 Method

4.2.1 Dataset

The database used for the experiments consisted of 6 healthy subjects (3 females
and 3 males between 24 and 33 years old) and 2 patients with transmural infarction
of the myocardium. For all subjects, C-MRI, T-MRI, and Delayed-Enhancement MRI
of Gadolinium (DE-MRI) images were acquired in breath-hold by using a General
Electric Signa CV/i, 1.5 T scanner (General Electric, Milwaukee, USA). Healthy vol-
unteers were also imaged with DE-MRI to have a proof of their clinical status. The
values of acquisition parameters were: slice thickness = 8mm, in-plane resolution =
0.78mm × 0.78mm, gap between slices = 0mm, TR=7.99ms, TE=4.43ms, flip angle
= 20 degrees, and FOV=40cm×40cm. C-MRI and T-MRI sequences were acquired
at 30 phases per cardiac cycle. T-MRI images with a grid pattern of 5mm (tag spac-
ing) were acquired by applying a Spatial Modulation of Magnetization (SPAMM)
sequence. An expert clinician assessed the presence of infarction from DE-MRI im-
ages, and classified the 17 standard segments [83] according to the transmurality
of necrosis in the myocardial wall into four categories: i) 0% (healthy segment) ii)
<50%, iii) 50-75% and iv) > 75%. For patients with myocardial infarction, cardiac
catheterization was also performed in order to assess coronary occlusion.

4.2.2 Deformation model

Figure 4.2 presents a block diagram of the method. Transformations are defined
relative to the coordinate system of the first frame to simplify the computation of
Lagrangian strains (referred to ED) and metric derivatives. The use of Lagrangian
strains is more common than natural strains1 in most current imaging techniques
(US, MR, SPECT, angiography) [84]. Similarly to [81], the α-entropy Hα was used to
measure the joint similarity of all phases.

Typically, a T-MRI study consists of two acquisitions performed in SA and LA.
This results in two image sequences ISA(x, t) and ILA(x, t) of np phases which pro-
vide the voxel intensity at spatial position x and time t. Cardiac deformation was
modeled as a set of np − 1 B-Splines T (x) = {Ti(x)}i=1:np−1 transformations de-
fined on ISA(x, 0). The corresponding deformations in LA can be obtained from
T (x) by composition of T (x) with the rigid transformations defining the relation-
ship between both coordinate systems, as described in Section 4.2.5.

4.2.3 Joint vs pairwise alignment

We explain the advantage of the simultaneous multi-image registration and the
pairwise registration by adopting the generative model representation of the image

1The natural strain εN is defined as the integral over time of the instantaneous strain, i.e. εN =
∫ t2
t1

dL
L
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Figure 4.2: Cardiac motion estimation method. Transformations T0i mapping points in
ED (top) to phase i (bottom) are optimized simultaneously to minimize the Hα of all
phases. The inputs to the optimizer are the set of transformations T and the metric of
similarity. This metric takes in turn all images of the sequence as input.
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registration problem. A generative model for the image registration problem is
obtained by expressing the log posterior probability of the deformation (B-spline
parameters B) given the image sequence [85]:

ln p(B|Z) = −H(Z|B)N + ln p(B) (4.1)

where N is the total number of pixels, Z is a random vector of dimension np, called
a pixel stack, whose realizations are the time series of grey levels at a specified
pixel location over successive image volumes in the time sequence. Each realization
z ranges over the set {0, 2n

q
}np where nq is the number of bits quantifying image

intensities. In Equation 4.1, p(B) is a prior on the deformation that influences how
the estimated deformations interpolate between features in the images [86].

The conditional entropy on the right hand side of Equation 4.1 can be empirically
estimated from Shannon entropy using [36]:

H(Z|B) = ∑
i

p(Z(x) = zi|B) ln p(Z(x) = zi|B)

≅ −N−1 ∑
i

Ni lnNi + lnN
(4.2)

where Ni = ∑j:Z(x j)=zi
is the number of pixel locations where the associated vector

Z(xj) equals grey level zi and satisfies ∑i Ni = N.
The problem of course is that the log posterior (4.1) is not computable due to

the fact that required memory explodes as np increases (memory scales as 2np·nq).
This is the justification of alternative direct methods of estimating the entropy. The
MST/kNNG alpha-entropy estimators converge in probability to H(Z|B) for large
N and np. This is because for large N the alpha-entropy estimator converges to the
alpha-entropy, by the law of large numbers, and for large np, α = (np − 1)/np ≈ 1,
and the alpha-entropy is approximately equal to the Shannon entropy.

Therefore, in light of the representation (4.1) of the log posterior density, the PA
approach corresponds to making an approximation to the entropy function defin-

ing the log posterior H(Z|B) ≈ ∑
np−1
j=0 H(Ij, Ij+1|B) where Ij denotes the j-th image

volume in the sequence. Such approximation to the full joint entropy is expected
to be poor when a frame of the image sequence is correlated to more than just
its neighboring frames, or more generally when pairwise independence of the se-
quence does not imply joint independence. When the decomposition of the joint
distribution into pairwise successive products gives a poor approximation to the
true log posterior (4.1) the PA method will perform poorly. For example, using
standard arguments of mathematical statistics it can be shown that in the limit as N
becomes large, maximization of the pairwise entropy will give a biased estimator
of the deformation parameters B, equal to the least false estimate [87] of B.

Classical estimators of entropy use plug-in estimation, i. e. estimate the PDF
p(Z|Z) from observed data Z . In this chapter, a kNNG estimator for Hα is proposed
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based on the paper by Neemuchwala et al. [72]. For random vector Z = [Z1 · · · Znp ]
T

the Rényi entropy Hα of order α of Z is defined as [88]:

Hα(Z) =
1

α − 1
log

∫
f (Z1, ...,Zn)

αdZ1...dZnp (4.3)

If f̂Z is a consistent estimator of the PDF, i.e. if it converges in probability to fZ
as the number of samples grows, then Equation 4.3 can be approximated by

Ĥα(Z) =
1

α − 1
log

1
ns

ns

∑
i=1

(
f̂Z(zi)

)α−1
(4.4)

where the zi = (I(x, 0 : np − 1)) ∈ R
np denote realizations of the multivariate

random variable Z and ns is the number of realizations (number of samples).
Finally, the application of a kNNG-Voronoi partitioning heuristic [68] allows

substituting f̂Z with 1/(nsei(Z)), for obtaining the kNNG estimator of Hα:

Ĥα(Z) =
1

α − 1
log

1
nα
s

ns

∑
i=1

(
e
np

Z (zi)
)1−α

(4.5)

where eZ (zi) = ‖zi − z̃i‖ is the euclidean distance from the point zi to its nearest
neighbor z̃i in Z .

There is a difference between the entropy estimation approach taken by Learned-
Miller [85] and the approach adopted in this chapter. Learned-Miller assumes that
intensities are independently and identically distributed (i.i.d.) both over all pixel
locations and over all images inside each pixel stack. Using these two assump-
tions, the problem is reduced to the computation of the entropy of a scalar random
variable. While the assumption of independent images inside the pixel stack Z is
reasonable in the case of independent subjects, it can not be maintained in our case
since we focus on temporal sequences where consecutive images are expected to
be highly dependent. As consequence, entropy must be estimated in a space of
high dimensionality without any constraint about component independency in Z.
The estimator in Equation 4.5 only assumes i.i.d realizations of Z, and therefore is
suitable for our application .

In the Appendix 4.A we present an analytical expression for computing the
gradient ∇Ĥα(B) of the estimator in Equation 4.5.

4.2.4 Self matches

The estimator defined in Equation 4.5 is numerically unstable when any of the dis-
tances eZ (·) is equal to zero, i.e. in case of self matches in the nearest neighbors
(NN) query. If Z was effectively continuous, it would produce realizations through
the whole range of possible values, without any repetition. However, digital im-
ages are quantized and represented by a finite number of bits, and there exists the
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possibility of finding multiple occurrences of a specific value z∗ in Z . In order to
solve this problem, Neemuchwala et al. [72] added uniform noise to each realiza-
tion, thus dispersing features inside a radius-limited np-hypersphere. Even when
this approach effectively solves the problem, it might generate arbitrarily large val-
ues in the PDF estimation. A small change in a point z∗ results in a small Voronoi
cell and therefore, in an elevated probability value for z∗. Another drawback of
noise addition is the introduction of unnecessary stochastic component in the cost
function, which in turn could interfere with the optimization process.

In this chapter, a different approach was adopted for the self-matching problem.
In Equation 4.5 we multiplied the distance eZ (zi) by the number of occurrences
oZ (zi) of zi in Z . Even when this requires a second NN search, the additional
computational cost is negligible [89].

4.2.5 Combination of views

A T-MRI study typically contains SA and LA views of the heart. The information
about radial and circumferential contraction is provided by the SA and LA2 views,
whereas the information about longitudinal deformation comes only from the LA
view. Therefore, it is necessary to include the information provided by both views
in the registration process. Chandrashekara et al. [12] circumvented this problem
by linearly combining the similarity metrics measured independently for each view.
In order to obtain a unified metric considering multiple views and multiple time points,
each view was considered as realizations of the same random vector Z. This means
that pixel stacks zsa and zla taken from SA and LA are modeled as realizations of
the same variable Z, and can thus be mixed into a single set of samples Z . Under
this hypothesis, Equation 4.3 remains unchanged for registration of multiple view
sequences, integrating in this way information from different time points and views
into the same unified framework.

By convention, SA has been taken as the reference space for defining the trans-
formation. Thus, the coordinates of samples in LA must be mapped to SA in order
to be transformed. These transformed coordinates need then to be mapped back to
LA for computing the pixel stack zla. Therefore, it is necessary to know the trans-
formations from SA to LA (Tsl) and from LA to SA (Tls). These transformations
are provided by the DICOM format in the form of image origin osaw and orientation
Dsa

w = [isa jsa ksa] (olaw and Dla
w = [ila jla kla]) with respect to the coordinate system

of the scanner. Two generic points xsai and xlai in image coordinates can be expressed
in world coordinates as :

xsaw = osaw + Dsa
w xsai (4.6)

2In this chapter, a grid tag pattern was employed instead of unidirectional tags. Therefore, the
longitudinal images also contain information about the radial contraction
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xlaw = olaw + Dla
wx

la
i (4.7)

When Equations 4.6 and 4.7 refer to the same physical point, we can equate the
right sides and obtain the following transformations between views:

Tsl : x
sa
i → xlai =

(
Dla

w

)T
Dsa

w xsai +
(
Dla

w

)T (
osaw − olaw

)
(4.8)

Tls : x
la
i → xsai = (Dsa

w )T Dla
wx

la
i + (Dsa

w )T
(
olaw − osaw

)
(4.9)

4.2.6 Strain estimation

The mechanical effects and evolution over time of myocardial infarction are an
important issue to study with T-MRI [11]. The infarcted region of diseased my-
ocardium permanently loses its ability to contract, and this is manifested in al-
tered motion during the cardiac cycle. Therefore, there should be a correlation be-
tween infarction location and local strains. To study this correspondence, strain was
computed from the recovered displacements fields to discriminate between active
healthy myocardium and passively moving infarcted tissue.

The set of transformations T allows to compute the displacement field u(x) as
function of position x at ED and time t. Since the assumption of small deformations
is too strong for cardiac deformations, the Green strain tensor cannot be applied,
and the Green-Lagrange strain tensor must be used instead. The Green-Lagrange
strain tensor is defined as [90]

E =
1
2

(
∇u + ∇uT + ∇uT∇u

)
(4.10)

Diagonal elements ε ii of E are normal strains, i.e. strains along each direction in
the rectangular coordinate system. Given the geometry of the heart, this coordinate
system is not appropriate for analysis. Instead, it is preferable the use of a local
coordinate system composed by radial, circumferential, and longitudinal directions
(rcl system) on the basis of the epicardial surface orientation at the reference (un-
deformed) geometry. This coordinate system is illustrated in Figure 4.3. In order
to estimate the epicardial surface, a manual segmentation of the SA image at ED
was performed and, after resampling and smoothing, a variant [91] of the original
marching cubes algorithm [92] was applied to extract the epicardial and endocardial
surfaces.

The normal strain along an arbitrary direction d can be then obtained from
Equation 5.1 as [93]:

εdd = dTEd (4.11)

Radial (εrr), circumferential (εcc), and longitudinal (ε ll) normal strains can be ob-
tained by replacing d with directions r, c, and l, respectively.
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(a) (b) (c)

Figure 4.3: Local coordinate system used for strain analysis. Radial (r), circumferential
(c), and longitudinal (l) directions for the point p are shown in the longitudinal (a)
and transverse (b) views of the LV. (c) Radial directions obtained from the extracted
epicardial and endocardial surfaces of the LV.

The radial direction is outward and perpendicular to the epicardial surface. The
circumferential direction is in the short-axis plane (perpendicular to the long axis),
parallel to the epicardial surface, and counterclock wise, as viewed from the base.
The longitudinal direction is obtained as the cross product of radial and circum-
ferential directions, tangent to the epicardial surface. In this way, directions were
defined to create a right-handed system.

4.3 Results

4.3.1 Entropy

After registration, Hα should be minimum, and the pixel stack distribution (Z)
should be more compact. Since the pixel stacks zi are np-dimensional points, a re-
duction of dimensionality is necessary for visual representation of changes in distri-
bution. A Principal Components Analysis (PCA) [94] was performed to accomplish
a projection of Z in the subspace spanned by the first three principal components
λi=1:3 was used to visualize point distributions in this space. Figure 4.4 shows
that the point distribution before registration presents a larger variance than after
registration, equivalent to a state of higher entropy, as expected.
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Figure 4.4: Distributions of the pixel stack Z in the subspace spanned by the first three
principal component directions qi=1:3. (a) Before registration. (b) After registration. El-
lipsoids have semi-axis lengths equal to the standard deviation along the corresponding
principal vectors q.
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(a) (b) (c)

Figure 4.5: Example of displacement field at ES (relative to ED) for a healthy volunteer
at (a) base, (b) mid, and (c) apex. The displacement field is plotted on the SA images at
ED.

4.3.2 Error analysis

Figure 4.5 shows the displacement field for a healthy volunteer. In order to compute
accuracy, tag intersections were marked in the systolic phases of 6 sequences. Only
systolic phases were marked since the images were acquired by using SPAMM, and
the strong fading effect of this sequence makes the tags difficult to identify beyond
ES. The resulting transformations T ∗ were used to propagate the points in ED to
the remaining phases, which were compared to manual measurements extracted by
an expert clinician. Tag intersections were marked in SA at base, mid, and apex,
whereas only the central plane was used in LA. On average, 24 tag intersections
were tracked along the systole.

Figure 4.6 displays the Mean Square Error (MSE) error along the systole of the
JA method as compared to the PA method 3. Figure 4.6 shows a lower MSE error
for JA for 37 out of the 39 phases. The MSE error is higher only for phase #5 of
sequence #5, and phase #2 of sequence #4. It is important to assess the statistical
significances of these errors and a Mann-Whitney test [96] was implemented to
extract p-values for each of the deformations. Normality was verified at level 0.05
by using a Lilliefors test [97], and the Independence of population was ensured by
applying each method to a different set of sequences. Table 4.1 shows rejection
of the null hypothesis at 5% significance level for almost all phases, showing an
improvement in favor of the JA method.

Differences in error variance were also studied in order to assess uniformity of
the registration error across regions. It is desirable that registration accuracy be
independent of the displacement magnitude, which varies across the myocardium
during the cardiac cycle. The error uniformity can be measured by computing its

3An own implementation of the method by Chandrashekara et al. (using the Insight Toolkit [95]) was
employed, instead of their original software.
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Figure 4.6: MSE errors between manually placed landmarks at tag intersections, and
propagated landmarks for six healthy volunteers. JA = joint alignment; PA = pairwise
alignment.
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Table 4.1: p-values obtained from the Mann-Whitney test performed on the MSE errors
for JA and PA methods. Results are provided for equally spaced time instants along
systole. Bold values mean rejection of the null hypothesis at 5% significance level. Note
that the null hypothesis is rejected for all phases at 10% significance level.

t (relative to systole) 14% 28% 43% 57% 71% 86% 100%
p-value 0.02% 1.3% 0.2% 1.3% 9.6% 0.8% 0.03%

Table 4.2: p-values obtained with a F-test performed on error variances for JA and PA
methods. Bold values mean rejection of the null hypothesis of equal variances (p=0.05).

t (relative to systole) 14% 28% 43% 57% 71% 86% 100%
p-value 29% 4.2% 0.0006% 0.1% 0.0043% 4.3% 0.8%

variance. Table 4.2 shows the p-values obtained from a F-test [96] performed on
the variances for each phase. As in the previous Mann-Whitney test for mean error
values, each method was applied on different sequences to ensure independence.
The same values are represented in form of box plots in Figure 4.7.

Finally, the JA method was compared to manual measurements in order to as-
sess dependencies of the registration error on the displacement magnitude. The
Bland-Altman plots [96] presented in Figure 4.9 show a negligible bias, and a sym-
metric error distribution around it.

4.3.3 Computational complexity and speed

Registration using plug-in estimators of probability density functions suffers from
increasingly high computation as the number of features increases. On the other
hand, registration based on graphs suffers from high computational cost that in-
creases in the number of feature realizations. Analytical computation of the gradi-
ent of the cost function can reduce this complexity. This reduction in complexity
is especially advantageous when using transformations with high number of pa-
rameters. For example, if B-Splines are employed, even a coarse grid with control
points every 20 mm over the LV contains 8×8×8×3 = 1,536 parameters, and the
gradient estimation requires 3,072 function evaluations, i.e. building 3,072 graphs.
The use of analytical expressions resulted in an average computation time of 45 min
for a PC with a 64 bits processor Intel Itanium at 1.5 GHz running Linux Suse 9.2.
Figure 4.8 shows a linear increase in computation time with the number of points
used to estimate Hα (the size of Z).

4.3.4 Strain in healthy subjects

Strain analysis along systole was performed by dividing the LV into the standard
16 segments of the American Heart Association (AHA) [83] (the 17th segment is
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Figure 4.7: Box plots of the MSE er-
rors showing the difference in vari-
ance between joint alignment (JA)
and pairwise alignment (PW).
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Figure 4.8: Average registration time
as a function of the number of sam-
ples used for estimating Hα (ex-
pressed as percent of the number of
voxels of the ROI containing the LV)

optional). The average and standard deviation of radial, circumferential, and lon-
gitudinal strain were computed for the 6 healthy subjects. The strain analysis was
constrained to systole because of the same data acquisition issues mentioned in
Section 4.3.2. Figures 4.10, 4.11, and 4.12 show these values along systole. Radial
strain presented the highest variability in agreement with previous reports [98, 99].
The strain sign is consistent with the heart physiology: during systole there is radial
thickening (positive strain), and circumferential and longitudinal shortening (nega-
tive strain). Tables 4.3, 4.4, and 4.5 show average radial and circumferential peak
strains and standard deviations compared to values reported in the literature.

4.3.5 Strain in myocardial infarction

In order to test the method in pathological cases, a strain analysis was performed on
two patients with myocardial infarction. Figure 4.13 shows the infarction location,
regions at risk, and circumferential strains for these patients. This analysis con-
sisted in a segment-to-segment comparison of circumferential strain with respect
to the normal subjects. The choice of circumferential strain for comparison is due
to the small intersubject variability of healthy subjects as compared to radial and
longitudinal strain. This makes the detection of any deviation in strain easier with
respect to normal values. Figure 4.13 shows that for patient #1 the largest devia-
tions with respect to normality are found in segments BI, MI, and AI. These lower
strains fully correlate with the infarction location at the inferior area of the LV. Seg-
ments BA, MA, and BAS showed an increased strain on the opposite side of the
infarction, which could be explained as a compensatory mechanism of healthy seg-
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Figure 4.9: Bland-Altman plots of displacements along x (a), y (b), and z (c) axes
(∆ux,∆uy, and ∆uz). Solid and dashed lines show respectively the mean value and
the 95% confidence interval of point displacements.
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Table 4.3: Comparison of average peak radial strains Err and standard deviations σrr
with values reported in the literature. Non-available values are marked as n/a.

Region Moore Bistoquet Our method

et al. [98] et al. [100]

septum basal 0.45± 0.12 0.20± n/a 0.21± 0.10
mid 0.42± 0.19 0.21± n/a 0.26± 0.08
apical 0.36± 0.22 n/a 0.10± 0.07

anterior basal 0.42± 0.21 0.21± n/a 0.27± 0.08
mid 0.52± 0.25 0.25± n/a 0.26± 0.08
apical 0.67± 0.31 n/a 0.13± 0.05

lateral basal 0.52± 0.19 0.22± n/a 0.26± 0.09
mid 0.38± 0.18 0.21± n/a 0.23± 0.07
apical 0.49± 0.29 n/a 0.15± 0.09

inferior basal 0.41± 0.17 0.23± n/a 0.26± 0.06
mid 0.35± 0.22 0.23± n/a 0.19± 0.05
apical 0.39± 0.38 n/a 0.10± 0.05

Table 4.4: Comparison of average peak circumferential strains Ecc and standard devi-
ations σcc with values reported in the literature. Non-available values are marked as
n/a.

Region Moore Korosoglou Petitjean Bistoquet Our method

et al. [98] et al. [101] et al. [99] et al. [100]

septum basal −0.17± 0.03 −0.18± n/a −0.18± 0.09 −0.10± n/a −0.13± 0.03
mid −0.16± 0.03 −0.19± n/a −0.27± 0.18 −0.12± n/a −0.14± 0.03
apical −0.18± 0.03 −0.19± n/a −0.27± 0.27 n/a −0.08± 0.02

anterior basal −0.20± 0.03 n/a −0.36± 0.27 −0.12± n/a −0.07± 0.01
mid −0.23± 0.04 n/a −0.45± 0.13 −0.10± n/a −0.08± 0.03
apical −0.24± 0.06 n/a −0.49± 0.27 n/a −0.06± 0.03

lateral basal −0.21± 0.03 −0.19± n/a −0.45± 0.13 −0.12± n/a −0.10± 0.03
mid −0.22± 0.03 −0.19± n/a −0.45± 0.13 −0.11± n/a −0.14± 0.02
apical −0.24± 0.04 −0.19± n/a −0.27± 0.27 n/a −0.12± 0.04

inferior basal −0.16± 0.03 n/a −0.36± 0.13 −0.10± n/a −0.12± 0.03
mid −0.16± 0.05 n/a −0.49± 0.18 −0.11± n/a −0.14± 0.01
apical −0.23± 0.04 n/a −0.45± 0.27 n/a −0.14± 0.02
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Figure 4.10: Radial strain along systole for healthy subjects. BA=basal anterior;
BAS=basal anteroseptal; BIS=basal inferoseptal; BI=basal inferior; BIL=basal inferolat-
eral; BAL=basal anterolateral; MA=mid anterior; MAS=mid anteroseptal; MIS=mid in-
feroseptal; MI=mid inferior; MIL=mid inferolateral; MAL=mid anterolateral; AA=apical
anterior; AS=apical septal; AI=apical inferior; AL=apical lateral.
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Figure 4.11: Circumferential strain along systole for healthy subjects. BA=basal anterior;
BAS=basal anteroseptal; BIS=basal inferoseptal; BI=basal inferior; BIL=basal inferolat-
eral; BAL=basal anterolateral; MA=mid anterior; MAS=mid anteroseptal; MIS=mid in-
feroseptal; MI=mid inferior; MIL=mid inferolateral; MAL=mid anterolateral; AA=apical
anterior; AS=apical septal; AI=apical inferior; AL=apical lateral.
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Figure 4.12: Longitudinal strain along systole for healthy subjects. BA=basal anterior;
BAS=basal anteroseptal; BIS=basal inferoseptal; BI=basal inferior; BIL=basal inferolat-
eral; BAL=basal anterolateral; MA=mid anterior; MAS=mid anteroseptal; MIS=mid in-
feroseptal; MI=mid inferior; MIL=mid inferolateral; MAL=mid anterolateral; AA=apical
anterior; AS=apical septal; AI=apical inferior; AL=apical lateral.
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Table 4.5: Comparison of average peak longitudinal strains Ell and standard deviations
σll with values reported in the literature.

Region Moore et al. [98] Our method

septum basal −0.14± 0.03 −0.09± 0.02
mid −0.15± 0.03 −0.10± 0.02
apical −0.18± 0.04 −0.12± 0.04

anterior basal −0.15± 0.03 −0.05± 0.05
mid −0.15± 0.03 −0.09± 0.04
apical −0.19± 0.03 −0.08± 0.02

lateral basal −0.15± 0.03 −0.10± 0.09
mid −0.14± 0.04 −0.09± 0.04
apical −0.19± 0.03 −0.08± 0.03

inferior basal −0.15± 0.03 −0.04± 0.04
mid −0.15± 0.03 −0.11± 0.07
apical −0.18± 0.04 −0.07± 0.04

ments to maintain the systolic function close to normal level. In patient #2, again,
all infarcted segments presented a lower strain with respect to the control group.
Even when the lateral wall had no evidence of infarction according to DE-MRI, the
circumflex artery presented a 75% of occlusion, which could explain the low strains
obtained for this region.

4.4 Discussion

The MSE error with respect to manual measurements obtained by JA was shown to
be significantly lower than for the PA approach at ES. The p-values obtained from
the Mann-Whitney test (Table 4.1) show significant differences at 5% level between
the errors obtained with PA and JA for most of the analyzed time points. If a 10 %
level were considered, this difference would become significant for all time points.

The errors with respect to the manual landmarks are computed inside the same
image plane, since the acquisition slice by slice does not allow to track tag intersec-
tions in the space. This is a limitation imposed by the way of acquiring volumes,
and can be solved only with the design of new MRI sequences to produce 3D tag
patterns [102].

Figure 4.6 shows an increase in the MSE error over time. However, an uniform
error distribution along time was expected, because of the simultaneous parame-
ter optimization and the use of a joint metric. In order to find an explanation to
these results, manual measurements were repeated by the same observer, and the
intraobserver error was evaluated over time. Figure 4.14, shows an increase in this
error over time, meaning that intersections are more difficult to define for phases
close to ES. These tag distortions (Figure 4.15 ) can be caused by the non-linear
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(a) (b) c

Figure 4.13: Relationship between infarction location, coronary occlusion at risk, and
circumferential strains for the patients with MIA. (a) Transmurality of necrosis classi-
fied into four categories: i) 0% (healthy segment) ii) <50%, iii) 50-75% and iv) > 75%.
(b) Percent of occlusion of the corresponding coronary artery. (c) Highest difference
in circumferential strain with respect to the mean of the control group along systole.
Differences lower than the standard deviations were arbitrarily set to zero.
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Figure 4.14: Intraobserver MSE error of manually placed landmarks at tag intersections.

Figure 4.15: Tag distortion and its influence on the intraobserver error. A magnification
of tags shows an ambiguity in point correspondence between ED (left) and ES (right)
images. For the cross and circle at ED, there are two possible corresponding points at
ES.

deformations undergone by the myocardium during contraction. Another source
of registration error is out-of-plane motion, causing some tag intersections to van-
ish or dissapear. Therefore, there are some points in the myocardium for which a
correspondence cannot be found for all time points. This is a well known registra-
tion problem [49, 103] that can hamper an accurate deformation recovery. Again,
the availability of real 3D acquisitions could contribute to flatten out the error over
time, since out-of-plane motion would not affect the tag pattern in this case.

In this chapter, the strain analysis was constrained to systole only because the
tag fading precludes an accurately strain estimation beyond ES. The tag fading
effect is quite strong in images acquired by using SPAMM, and other sequences like
CSPAMM have been developed to reduce this problem [104]. A priori, there are no
apparent problems preventing the application of the presented to the whole cardiac
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cycle. Similar data acquisition issues explain the exclusion of the right ventricle
(RV) of the analysis. The minimum tag spacing provided by the scanner used in
this chapter was not sufficient to calculate strains accurately in the RV, but it could
be included in the analysis in case of suitable image data.

There is an underestimation of the strain values reported in this chapter. The
first frame of the sequence is usually discarded since the blood is still magnetized
in ED, and because of the presence of artifacts similar to those produced by off-
resonance and velocity-induced phase discontinuities [105]. In some cases even the
second frame had to be discarded. As a consequence, the estimated strain values
are lower than the real ones, and this could partially explain the differences found
with the reported values in the literature. In our data, there are 10 frames during
systole (in average), and therefore the descanted frames represent a loss of 10% to
20%.

A comparison of strain values to reported results in the literature revealed a
large variability. This variability has several sources besides (of course) the em-
ployed method. The use of different datasets, segmentation algorithms, radial
direction definitions, and ways of dividing the myocardium (the AHA standard
division [83] has contributed a lot to normalize results), are some causes of these
differences. Despite these problems, some common points were found. Radial
strain presents always the highest values, and also the largest variability. Probably,
this high variability is a consequence of its high dependence on the segmentation
method and respiration artifacts. Even when sequences with severe artifacts were
not used, this problem is present to some degree in all sequences, producing ran-
dom local changes in the surface curvature (and therefore in the radial direction).
On the contrary, circumferential direction is always in the plane of image acquisi-
tion, and does not change among subjects, which could explain the low variability
of strain in this direction. Some methods to remove respiration artifacts in C-MRI
have been proposed [106, 107], but they need to be modified for T-MRI images.
A possibility is to apply tag removal methods [108], before using the mentioned
techniques.

Preliminary tests on patients with myocardial infarction showed an agreement
between the recovered and expected strain. Full correspondence between infarcted
regions and low strain values was found, in agreement with previous results from
studies with 2D US [109–114] and MRI [101,115–117]. Of course, these experiments
are only illustrative, and show consistent low strain values in infarction compared
to other imaging and diagnostic modalities.

4.5 Conclusions

In this chapter, JA of T-MRI sequences was used for cardiac motion estimation.
Since the success of similarity metrics based on information theory, Hα was em-
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ployed to measure joint similarity. The use of this metric was justified from a prob-
abilistic point of view in Section 4.2.3. In order to cope with the high computational
cost of the kNNG estimators of Hα, an analytical expression for metric derivatives
was obtained, resulting in a O(ns log ns) complexity, which drastically reduces the
registration time. The strategy to combine different views performed correctly, re-
sulting in a simple way of integrating their information into a unified metric that
measures multiphase and multiview similarity in image sequences. Results showed
significantly lower mean errors and variances when compared to PA. Even when an
uniform error distribution was expected, mean errors and variances increased over
time. These observations can be attributed to image acquisition issues, which can
be overcome with the advent of higher resolution scanners, and the possibility of
performing 3D T-MRI [102]. Strain values corresponding to healthy subjects were
in the order of magnitude reported in the literature. However, the lack of standard-
ization, and the high number of sources of variability, make a direct comparison
difficult. Strain values for patients with myocardial infarction showed an excellent
visual correlation with infarction location and territories at risk. Even when these
results are encouraging, experiments need to be extended to a larger population to
confirm and generalize clinical conclusions.

4.A Appendix: analytical derivatives

Many optimizers need to estimate the gradient of the cost function. To this pur-
pose, the use of finite difference approximation to the gradient is impractical for
transformations with high number of parameters, since it requires computing a kd-
tree for each perturbation of the set of parameters. This is especially problematic
for high-dimensional feature spaces as the number of perturbations requires for the
finite difference estimator is D. This problem of graph-based estimators has been
addressed by Sabuncu et al. [118] for Minimum Spanning Tree (MST) estimators of
Hα. Here we develop a similar analytical approximation.

Using Equation 4.5, the derivative with respect to the parameter m of the trans-
formation is

∂

∂pm
Ĥα =

∑
ns
i=1

∂
∂pm

{[
e2Z (zi)

] γ
2

}

(α − 1) ∑
ns
i=1

[
e2Z (zi)

] γ
2

(4.12)
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2 −1) ∂

∂pm

[
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[
e2Z (zi)

] γ
2

(4.13)

where γ = np(1− α), as defined in [119].
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The problem has been reduced to computation of derivatives e2Z (z∗i ). By assum-
ing no changes in correspondence between a point zi and its nearest neighbor z̃i
for infinitesimal changes in the transformation parameters, these derivatives can be
computed as:

∂

∂pm
e2Z (zi) =

np

∑
j=1

2(zij − z̃ij)(J
m
T (xj))

T∇zij (4.14)

where∇zij is the intensity gradient at the point xj = T(xi), and JmT is the mth column
of the parametric jacobian of the transformation [95]:
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Finally, by including Equations 4.14 into Equation 4.13, the following expression
is obtained for the derivative of the Hα:

∂
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− np ∑
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]( γ
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np

j=1 2(zij − z̃ij)(JT(xj))
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e2Z (zi)

] γ
2

(4.16)

It is important to highlight at this point, that Equation 4.13 is a completely
general expression and can be used for any type of matching features. If zi are
concatenations of features in R

d for each time point j, Equation 4.14 turns into

∂

∂pm
e2Z (zi) =

np

∑
j=1

d

∑
k=1

2(zijk − z̃ijk)∇zijkJ
m
T (xj) (4.17)

where ∇zijk represents the spatial gradient of the kth feature coefficient at time j,
and its computation depends on the feature definition.

By applying Equation 4.16 for computing derivatives, the time complexity is
reduced to O(ns log ns) as compared to the O(n2s log ns) time complexity required
for finite differences.



CHAPTER 5
Strain analysis in the aute myoardial infartion

Abstract - In this chapter we have studied the relationship between strains, infarction lo-
cation, and coronary occlusion in patients with acute myocardial infarction (AMI). Even

when the strain in AMI has been extensively studied with bidimensional ultrasonography,

its study with MRI is of great interest due to the relative advantages of this modality. In this
chapter, we have estimated strains by applying the registration method described in Chap-

ter 4 to tagged magnetic resonance (T-MRI) sequences. Strain values were subsequently
correlated to the infarction location assessed from Delay Enhancement MRI (DE-MRI), and

to regions at risk (low perfused) obtained from Cardiac Catheterization (CC). The strain in 7

patients with myocardial infarction was regionally compared with respect to a control group
of 10 healthy subjects, and the observed differences were explained based on the information

provided by DE-MRI and CC. As expected, infarcted regions presented lower strain values
with respect to healthy subjects, but an interesting finding was the lower strain in regions

at risk which suggests a potential use of strain as a predictor of myocardial infarction.

Adapted from E. Oubel, G. Avegliano, M. Huguet, B. H. Bijnens, M. De Craene, A. O. Hero, and
A. F. Frangi. Automatic strain analysis in myocardial infarction: comparison with delayed enhancement
and cardiac catheterization. To be submitted.
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5.1 Introduction

Magnetic Resonance Imaging (MRI) allows studying different aspects of the heart
anatomy and function depending on the specific sequence applied. Thus, Cine (C-
MRI), tagged (T-MRI), and delay-enhancement of Gadolinium (DE-MRI) MR pro-
vide the necessary and complementary information required to perform cardiac
function analysis. In this context, T-MRI provides tagged images of the myocardium
that allow estimating cardiac displacement fields and strains. A promising area of
study with T-MRI are the mechanical effects and evolution over time of the acute
myocardial infarction (AMI) [11], since an infarcted region permanently loses its
ability to contract. From a mathematical point of view, the cardiac contraction can
be modeled as a transformation that establishes a dense point correspondence over
time. The strain values derived from this transformation should be low in infarcted
regions since the displacement field is expected to be almost constant inside. Simi-
larly, regions at risk should present an altered motion as a consequence of a reduced
blood supply.

The strain in AMI has been extensively studied with bidimensional ultrasonog-
raphy (2D-US) [109–114]. Even when the drawbacks of 2D modalities seemed to
be solved with the availability of 3D-US scanners, the application of strain estima-
tion methods developed for 3D-US [120] has been limited to global cardiac function
assessment [121–125]. MRI is an alternative modality to 3D-US since it provides
images with higher signal to noise ratio (SNR), there is no missing information due
to acoustic window issues, and the strain estimation is more accurate as material
points can be tracked over the cardiac cycle. Therefore, the study of strain in AMI
by using MRI is of great interest despite the extensive research already performed
with US modalities. However, the information found in the literature is limited.
Geskin et al. [115] have applied T-MRI for quantifying the response to dobutamine
in patients after AMI. This was measured by using the percent of radial shorten-
ing obtained by a 1-dimensional strain analysis. Korosoglou et al. [101] have used
Strain-Encoded MRI (SE-MRI) to study the correlation between strain and infarc-
tion in patients with heart failure, but only the circumferential strain was analyzed.
Garot et al. [116] have shown a correlation between SE-MRI and DE-MRI. Finally,
Spottiswoode et al. [117] have proposed a method to recover cardiac motion from
2D DENSE images, and shown its consistency in two patients with AMI.

In this chapter we have applied the method described in Chapter 4 to study
differences in strain between a group of patients with AMI, and a group of healthy
subjects. We have applied a regional approach, by comparing the strain values
over the affected regions as assessed by DE-MRI. Differently from other articles
in the literature [101, 115–117], we have also analyzed strain values according to
the occlusion of coronary arteries quantified by cardiac catheterization (CC). This
analysis was motivated by findings of low strain values in healthy regions according
to DE-MRI.
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#1 #2 #3 #4

#5 #6 #7

Figure 5.1: Transmurality of necrosis for then patient group classified into four cate-
gories: i) 0% (healthy segment) ii) <50%, iii) 50-75% and iv) > 75%.

5.2 Method

5.2.1 Study group

The database used for the experiments consisted of 10 healthy subjects (between
24 and 33 years old) and 7 patients with transmural infarction of the myocardium.
For all subjects, C-MRI, T-MRI, and DE-MRI images were acquired in breath-hold
by using a General Electric Signa CV/i, 1.5 T scanner (General Electric, Milwaukee,
USA). Healthy volunteers were also imaged with DE-MRI to have a proof of their
clinical status. The values of acquisition parameters were: slice thickness = 8mm,
in-plane resolution = 0.78mm × 0.78mm, gap between slices = 0mm, TR=7.99ms,
TE=4.43ms, flip angle = 20 degrees, and FOV=40cm×40cm. C-MRI and T-MRI se-
quences were acquired at 30 phases per cardiac cycle. T-MRI images with a grid
pattern of 5mm (tag spacing) were acquired by applying a Spatial Modulation of
Magnetization (SPAMM) sequence. For each patient, an expert clinician assessed
the presence of infarction from DE-MRI images, and classified the 16 standard seg-
ments [83] according to the transmurality of necrosis in the myocardium wall into 3
categories: a) < 50 %, b) 50-75 % and c) > 75 %. These measurements are presented
as Bull’s-eye plots in Figure 5.1. For infarcted patients, CC was also performed to
assess the degree of coronary occlusion. Figure 5.2 presents the percent of coro-
nary occlusion and the affected territories. Table 5.1 summarizes relevant clinical
information for the patient group.
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#1 #2 #3 #4

#5 #6 #7

Figure 5.2: Maps of coronary occlusion assessed by cardiac catheterism according to the
affected territories. Segments in red present a normal irrigation, and segments in white
have a deficiency in irrigation due to complete occlusion of the associated coronary
artery.

5.2.2 Strain estimation

The set of transformations T allows computing the displacement field u(x, t) for
a position x at ED and time t. Since the assumption of small deformations is too
strong for cardiac deformations, the Green-Lagrange strain tensor must be used
instead of the Green strain tensor. The Green-Lagrange strain tensor is defined
as [90]

E =
1
2

(
∇u + ∇uT + ∇uT∇u

)
(5.1)

Diagonal elements Eii of E are normal strains, i.e. strains along each direction in
a rectangular coordinate system. Given the geometry of the heart, this coordinate
system is not appropriate for analysis. Instead, it is preferable the use of a local
coordinate system composed by radial, circumferential, and longitudinal directions
(rcl system) on the basis of the epicardial surface orientation at the reference (un-
deformed) geometry. In order to estimate the epicardial surface, we performed
a manual segmentation of the SA image at ED and applied a variant [91] of the
original marching cubes algorithm [92] to extract the epicardial and endocardial
contours. The normal strain along a gin arbitrary direction d can be then obtained
from the E as [93]:
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Table 5.1: Relevant clinical information about each patient. EF = Ejection fraction from
C-MRI studies; Dilated = Dilated LV evaluated by C-MRI studies; Y = Yes; N = No;
LAD= Left anterior descending artery; CX = Circumflex coronary artery; RCA = Right
coronary artery; Obst = Obstruction percentage of vessel.

Patient Gender Age EF Dilated Catheterism

LAD CX RCA
# M/F years (%) Y / N (%) obst

1 M 59 23 Y 100 100 50
2 M 54 55 Y 0 90 50
3 M 70 40 N 90 75 0
4 M 71 52 N 0 85 100
5 M 53 34 Y 85 80 90
6 M 77 54 N 80 0 100
7 M 55 52 N 0 0 40

Edd = dTEd (5.2)

5.2.3 Strain analysis

Strain analysis along systole was performed by dividing the Left Ventricle (LV) into
the 16 standard segments [83]. For a patient p, each segment was classified as
“infarcted”, “at risk”, or “normal”, depending on the information provided by DE-
MRI and cardiac catheterization. We defined the infarcted region Ω

p
in f as the volume

of myocardium composed by all segments marked as “infarcted”. Similarly, the
region at risk Ω

p
risk was defined as the volume of myocardium composed by all

non-infarcted segments marked as “at risk”. More exactly:

Ω
p
in f =

16⋃

i=1

S
p
i |L(S

p
i )=in f (5.3)

Ω
p
risk =

16⋃

i=1

S
p
i |L(S

p
i )=risk AND L(S

p
i )=in f (5.4)

where S
p
i is the ith segment of patient p, and L(S

p
i ) is a function that assigns labels

to each segment.
For each patient, we computed peak systolic strain values over regions Ω

p
in f and

Ω
p
risk along radial (Ein f

rr , Erisk
rr ), circumferential (Ein f

cc , Erisk
cc ), and longitudinal direc-

tions (Ein f
ll , Erisk

ll ). These values were subsequently compared to the peak systolic
strain values of healthy subjects for the same regions, represented by their average
value (E

norm
rr , E

norm
cc , E

norm
ll ).
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Table 5.2: Means (Err, Ecc, Ell) and standard deviations (σrr, σcc, σll) of peak systolic
strains for each standard segment in the control group.

Segment (#) Err (σrr) (%) Ecc (σcc) (%) Ell (σll) (%)
1 27.3± 8.3 −7.2± 0.7 −4.6± 5.3
2 21.5± 9.9 −10.2± 1.4 −6, 9± 1.7
3 17.0± 6.8 −12.5± 3.4 −8.7± 1.8
4 25.7± 5.7 −12.3± 3.1 −3.7± 3.8
5 26.1± 8.9 −10.1± 3.1 −3.9± 3.6
6 20.0± 10.9 −9.4± 1.7 −9.9± 9.0
7 26.3± 7.8 −9.0± 1.8 −8.9± 4.1
8 15.4± 8.5 −11.1± 1.6 −8.6± 2.4
9 10.6± 6.4 −13.5± 3.0 −9.6± 1.5
10 19.2± 4.5 −14.2± 1.5 −10.7± 6.7
11 22.7± 7.1 −13.9± 2.1 −7.9± 2.7
12 15.7± 4.4 −11.3± 1.9 −8.5± 3.6
13 12.8± 5.4 −6.6± 3.5 −8.4± 1.7
14 10.5± 7.6 −8.3± 1.9 −12.3± 4.3
15 11.4± 5.1 −14.1± 2.1 −6.5± 3.8
16 14.7± 9.3 −12.4± 4.8 −7.6± 2.7

5.3 Results and discussion

Table 5.2 presents the peak systolic strain values for the healthy subjects. As can be
observed, the strain sign is consistent with the current knowledge of heart physi-
ology: during systole there is a thickening of the myocardium (εrr > 0), a circum-
ferential shortening (εcc < 0), and a longitudinal shortening (ε ll < 0) characterized
by a displacement of the heart base towards the apex. Table 5.2 shows a remark-
ably lower variance of circumferential strain with respect to radial and longitudinal
strains, in agreement with other results reported in the literature [98]. A plausi-
ble explanation can be found in the estimation of radial direction, which depends
strongly on a good estimation of the local curvature of the heart wall along the
z-axis. An accurate curvature estimation is quite difficult to achieve because of the
low image resolution in the long axis. On the contrary, the circumferential direc-
tion is tangent to the segmentation of epicardium in the xy plane, where the image
resolution is much higher (10 times in our case).

It is important to comment on the strain underestimation effects induced by
blood magnetization. At the beginning of image acquisition, the blood is mag-
netized and presents a tag pattern as all tissues in the image. This tag pattern
disappears 60 ms later approximately as a consequence of blood mixing. The miss-
ing information creates a problem for image registration methods, since a point
correspondence cannot be established between images. To solve this problem, we
removed the first phase of the sequence to improve the registration accuracy. How-
ever, the suppression of the first phase produces an underestimation of strain, since
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Table 5.3: Means of peak systolic strains (Err, Ecc, Ell) over infarcted (Ωin f ) and at risk

(Ωrisk) regions for each patient. Values between brackets are the mean of peak systolic
strains for the same region in the control group.

Ωin f Ωrisk

Patient Err (σrr) (%) Ecc (σcc) (%) Ell (σll) (%) Err (σrr) (%) Ecc (σcc) (%) Ell (σll) (%)

1 5.1 (14.5) -0.8 (-9.7) -0.2 (-4.4) - - -
2 7.5 (13.1) -5.3 (-9.8) -7.2 (-4.3) 11.2 (-19.7) -10.8 (-10.1) -8.3 (-4.2)

3 11.5 (12.0) -6.4 (-10.1) -1.0 (-5.4) 17.6 (-19.7) -2.8 (-10.1) -2.7 (-4.2)
4 3.1 (9.4) -7.7 (-10.4) -2.2 (-5.4) 9.9 (-19.7) -0.9 (-10.1) 0.4 (-4.2)
5 7.0 (11.2) -2.0 (-10.8) -2.3 (-5.8) - - -
6 13.2 (13.3) -4.4 (-9.6) 0.9 (-3.9) 12.4 (-16.4) -5.1 (-8.4) -5.7 (-3.5)
7 7.4 (10.2) -5.7 (-10.2) 4.4 (-5.7) - - -

the first considered phase corresponds to the heart in an already deformed state.

Table 5.3 shows the peak systolic values for the patient group compared to the
control values. Except for an increased longitudinal strain for patient #2, the strain
in infarcted regions was below the controls. The same trend was found for regions
at risk. The same table also shows that the longitudinal strain presents the lowest
correlation with presence on infarction and coronary occlusion. This can be ex-
plained from an image acquisition point of view. Standard cardiac MRI acquisition
protocols use the same interslice spacing in the base-apex direction for the SA ac-
quisition, than in the lateral direction for LA. Given the LV shape, this results in
a lower number of LA images (and therefore less information) with respect to SA.
The differential information provided by both views is in fact higher, since there is
a difference (in favor of SA) in the cross sectional area of the myocardium and the
out-of-plane motion is larger for LA.

In this chapter we have classified categorically each segment as infarcted if an
infarction was present in at least one slice, and regardless its degree of transmural-
ity. However, if the extention of the infarction is small, the segment could remain
functional and there could be a disagreement between between strain values and
the segment classification. The strain analysis could be improved by segmenting
the scar to restrict the region of interest to the volume of myocardium affected by
the infarction.

It is important to comment on the age mismatch between patient and con-
trol groups, since the found differences could be attributed to normal age-related
changes of strain values. Unfortunately, we have not found in the literature a full
description of such changes in the LV. Only partial aspects of aging have been re-
ported like changes in torsion [126–129], and relaxation patterns [130]. However, the
large deviations from normality shown in Table 5.3 are difficult to explain based on
possible age-related effects. Another argument against this hypothesis is provided
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by Oxenham et al. [129], who reported an increase in the circumferential strain with
age, whereas we have observed a lower circumferential strain with respect to con-
trols (the younger group).

5.4 Conclusions

In this paper we have applied a novel cardiac motion estimation method to study
the interrelationships between strain, infarction, and coronary occlusion. The method
provided consistent results with respect to the current knowledge about physio,
and physiopathology of the heart. The recovered strains for healthy subjects were
in agreement with the basic modes of contraction of the LV during systole, i. e.
radial contraction (traduced in a wall thickening), and circumferential and longi-
tudinal shortening. The estimated strains inside infarcted regions were lower than
the average for healthy subjects in corresponding regions. The low intersubject
variability of circumferential strain with respect to radial and longitudinal strains
makes it the more appropriate to perform comparisons between healthy and patho-
logical subjects. Another interesting finding was the reduced strains in regions at
risk, which suggests a potential use of strain as a marker of regions with high risk
of infarction and as follow up method after coronary stenting. Even when the ap-
plied methodology of strain analysis provided satisfactory results, it could benefit
from improvements in each step. Examples are artifact correction in T-MRI, im-
provements in the estimation of the rcl coordinate system, and the addition of scar
segmentation methods to constrain the region of analysis.
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Resumen
La estimación de cambios morfológicos temporales de tejidos biológicos es un problema

recurrente en imaginología. Los métodos de corregistro de imágenes resultan adecua-
dos para resolver este tipo de problemas ya que permiten establecer una correspondencia
punto a punto entre imágenes, la cual a su vez puede ser utilizada para cuantificar de-
formaciones. Dada una secuencia de imágenes I(x, t) = I(x, 0), I(x, 1) · · · , I(x,N − 1), en
el contexto de esta tesis, corregistrar una secuencia significa encontrar una transformación
T(x, t) : (x, 0) → (x′, t) que establece una correspondencia entre sus imágenes componentes.
En esta tesis, nos hemos enfocado en dos aplicaciones de gran interés del corregistro de se-
cuencias en imaginología: la estimación de movimiento de pared en aneurismas cerebrales,
y la estimación de deformaciones cardíacas.

La cuantificación de la pulsación en aneurismas es importante para estudiar la conexión
entre la hemodinámica y ruptura. Una de las hipótesis que intentan explicar la ruptura de
aneurismas es la concentración de fuerzas sobre la pared vascular. Esta puede ser cuantifi-
cada calculando el esfuerzo de corte sobre la pared a partir de simulaciones computacionales
de dinámica de fluidos (CFD). En este contexto, la información sobre el movimiento de pared
puede utilizarse para imponer condiciones de frontera en simulaciones realizadas con mod-
elos no rígidos, como se describe en el Capítulo 1.

La estimación de movimiento de pared es también de gran importancia debido a la
posible conexión entre pulsación y riesgo de ruptura como se sugiere en [4–6]. La hipótesis
subyacente es que la ruptura de un aneurisma se produce como consecuencia de la debilidad
de la pared vascular, lo cual debería reflejarse en un cambio en la pulsación. Para estudiar la
relación entre ruptura y pulsación es necesario entonces cuantificar esta última, lo cual puede
realizarse midiendo los desplazamientos de la pared vascular a lo largo del ciclo cardíaco.

La mayoría de los valores de movimiento de pared que se encuentran en la literatura cor-
responden a experimentos realizados con fantomas [5,7], imágenes simuladas [8], o modelos
experimentales [9]. Solo unos pocos intentos de cuantificación in-vivo han sido realizados
en seres humanos [4, 10]. En esta tesis hemos desarrollado un método automático para
cuantificar el movimiento de pared de aneurismas intracraneales a partir de secuencias de
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angiografía digital. Este método fue luego aplicado para investigar la relación entre estado
de ruptura y la pulsación (Capítulo 2).

En cuanto a los métodos de estimación de deformaciones cardíacas, estos son impor-
tantes para el estudio del corazón en condiciones normales, patológicas, y simuladas. Entre
otras aplicaciones, estos métodos son útiles para estudiar los efectos mecánicos de ciertas
cardiopatías [11], y para el desarrollo de modelos electromecánicos. El corregistro de imá-
genes basado en Información Mutua (MI) entre volúmenes componentes de secuencias de
T-MRI ha probado ser una buena estrategia para estimar campos de desplazamiento en el
corazón [12, 13]. Esto nos ha motivado a estudiar extensiones de los métodos basados en
teoría de la información para incluir información espacial y temporal.

En general, las métricas de similaridad están basadas en la intensidad de la imagen, ig-
norando información espacial potencialmente relevante para guiar el proceso de corregistro.
Para incluir esta información hemos explorado el uso de métricas basadas en transformadas
wavelets para el corregistro no rígido de secuencias de T-MRI bidimensionales. Para incluir
información temporal en el proceso de corregistro hemos realizado un corregistro conjunto
de los volúmenes componentes de la secuencias, en lugar de una serie de corregistros entre
pares de volúmenes (Capítulo 4). Esta nueva estrategia para la recuperación de campos de
desplazamiento fue luego aplicada para estudiar diferencias regionales de deformación entre
pacientes con infarto agudo de miocardio y un grupo control de sujetos sanos (Capítulo 5).

Los resultados de estas lineas de invesigación han sido presentados en diferentes confer-
encias, y enviados a revistas de divulgación científica para su publicación. La correspondi-
ente lista de publicaciones se puede encontrar a continuación del Capítulo 5. En la misma
lista se han agregado otras publicaciones fruto de colaboraciones realizadas con grupos exter-
nos, a las que hemos contribuido con la experiencia ganada durante estos años en el ámbito
de corregistro de imágenes.
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Los capítulos que componen esta tesis tienen como denominador común el procesamiento de
secuencia de imágenes, cada uno de ellos aborda problemáticas diferentes, mediante distintas
metodologías, y con objetivos particulares. Por lo tanto, las conclusiones se presentan de
manera independiente para cada uno de los capítulos.

Capitulo 1. Modelos distensibles para simulaciones computacionales
de dinámica de fluidos en aneurismas intracraneales

En este estudio se ha presentado una nueva estrategia para incluir información de movimiento
de pared en simulaciones CFD, para poder entender la influencia de paredes distensibles
sobre los patrones de flujo sanguíneo dentro del aneurisma. Este nuevo método provee
una base para simulaciones CFD potencialmente más exactas. Se ha mostrado además
que es posible estimar el movimiento de pared en aneurismas aplicando técnicas de cor-
registro de imágenes a secuencias angiográficas, y que existen movimientos diferenciales en
el aneurisma, en concordancia con la literatura [15, 16].

El método de estimación de movimiento de pared puede ser mejorado de diferentes
maneras, tales como el uso mayores frecuencias de muestreo, el uso de catéteres de mayor
dimension, y tasas de inyección de contraste mayores. El uso de frecuencias de muestreo
más elevadas debería permitir recuperar la curva de distensión completa, lo cual eliminaría
la necesidad de usar formas de onda particulares en las simulaciones. Una limitación po-
tencial de la técnica presentada es que no se puede garantizar una distribución homogénea
del contraste para las tasas de inyección y tamaños de catéter utilizados. Los avances en tec-
nología de adquisición de imágenes que permitan mayores resoluciones espaciales deberían
incrementar la sensibilidad del método.

En cuanto a la influencia del movimiento de pared sobre la hemodinámica, se observaron
pequeñas diferencias en la distribución de esfuerzos de corte obtenidas con modelos rígidos
y distensibles, pero los modelos rígidos produjeron una sobreestimación de su magnitud.
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Sin embargo, otras características hemodinámicas no exhibieron variaciones sustanciales (Ej:
localización y tamaño de la zona de impacto). la fueron condición

Aunque se cree que el esfuerzo de corte juega un papel importante en la mecanobi-
ología de la pared arterial, se requiere investigación adicional para determinar cuáles son las
variables hemodinámicas relevantes, y el efecto del movimiento de pared sobre las mismas.
Finalmente, aun cuando es generalmente aceptado que la pared del aneurisma es siempre
distensible en cierto grado, el rango de variabilidad del movimiento de pared entre pacientes
es aun desconocido. Se requieren estudios sobre un número mayor de casos para determinar
las posibilidades de medición, y si las diferencias en distensibilidad pueden ser relacionadas
a factores clínicos como crecimiento y ruptura del aneurisma.

Capitulo 2: Estimación del movimiento de pared en aneurismas
intracraneales

En este capítulo se han combinado métodos de corregistro no rígido con técnicas de proce-
sado de señales para cuantificar el movimiento de pared a partir de secuencias angiográficas.
Hasta nuestro conocimiento, esta es la primera vez que la pulsación es cuantificada de man-
era continua a lo largo del ciclo cardíaco.

La metodología presentada fue aplicada a un grupo de secuencias y se ha encontrado que
la diferencia de pulsación entre el aneurisma y la arteria es mayor en aneurismas rotos que en
aneurismas no rotos. Esta observación es consistente con diferencias histológicas de la pared
vascular encontradas en la literatura. Estas mediciones y observaciones pueden ayudar a
estratificar el riesgo de ruptura, y a comprender los efectos del movimiento de pared sobre
la hemodinámica y evolución de los aneurismas.

Varios aspectos planteados en el Capítulo 1 como posibles mejoras de la técnica de medi-
ción han sido desarrollados en mayor profundidad, y confirmando las hipótesis planteadas.
En particular, el uso de mayores frecuencias de muestreo para obtener una curva de dis-
tensión continua, la conexión entre pulsación y estado de ruptura, y la aplicación de la
metodología a un número mayor de casos para obtener rangos de variación de la distensión
en aneurismas cerebrales.

Capitulo 3: Estimación de movimiento cardíaco mediante wavelets
complejas

La información espacial presente en imágenes de resonancia magnética marcada fue intro-
ducida en métodos de corregistro mediante el uso de vectores de características formados
con los coeficientes de la transformada wavelet compleja (CWT). Esta representación de imá-
genes es invariante al desplazamiento, discrimina correctamente direcciones espaciales, y
es intrínsecamente multiresolución. Estas propiedades resultan deseables en el contexto de
corregistro de imágenes.

El uso de la CWT ha permitido obtener errores menores con respecto a la wavelet de
Haar e intensidad de pixel, lo cual sugiere que la inclusión de información espacial podría
ser relevante para guiar el proceso de corregistro. El punto débil de esta metodología es su
elevado costo computacional debido al cálculo de la CWT y al estimador de la métrica, lo
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cual podría limitar su aplicación práctica a las secuencias 3D + t disponibles en la práctica
clínica.

Capitulo 4: Estimación de movimiento cardíaco mediante correg-
istro conjunto de imágenes.

En este capítulo hemos estimado el movimiento cardíaco mediante el corregistro conjunto de
las imágenes componentes de secuencias de T-MRI. La utilización de Hα conjunta en lugar
de métricas definidas entre pares de imágenes fue justificado mediante desde un punto de
vista probabilístico en la Section 4.2.3. Para resolver el problema del elevado costo computa-
cional de los estimadores basados en kNNG, se ha derivado una expresión analítica para el
gradiente de la métrica, obteniendo como resultado una drástica reducción en el tiempo de
corregistro. La estrategia utilizada para combinar diferentes vistas proporcionó los resulta-
dos esperados, y resulta una manera simple de integrar diferentes canales de información en
una métrica única.

Los resultados obtenidos mostraron errores significativamente menores, y menores vari-
anzas con respecto al método de referencia. Aun cuando se esperaba una distribución tem-
poral uniforme del error, este presentó un incremento durante la sístole. Estas observaciones
fueron relacionadas a artefactos y métodos de adquisición de secuencias 3D, los cuales po-
drían ser parcialmente resueltos mediante adquisiciones 3D reales [102]. Los valores de de-
formaciones obtenidos para sujetos sanos se encuentran en el orden de magnitud encontrado
en la literatura. Sin embargo, la falta de estandarización, y las diferentes fuentes de variabil-
idad dificultan una comparación directa. En pacientes con infarto agudo de miocardio, se
observó una correlación entre deformación, localización del infarto, y regiones en riesgo. Se
necesitan experimentos adicionales sobre un número mayor de pacientes para confirmar y
generalizar estas conclusiones clínicas.

Capitulo 5: Análisis de deformaciones en el infarto agudo de mio-
cardio

En este estudio se ha aplicado el método presentado en el capítulo 4, para estudiar las
relaciones entre deformación, localización del infarto, y oclusión coronaria. Los resultados
proporcionados por el método son consistentes con el conocimiento actual de la fisio y fi-
siopatología cardíaca. Las deformaciones obtenidas para el grupo de control se encuentran
en concordancia con los modos básicos de contracción del ventrículo izquierdo durante la
sístole. Las deformaciones estimadas dentro de las regiones con infarto de miocardio fueron
inferiores al promedio del grupo de control en la región correspondiente. Un hallazgo intere-
sante fue la disminución de la deformación en las regiones en riesgo, lo cual sugiere el uso
potencial de la deformación como índice de riesgo de infarto, o como indicador de evolu-
ción luego de una intervención coronaria. La metodología presentada puede beneficiarse de
avances en métodos de segmentación de cámaras cardíacas y extensión del infarto.
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